Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

The Faculty of Medicine - Medical Neurobiology: Rotshenker Shlomo

Researchers

Last updated December 2021 - Medical Neurobiology

List of Publications

(1) Elberg G, Liraz-Zaltsman S, Reichert F, Matozaki T, Tal M, Rotshenker S. Deletion of SIRPα (signal regulatory protein-α) promotes phagocytic clearance of myelin debris in Wallerian degeneration, axon regeneration, and recovery from nerve injury. J Neuroinflamm 2019;16(1).

(2) Reichert F, Rotshenker S. Galectin-3 (MAC-2) controls microglia phenotype whether amoeboid and phagocytic or branched and non-phagocytic by regulating the cytoskeleton. Front Cell Neurosci 2019;13.

(3) Menzfeld C, John M, van Rossum D, Regen T, Scheffel J, Janova H, et al. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia 2015;63(6):1083-1099.

(4) Rotshenker S. Traumatic Injury to Peripheral Nerves. Nerves and Nerve Injuries; 2015. p. 611-628.

(5) Gitik M, Kleinhaus R, Hadas S, Reichert F, Rotshenker S. Phagocytic receptors activate and immune inhibitory receptor SIRPα inhibits phagocytosis through paxillin and cofilin. Front Cell Neurosci 2014;8(1 APR).

(6) Hadas S, Spira M, Hanisch U-, Reichert F, Rotshenker S. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. J Neuroinflamm 2012;9.

(7) Rotshenker S. Wallerian degeneration: The innate-immune response to traumatic nerve injury. J Neuroinflamm 2011;8.

(8) Gitik M, Liraz-Zaltsman S, Oldenborg P-, Reichert F, Rotshenker S. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. J Neuroinflamm 2011;8.

(9) Gitik M, Reichert F, Rotshenker S. Cytoskeleton plays a dual role of activation and inhibition in myelin and zymosan phagocytosis by microglia. FASEB J 2010;24(7):2211-2221.

(10) Hadas S, Reichert F, Rotshenker S. Dissimilar and similar functional properties of complement receptor-3 in microglia and macrophages in combating yeast pathogens by phagocytosis. Glia 2010;58(7):823-830.

(11) Rotshenker S. The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J Mol Neurosci 2009;39(1-2):99-103.

(12) Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y. Galectin-3/MAC-2, ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia 2008;56(15):1607-1613.

(13) Cohen G, Makranz C, Spira M, Kodama T, Reichert F, Rotshenker S. Non-PKC DAG/phorbol-ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3K, and PLCγ activate myelin phagocytosis by both. Glia 2006;53(5):538-550.

(14) Makranz C, Cohen G, Reichert F, Kodama T, Rotshenker S. cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. Glia 2006;53(4):441-448.

(15) Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F, et al. Erratum: Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cγ and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages (Neurobiology Disease (2004) 15 (279-286) DOI: 10.1016/j.nbd.2003. 11.007. Neurobiol Dis 2004;16(3):659.

(16) Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F, et al. Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cγ and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiol Dis 2004;15(2):279-286.

(17) Rotshenker S. Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. J Mol Neurosci 2003;21(1):65-72.

(18) Mirski R, Reichert F, Klar A, Rotshenker S. Granulocyte macrophage colony stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding molecule in Wallerian degeneration following injury to peripheral nerve axons. J Neuroimmunol 2003;140(1-2):88-96.

(19) Reichert F, Rotshenker S. Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol Dis 2003;12(1):65-72.

(20) Shamash S, Reichert F, Rotshenker S. The cytokine network of wallerian degeneration: Tumor necrosis factor-α, interleukin-1α, and interleukin-1β. J Neurosci 2002;22(8):3052-3060.

(21) Slobodov U, Reichert F, Mirski R, Rotshenker S. Distinct inflammatory stimuli induce different patterns of myelin phagocytosis and degradation in recruited macrophages. Exp Neurol 2001;167(2):401-409.

(22) Reichert F, Slobodov U, Makranz C, Rotshenker S. Modulation (inhibition and augmentation) of complement receptor-3-mediated myelin phagocytosis. Neurobiol Dis 2001;8(3):504-512.

(23) Reichert F, Rotshenker S. Galectin-3/MAC-2 in experimental allergic encephalomyelitis. Exp Neurol 1999;160(2):508-514.

(24) Be'eri H, Reichert F, Saada A, Rotshenker S. The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci 1998;10(8):2707-2713.

(25) Rand N, Reichert F, Floman Y, Rotshenker S. Murine nucleus pulposus-derived cells secrete interleukins-1-β, -6, and -10 and granulocyte-macrophage colony-stimulating factor in cell culture. Spine 1997;22(22):2598-2602.

(26) Saada A, Reichert F, Rotshenker S. Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J Cell Biol 1996;133(1):159-167.

(27) Reichert F, Levitzky R, Rotshenker S. Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 1996;8(3):530-535.

(28) Reichert F, Rotshenker S. Deficient activation of microglia during optic nerve degeneration. J Neuroimmunol 1996;70(2):153-161.

(29) Saada A, Dunaevsky‐Hutt A, Aamar A, Reichert F, Rotshenker S. Fibroblasts that Reside in Mouse and Frog Injured Peripheral Nerves Produce Apolipoproteins. J Neurochem 1995;64(5):1996-2003.

