Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

The Faculty of Medicine - Medical Neurobiology: Rabinowitch Ithai


Last updated December 2021 - Medical Neurobiology

List of Publications

(1) Rabinowitch I. Inserting new synaptic connections into damaged neural circuits: Towards synapse therapy? Neural Regen Res 2022;17(2):300-301.

(2) Rabinowitch I, Upadhyaya B, Pant A, Galski D, Kreines L, Bai J. Circumventing neural damage in a C. elegans chemosensory circuit using genetically engineered synapses. Cell Syst 2021;12(3):263-271.e4.

(3) Rabinowitch I. Synthetic connectomes at the interface: Reply to comments on “What would a synthetic connectome look like?”. Phys Life Rev 2020;33:30-33.

(4) Zech J, Gold D, Salaymeh N, Sasson NC, Rabinowitch I, Golenser J, et al. Oral administration of artemisone for the treatment of schistosomiasis: Formulation challenges and in vivo efficacy. Pharmaceutics 2020;12(6).

(5) Synthetic biology in the brain: A vision of organic robots. Proceedings of the 2019 Conference on Artificial Life: How Can Artificial Life Help Solve Societal Challenges, ALIFE 2019; 2020.

(6) Voelker L, Upadhyaya B, Ferkey DM, Woldemariam S, L’Etoile ND, Rabinowitch I, et al. INX-18 and INX-19 play distinct roles in electrical synapses that modulate aversive behavior in Caenorhabditis elegans. PLoS Genet 2019;15(10).

(7) Rabinowitch I. What would a synthetic connectome look like? Phys Life Rev 2019.

(8) Chew YL, Tanizawa Y, Cho Y, Zhao B, Yu AJ, Ardiel EL, et al. An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering Sensitization and Arousal in C. elegans. Neuron 2018;99(6):1233-1246.e6.

(9) Rabinowitch I, Schafer WR. Electrical Coupling in Caenorhabditis elegans Mechanosensory Circuits. Network Functions and Plasticity: Perspectives from Studying Neuronal Electrical Coupling in Microcircuits; 2017. p. 1-11.

(10) Han B, Dong Y, Zhang L, Liu Y, Rabinowitch I, Bai J. Dopamine signaling tunes spatial pattern selectivity in C. elegans. eLife 2017;6.

(11) Rabinowitch I, Laurent P, Zhao B, Walker D, Beets I, Schoofs L, et al. Neuropeptide-Driven Cross-Modal Plasticity following Sensory Loss in Caenorhabditis elegans. PloS Biol 2016;14(1).

(12) Rabinowitch I, Bai J. The foundations of cross-modal plasticity. Commun Integr Biol 2016;9(2):1-3.

(13) Rabinowitch I, Chatzigeorgiou M, Zhao B, Treinin M, Schafer WR. Rewiring neural circuits by the insertion of ectopic electrical synapses in transgenic C. elegans. Nat Commun 2014;5.

(14) Rabinowitch I, Chatzigeorgiou M, Schafer WR. A gap junction circuit enhances processing of coincident mechanosensory inputs. Curr Biol 2013;23(11):963-967.

(15) Rabinowitch I, London M, Segev I. A theoretical view of the neuron as a plastic input-output device. Dendrites; 2012.

(16) Ben Arous J, Tanizawa Y, Rabinowitch I, Chatenay D, Schafer WR. Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans. J Neurosci Methods 2010;187(2):229-234.

(17) Rabinowitch I, Schafer W. Neuronal remodeling on the evolutionary timescale. J Biol 2008;7(10).

(18) Rabinowitch I, Segev I. Two opposing plasticity mechanisms pulling a single synapse. Trends Neurosci 2008;31(8):377-383.

(19) Rabinowitch I, Segev I. The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. J Neurosci 2006;26(52):13474-13484.

(20) Bukchin Y, Rabinowitch I. A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs. Eur J Oper Res 2006;174(1):492-508.

(21) Rabinowitch I, Segev I. The interplay between homeostatic synaptic plasticity and functional dendritic compartments. J Neurophysiol 2006;96(1):276-283.