Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

School of Pharmacy : Blum Galia

Researchers

 Last updated June 2021 - School of Pharmacy

List of Publications

(1) Meka SRK, Younis T, Reich E, Elayyan J, Kumar A, Merquiol E, et al. TNFα expression by Porphyromonas gingivalis-stimulated macrophages relies on Sirt1 cleavage. J Periodontal Res 2021;56(3):535-546.

(2) Gangadevi S, Badavath VN, Thakur A, Yin N, De Jonghe S, Acevedo O, et al. Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19. J Phys Chem Lett 2021;12(7):1793-1802.

(3) Oelschlaegel D, Sadan TW, Salpeter S, Krug S, Blum G, Schmitz W, et al. Cathepsin inhibition modulates metabolism and polarization of tumor-associated macrophages. Cancers 2020;12(9):1-22.

(4) Badavath VN, Kumar A, Samanta PK, Maji S, Das A, Blum G, et al. Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): a molecular docking, molecular dynamics and structure-activity relationship studies. J Biomol Struct Dyn 2020.

(5) Weiss-Sadan T, Ben-Nun Y, Maimoun D, Merquiol E, Abd-Elrahman I, Gotsman I, et al. A theranostic cathepsin activity-based probe for noninvasive intervention in cardiovascular diseases. Theranostics 2019;9(20):5731-5738.

(6) Weiss-Sadan T, Itzhak G, Kaschani F, Yu Z, Mahameed M, Anaki A, et al. Cathepsin L regulates metabolic networks controlling rapid cell growth and proliferation. Mol Cell Proteomics 2019;18(7):1330-1344.

(7) Weiss-Sadan T, Maimoun D, Oelschlagel D, Kaschani F, Misiak D, Gaikwad H, et al. Cathepsins drive anti-inflammatory activity by regulating autophagy and mitochondrial dynamics in macrophage foam cells. Cell Physiol Biochem 2019;53(3):550-572.

(8) Meena NK, Pattanayak SP, Ben-Nun Y, Benhamron S, Kumar S, Merquiol E, et al. mTORC1 activation in B cells confers impairment of marginal zone microarchitecture by exaggerating cathepsin activity. Immunology 2018;155(4):505-518.

(9) Gibori H, Eliyahu S, Krivitsky A, Ben-Shushan D, Epshtein Y, Tiram G, et al. Amphiphilic nanocarrier-induced modulation of PLK1 and MIR-34a leads to improved therapeutic response in pancreatic cancer. Nat Commun 2018;9(1).

(10) Tsvirkun D, Ben-Nun Y, Merquiol E, Zlotver I, Meir K, Weiss-Sadan T, et al. CT Imaging of Enzymatic Activity in Cancer Using Covalent Probes Reveal a Size-Dependent Pattern. J Am Chem Soc 2018;140(38):12010-12020.

(11) Gaikwad HK, Tsvirkun D, Ben-Nun Y, Merquiol E, Popovtzer R, Blum G. Molecular Imaging of Cancer Using X-ray Computed Tomography with Protease Targeted Iodinated Activity-Based Probes. Nano Lett 2018;18(3):1582-1591.

(12) Blau R, Epshtein Y, Pisarevsky E, Tiram G, Dangoor SI, Yeini E, et al. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics 2018;8(13):3437-3460.

(13) Ben-Nun Y, Fichman G, Adler-Abramovich L, Turk B, Gazit E, Blum G. Cathepsin nanofiber substrates as potential agents for targeted drug delivery. J Control Release 2017;257:60-67.

(14) Weiss-Sadan T, Gotsman I, Blum G. Cysteine proteases in atherosclerosis. FEBS J 2017;284(10):1455-1472.

(15) Amit U, Kain D, Wagner A, Sahu A, Nevo-Caspi Y, Gonen N, et al. New role for interleukin-13 receptor α1 in myocardial homeostasis and heart failure. J Am Heart Assoc 2017;6(5).