(30) Groner Y, Elroy-Sterol O, Avraham KB, Schickler M, Knobler H, Minc-Golomb D, et al. Cell damage by excess CuZnSOD and down's syndrome. Biomed Pharmacother 1994;48(5-6):231-237,240.

(31) Reichert F, Saada A, Rotshenker S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2. J Neurosci 1994;14(5 II):3231-3245.

(32) Aamar S, Saada A, Rotshenker S. Lesion‐Induced Changes in the Production of Newly Synthesized and Secreted Apo‐E and Other Molecules Are Independent of the Concomitant Recruitment of Blood‐Borne Macrophages into Injured Peripheral Nerves. J Neurochem 1992;59(4):1287-1292.

(33) Rotshenker S, Aamar S, Barak V. Interleukin-1 activity in lesioned peripheral nerve. J Neuroimmunol 1992;39(1-2):75-80.

(34) Sugarman H, Dunaevsky-Hutt A, Rotshenker S. The roles of the synaptic basal lamina and of innervation in directing the accumulation of a synaptic molecule, mAb 3B6 antigen, in regenerating skeletal muscles. J Neurocytol 1991;20(10):810-817.

(35) Connor EA, Sugarman H, Rotshenker S. Molecular alterations in the perijunctional region of frog skeletal muscle fibres following denervation. J Neurocytol 1991;20(4):323-331.

(36) Avraham KB, Sugarman H, Rotshenker S, Groner Y. Down's syndrome: morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. J Neurocytol 1991;20(3):208-215.

(37) Rotshenker S. Multiple modes and sites for the induction of axonal growth. Trends Neurosci 1988;11(8):363-366.

(38) Rotshenker S, Ring G, Tal M, Sugarman H, Reichert F. Regulation of motor axon sprouting. Isr J Med Sci 1987;23(1-2):89-94.

(39) Rotshenker S, Tal M. The transneuronal induction of sprouting and synapse formation in intact mouse muscles. J Physiol 1985;360(1):387-396.

(40) Tal M, Rotshenker S. Sprouting and synapse formation produced by carbocaine. J Neurosci 1984;4(2):458-463.

(41) Tal M, Rotshenker S. Recycling of synaptic vesicles in motor nerve endings separated from their target muscle fibers. Brain Res 1983;270(1):131-133.

(42) Ring G, Reichert F, Rotshenker S. Sprouting in intact sartorius muscles of the frog following contralateral axotomy. Brain Res 1983;260(2):313-316.

(43) Rotshenker S. Transneuronal and peripheral mechanisms for the induction of motor neuron sprouting. J Neurosci 1982;2(10):1359-1368.

(44) Rotshenker S. Sprouting and synapse formation by motor axons separated from their cell bodies. Brain Res 1981;223(1):141-145.

(45) Rotshenker S, Reichert F. Motor axon sprouting and site of synapse formation in intact innervated skeletal muscle of the frog. J Comp Neurol 1980;193(2):413-422.

(46) Rotshenker S. Colchicine induces sprouting and synapse formation. Isr J Med Sci 1980;16(8):614.

(47) Reichert F, Rotshenker S. Motor axon terminal sprouting in intact muscles. Brain Res 1979;170(1):187-189.

(48) Rotshenker S. Synapse formation in intact innervated cutaneous‐pectoris muscles of the frog following denervation of the opposite muscle. J Physiol 1979;292(1):535-547.

(49) Rotshenker S. Sprouting of intact motor neurons induced by neuronal lesion in the absence of denervated muscle fibers and degenerating axons. Brain Res 1978;155(2):354-356.

(50) Erulkar SD, Rahamimoff R, Rotshenker S. Quelling of spontaneous transmitter release by nerve impulses in low extracellular calcium solutions. J Physiol 1978;278(1):491-500.

(51) Rotshenker S, McMahan UJ. Altered patterns of innervation in frog muscle after denervation. J Neurocytol 1976;5(6):719-730.

(52) Rotshenker S, Palti Y. The latent period of anode break excitation in myelinated and giant axons. J Theor Biol 1976;59(2):293-302.

(53) Rotshenker S, Erulkar SD, Rahamimoff R. Reduction in the frequency of miniature end-plate potentials by nerve stimulation in low calcium solutions. Brain Res 1976;101(2):362-365.

(54) Rahamimoff R, Erulkar SD, Alnaes E, Meiri H, Rotshenker S, Rahamimoff H. Modulation of transmitter release by calcium ions and nerve impulses. Cold Spring Harb Symp Quant Biol 1976;40:107-116.

(55) Alnaes E, Rahamimoff R, Rotshenker S, Shimoni Y. Mitochondrial inhibitors and transmitter release at the frog neuromuscular junction. Isr J Med Sci 1975;11(1):67-68.

(56) Rotshenker S, Palti Y. Changes in fraction of current penetrating an axon as a function of duration of stimulating pulse. J Theor Biol 1973;41(3):401-407.

(57) Rotshenker S, Rahamimoff R. Editorial: The pathophysiology of myasthenia gravis and the myasthenic syndrome. Harefuah 1972;83(8):344-345.

(58) Rotshenker S, Rahamimoff R. Neuromuscular synapse: Stochastic properties of spontaneous release of transmitter. Science 1970;170(3958):648-649.