Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

The Faculty of Medicine - Microbiology and Molecular Genetics: Amster-Choder Orna


 Last updated June 2021 - School of Pharmacy

List of Publications

(1) Irastortza-Olaziregi M, Amster-Choder O. RNA localization in prokaryotes: Where, when, how, and why. Wiley Interdiscip Rev RNA 2021;12(2).

(2) Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021;11.

(3) Szoke T, Albocher N, Govindarajan S, Nussbaum-Shochat A, Amster-Choder O. Tyrosine phosphorylation-dependent localization of TmaR that controls activity of a major bacterial sugar regulator by polar sequestration. Proc Natl Acad Sci U S A 2021;118(2).

(4) Kannaiah S, Livny J, Amster-Choder O. Spatiotemporal Organization of the E. coli Transcriptome: Translation Independence and Engagement in Regulation. Mol Cell 2019;76(4):574-589.e7.

(5) Govindarajan S, Amster-Choder O. Transcription regulation in bacteria. Encyclopedia of Microbiology; 2019. p. 441-457.

(6) Govindarajan S, Albocher N, Szoke T, Nussbaum-Shochat A, Amster-Choder O. Phenotypic heterogeneity in sugar utilization by E. coli is generated by stochastic dispersal of the general PTS protein EI from polar clusters. Front Microbiol 2018;8(JAN).

(7) Govindarajan S, Amster-Choder O. The bacterial Sec system is required for the organization and function of the MreB cytoskeleton. PLoS Genet 2017;13(9).

(8) Govindarajan S, Amster-Choder O. Where are things inside a bacterial cell? Curr Opin Microbiol 2016;33:83-90.

(9) Kannaiah S, Amster-Choder O. Methods for studying RNA localization in bacteria. Methods 2016;98:99-103.

(10) Gordon N, Rosenblum R, Nussbaum-Shochat A, Eliahoo E, Amster-Choder O. A Search for Ribonucleic Antiterminator Sites in Bacterial Genomes: Not only Antitermination? J Mol Microbiol Biotechnol 2015;25(2-3):143-153.

(11) Buskilay A-A, Kannaiahy S, Amster-Choder O. RNA localization in bacteria. RNA Biol 2014;11(8):1051-1060.

(12) Kannaiah S, Amster-Choder O. Protein targeting via mRNA in bacteria. Biochim Biophys Acta Mol Cell Res 2014;1843(8):1457-1465.

(13) Baum M, Watad M, Smith SN, Alteri CJ, Gordon N, Rosenshine I, et al. PafR, a novel transcription regulator, is important for pathogenesis in uropathogenic Escherichia coli. Infect Immun 2014;82(10):4241-4252.

(14) Govindarajan S, Elisha Y, Nevo-Dinur K, Amster-Choder O. The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio 2013;4(5).

(15) Amster-Choder O, Mignot T. Growth and development: Prokaryotes. Curr Opin Microbiol 2012;15(6):705-706.

(16) Govindarajan S, Nevo-Dinur K, Amster-Choder O. Compartmentalization and spatiotemporal organization of macromolecules in bacteria. FEMS Microbiol Rev 2012;36(5):1005-1022.

(17) Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of RNA and proteins in prokaryotes. Trends Genet 2012;28(7):314-322.

(18) Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O. Translation-independent localization of mRNA in E. coli. Science 2011;331(6020):1081-1084.

(19) Lopian L, Elisha Y, Nussbaum-Shochat A, Amster-Choder O. Spatial and temporal organization of the E. coli PTS components. EMBO J 2010;29(21):3630-3645.

(20) Raveh H, Lopian L, Nussbaum-Shochat A, Wright A, Amster-Choder O. Modulation of transcription antitermination in the bgl operon of Escherichia coli by the PTS. Proc Natl Acad Sci U S A 2009;106(32):13523-13528.

(21) Yagur-Kroll S, Ido A, Amster-Choder O. Spatial arrangement of the β-glucoside transporter from Escherichia coli. J Bacteriol 2009;191(9):3086-3094.

(22) Amster-Choder O. Transcriptional Regulation. Encyclopedia of Microbiology; 2009. p. 501-516.

(23) Qvit N, Monderer-Rothkoff G, Ido A, Shalev DE, Amster-Choder O, Gilon C. Development of bifunctional photoactivatable benzophenone probes and their application to glycoside substrates. Biopolym Pept Sci Sect 2008;90(4):526-536.

(24) Monderer-Rothkoff G, Amster-Choder O. Genetic dissection of the divergent activities of the multifunctional membrane sensor BglF. J Bacteriol 2007;189(23):8601-8615.

(25) Yagur-Kroll S, Amster-Choder O. Dynamic membrane topology of the Escherichia coli β-glucoside transporter BglF. J Biol Chem 2005;280(19):19306-19318.

(26) Ben-Zeev E, Fux L, Amster-Choder O, Eisenstein M. Experimental and computational characterization of the dimerization of the PTS-regulation domains of BglG from Escherichia coli. J Mol Biol 2005;347(4):693-706.