(16) Barkan Y, Levinman M, Veprinsky-Zuzuliya I, Tsach T, Merqioul E, Blum G, et al. Comparative evaluation of polycyanoacrylates. Acta Biomater 2017;48:390-400.

(17) Alishekevitz D, Gingis-Velitski S, Kaidar-Person O, Gutter-Kapon L, Scherer SD, Raviv Z, et al. Macrophage-Induced Lymphangiogenesis and Metastasis following Paclitaxel Chemotherapy Is Regulated by VEGFR3. Cell Rep 2016;17(5):1344-1356.

(18) Abd-Elrahman I, Kosuge H, Sadan TW, Ben-Nun Y, Meir K, Rubinstein C, et al. Cathepsin activity-based probes and inhibitor for preclinical atherosclerosis imaging and macrophage depletion. PLoS ONE 2016;11(8).

(19) Abu-Fanne R, Maraga E, Abd-Elrahman I, Hankin A, Blum G, Abdeen S, et al. αDefensins induce a post-translational modification of low density lipoprotein (LDL) that promotes atherosclerosis at normal levels of plasma cholesterol. J Biol Chem 2016;291(6):2777-2786.

(20) Shaulov-Rotem Y, Merquiol E, Weiss-Sadan T, Moshel O, Salpeter S, Shabat D, et al. A novel quenched fluorescent activity-based probe reveals caspase-3 activity in the endoplasmic reticulum during apoptosis. Chem Sci 2016;7(2):1322-1337.

(21) Abd-Elrahman I, Meir K, Kosuge H, Ben-Nun Y, Sadan TW, Rubinstein C, et al. Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques. Stroke 2016;47(4):1101-1108.

(22) Salpeter SJ, Pozniak Y, Merquiol E, Ben-Nun Y, Geiger T, Blum G. A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene 2015;34(50):6066-6078.

(23) Riahi Y, Kaiser N, Cohen G, Abd-Elrahman I, Blum G, Shapira OM, et al. Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner. J Cell Mol Med 2015;19(8):1887-1899.

(24) Fahham D, Merquiol E, Gilon T, Marx G, Blum G. Insoluble fibrinogen particles for harvesting and expanding attachment-dependent cells and for trapping suspended cancer cells in the presence of blood. Biomed Mater 2015;10(2).

(25) Ben-Aderet L, Merquiol E, Fahham D, Kumar A, Reich E, Ben-Nun Y, et al. Detecting cathepsin activity in human osteoarthritis via activity-based probes. Arthritis Res Ther 2015;17(1).

(26) Ben-Nun Y, Merquiol E, Brandis A, Turk B, Scherz A, Blum G. Photodynamic quenched cathepsin activity based probes for cancer detection and macrophage targeted therapy. Theranostics 2015;5(8):847-862.

(27) Ben-Mordechai T, Holbova R, Landa-Rouben N, Harel-Adar T, Feinberg MS, Abd Elrahman I, et al. Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. J Am Coll Cardiol 2013;62(20):1890-1901.

(28) Salpeter SJ, Blum G. Ready, set, cleave: Proteases in action. Chem Biol 2013;20(2):137-138.

(29) Edgington LE, Verdoes M, Ortega A, Withana NP, Lee J, Syed S, et al. Functional imaging of legumain in cancer using a new quenched activity-based probe. J Am Chem Soc 2013;135(1):174-182.

(30) Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M, Weber E, et al. Acid-mediated tumor proteolysis: Contribution of cysteine cathepsins. Neoplasia 2013;15(10):1125-1137.

(31) Mullins SR, Sameni M, Blum G, Bogyo M, Sloane BF, Moin K. Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: Role of cysteine cathepsins. Biol Chem 2012;393(12):1405-1416.

(32) Verdoes M, Edgington LE, Scheeren FA, Leyva M, Blum G, Weiskopf K, et al. A nonpeptidic cathepsin s activity-based probe for noninvasive optical imaging of tumor-associated macrophages. Chem Biol 2012;19(5):619-628.

(33) Cutter JL, Cohen NT, Wang J, Sloan AE, Cohen AR, Panneerselvam A, et al. Topical application of activity-based probes for visualization of brain tumor tissue. PLoS ONE 2012;7(3).

(34) Withana NP, Blum G, Sameni M, Slaney C, Anbalagan A, Olive MB, et al. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 2012;72(5):1199-1209.

(35) Ren G, Blum G, Verdoes M, Liu H, Syed S, Edgington LE, et al. Non-invasive imaging of cysteine cathepsin activity in solid tumors using a 64Cu-labeled activity-based probe. PLoS ONE 2011;6(11).

(36) Tedelind S, Jordans S, Resemann H, Blum G, Bogyo M, Führer D, et al. Cathepsin B trafficking in thyroid carcinoma cells. Thyroid Res 2011;4(SUPPL. 1).

(37) Edgington LE, Berger AB, Blum G, Albrow VE, Paulick MG, Lineberry N, et al. Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 2009;15(8):967-973.

(38) Blum G, Weimer RM, Edgington LE, Adams W, Bogyo M. Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity. PLoS ONE 2009;4(7).

(39) Chang S-, Kanasaki K, Gocheva V, Blum G, Harper J, Moses MA, et al. VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res 2009;69(10):4537-4544.

(40) Cavallo-Medved D, Rudy D, Blum G, Bogyo M, Caglic D, Sloane BF. Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp Cell Res 2009;315(7):1234-1246.

(41) Yang Z, Fonović M, Verhelst SHL, Blum G, Bogyo M. Evaluation of α,β-unsaturated ketone-based probes for papain-family cysteine proteases. Bioorg Med Chem 2009;17(3):1071-1078.

(42) Blum G. Use of fluorescent imaging to investigate pathological protease activity. Curr Opin Drug Discov Dev 2008;11(5):708-716.

(43) Qvit N, Reuveni H, Gazal S, Zundelevich A, Blum G, Niv MY, et al. Synthesis of a novel macrocyclic library: Discovery of an IGF-1R inhibitor. J Comb Chem 2008;10(2):256-266.

(44) Blum G, Von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 2007;3(10):668-677.

(45) Steiner L, Blum G, Friedmann Y, Levitzki A. ATP non-competitive IGF-1 receptor kinase inhibitors as lead anti-neoplastic and anti-papilloma agents. Eur J Pharmacol 2007;562(1-2):1-11.

(46) Sexton KB, Witte MD, Blum G, Bogyo M. Design of cell-permeable, fluorescent activity-based probes for the lysosomal cysteine protease asparaginyl endopeptidase (AEP)/legumain. Bioorg Med Chem Lett 2007;17(3):649-653.

(47) Yuan F, Verhelst SHL, Blum G, Coussens LM, Bogyo M. A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J Am Chem Soc 2006;128(17):5616-5617.

(48) Blum G, Mullins SR, Keren K, Fonovič M, Jedeszko C, Rice MJ, et al. Dynamic Imaging of Protease Activity With Fluorescently Quenched Activity-Based Probes. Nat Chem Biol 2005;1(4):203-209.

(49) Kato D, Boatright KM, Berger AB, Nazif T, Blum G, Ryan C, et al. Activity-Based Probes that Target Diverse Cysteine Protease Families. Nat Chem Biol 2005;1(1):33-38.

(50) Blum G, Gazit A, Levitzki A. Development of New Insulin-like Growth Factor-1 Receptor Kinase Inhibitors Using Catechol Mimics. J Biol Chem 2003;278(42):40442-40454.

(51) Blum G, Gazit A, Levitzki A. Substrate competitive inhibitors of IGF-1 receptor kinase. Biochemistry 2000;39(51):15705-15712.