(27) Amster-Choder O. The bgl sensory system: A transmembrane signaling pathway controlling transcriptional antitermination. Curr Opin Microbiol 2005;8(2):127-134.

(28) Fux L, Nussbaum-Shochat A, Lopian L, Amster-Choder O. Modulation of monomer conformation of the BglG transcriptional antiterminator from Escherichia coli. J Bacteriol 2004;186(20):6775-6781.

(29) Fux L, Nussbaum-Shochat A, Amster-Choder O. A Fraction of the BglG Transcriptional Antiterminator from Escherichia coli Exists as a Compact Monomer. J Biol Chem 2003;278(51):50978-50984.

(30) Fux L, Nussbaum-Shochat A, Amster-Choder O. Interactions between the PTS Regulation domains of the BglG Transcriptional Antiterminator from Escherichia coli. J Biol Chem 2003;278(47):46203-46209.

(31) Lopian L, Nussbaum-Shochat A, O'Day-Kerstein K, Wright A, Amster-Choder O. The BgIF sensor recruits the BgIG transcription regulator to the membrane and releases it on stimulation. Proc Natl Acad Sci U S A 2003;100(12):7099-7104.

(32) Chen Q, Nussbaum-Shochat A, Amster-Choder O. A Novel Sugar-stimulated Covalent Switch in a Sugar Sensor. J Biol Chem 2001;276(48):44751-44756.

(33) Chen Q, Postma PW, Amster-Choder O. Dephosphorylation of the Escherichia coli transcriptional antiterminator BglG by the sugar sensor BglF is the reversal of its phosphorylation. J Bacteriol 2000;182(7):2033-2036.

(34) Nussbaum-Shochat A, Amster-Choder O. BglG, the transcriptional antiterminator of the bgl system, interacts with the β′ subunit of the Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 1999;96(8):4336-4341.

(35) Chen Q, Amster-Choder O. BglF, the Escherichia coli β-glucoside permease and sensor of the bgl system: Domain requirements of the different catalytic activities. J Bacteriol 1999;181(2):462-468.

(36) Boss A, Nussbaum-Shochat A, Amster-Choder O. Characterization of the dimerization domain in BglG, an RNA-binding transcriptional antiterminator from Escherichia coli. J Bacteriol 1999;181(6):1755-1766.

(37) Chen Q, Amster-Choder O. The different functions of BglF, the E. coli β-glucoside permease and sensor of the bgl system, have different structural requirements. Biochemistry 1998;37(48):17040-17047.

(38) Chen Q, Amster-Choder O. BglF, the sensor of the bgl system and the β-glucosides permease of Escherichia coli: Evidence for dimerization and intersubunit phosphotransfer. Biochemistry 1998;37(24):8714-8723.

(39) Idelson M, Amster-Choder O. SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo. J Bacteriol 1998;180(3):660-666.

(40) Chen Q, Engelberg-Kulka H, Amster-Choder O. The localization of the phosphorylation site of BglG, the response regulator of the Escherichia coli bgl sensory system. J Biol Chem 1997;272(28):17263-17268.

(41) Chen Q, Arents JC, Bader R, Postma PW, Amster-Choder O. BglF, the sensor of the E.coli bgl system, uses the same site to phosphorylate both a sugar and a regulatory protein. EMBO J 1997;16(15):4617-4627.

(42) Amster-Choder O, Wright A. BglG, the response regulator of the Escherichia coli bgl operon, is phosphorylated on a histidine residue. J Bacteriol 1997;179(17):5621-5624.

(43) Amster-Choder O, Wright A. Transcription regulation of the bgl operon of Escherichia coli involves phosphotransferase system-mediated phosphorylation of a transcriptional antiterminator. J Cell Biochem 1993;51(1):83-90.

(44) Amster-Choder O, Wright A. Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. Science 1992;257(5075):1395-1398.

(45) Amster-Choder O, Wright A. Regulation of activity of a transcriptional anti-terminator in E. coli by phosphorylation in vivo. Science 1990;249(4968):540-542.

(46) Amster-Choder O, Houman F, Wright A. Protein phosphorylation regulates transcription of the β-glucoside utilization operon in E. coli. Cell 1989;58(5):847-855.

(47) Amster O, Zamir A. Sequence rearrangements may alter the in vivo superhelicity of recombinant plasmids. FEBS Lett 1986;197(1-2):93-98.

(48) Hay N, Amster-Choder O, Aloni Y. Efficient and accurate in vitro processing of simian virus 40-associated small RNA. J Virol 1986;57(1):402-407.

(49) Amster O, Salomon D, Zamir A. A cloned immunoglobulin cDNA fragment enhances transposition of IS elements into recombinant plasmids. Nucleic Acids Res 1982;10(15):4525-4542.

(50) Amster O, Salomon D, Zemel O, Zamir A, Zeelon EP, Kantor F, et al. Synthesis of part of a mouse immunoglobulin light chain in a bacterial clone. Nucleic Acids Res 1980;8(9):2055-2065.