Skip to Main Content

Hadassah Medical Center: Sharon Dror

Last updated September 2023 - Hadassah Medical Center

List of Publications

1.

Reurink J, Weisschuh N, Garanto A, Dockery A, van den Born LI, Fajardy I, et al. Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction. Human Genetics and Genomics Advances [Internet]. 2023;4(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147338454&doi=10.1016%252fj.xhgg.2023.100181&partnerID=40&md5=09479b3bfb2fb5c4bb8675932768abf9

2.

Abu-Diab A, Gopalakrishnan P, Matsevich C, de Jong M, Obolensky A, Khalaileh A, et al. Homozygous Knockout of Cep250 Leads to a Relatively Late-Onset Retinal Degeneration and Sensorineural Hearing Loss in Mice. Translational Vision Science and Technology [Internet]. 2023;12(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149428210&doi=10.1167%252ftvst.12.3.3&partnerID=40&md5=bbe6274b50d6f0fe2840bb0a63c0bf0c

3.

de Bruijn SE, Rodenburg K, Corominas J, Ben-Yosef T, Reurink J, Kremer H, et al. Optical genome mapping and revisiting short-read genome sequencing data reveal previously overlooked structural variants disrupting retinal disease−associated genes. Genetics in Medicine [Internet]. 2023;25(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144381092&doi=10.1016%252fj.gim.2022.11.013&partnerID=40&md5=c00902097c2b6a373a102478f91c1a5f

4.

Ben-Avi R, Rivera A, Hendler K, Sharon D, Banin E, Khateb S, et al. Prevalence and associated factors of cystoid macular edema in children with early onset inherited retinal dystrophies. European Journal of Ophthalmology [Internet]. 2023;33(2):1109–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141395039&doi=10.1177%252f11206721221136318&partnerID=40&md5=6cc6687fdcb670fb9454a8f3e463eac5

5.

Hanany M, Yang RR, Lam CM, Beryozkin A, Sundaresan Y, Sharon D. An In-Depth Single-Gene Worldwide Carrier Frequency and Genetic Prevalence Analysis of CYP4V2 as the Cause of Bietti Crystalline Dystrophy. Translational Vision Science and Technology [Internet]. 2023;12(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148307152&doi=10.1167%252ftvst.12.2.27&partnerID=40&md5=472de9cf29363545413eebc6ceca0993

6.

Matsevich C, Gopalakrishnan P, Chang N, Obolensky A, Beryozkin A, Salameh M, et al. Gene augmentation therapy attenuates retinal degeneration in a knockout mouse model of Fam161a retinitis pigmentosa. Molecular Therapy [Internet]. 2023; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168847272&doi=10.1016%252fj.ymthe.2023.08.011&partnerID=40&md5=457b23715df6ae4f44028bc34fa8769f

7.

Sundaresan Y, Banin E, Sharon D. Exonic Variants that Affect Splicing – An Opportunity for “Hidden” Mutations Causing Inherited Retinal Diseases. Advances in Experimental Medicine and Biology [Internet]. 2023;1415:183–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164846749&doi=10.1007%252f978-3-031-27681-1_27&partnerID=40&md5=f0dec293e6210d3366c900d046e7ec63

8.

Gopalakrishnan P, Beryozkin A, Banin E, Sharon D. Morphological and Functional Comparison of Mice Models for Retinitis Pigmentosa. Advances in Experimental Medicine and Biology [Internet]. 2023;1415:365–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164846513&doi=10.1007%252f978-3-031-27681-1_53&partnerID=40&md5=44c4ef6f6aed381d05b1e3ee5d695aa1

9.

Beryozkin A, Nagel-Wolfum K, Banin E, Sharon D. Factors Affecting Readthrough of Natural Versus Premature Termination Codons. Advances in Experimental Medicine and Biology [Internet]. 2023;1415:149–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164845313&doi=10.1007%252f978-3-031-27681-1_23&partnerID=40&md5=7cc62bc0a3354473660d98cd61509edd

10.

Ben Yosef T, Banin E, Chervinsky E, Shalev SA, Leibu R, Mezer E, et al. Genetic causes of inherited retinal diseases among Israeli Jews of Ethiopian ancestry. Molecular Vision [Internet]. 2023;29. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160286304&partnerID=40&md5=4e8b4fbd456689599d026f7a75b7c6d3

11.

Patal R, Banin E, Batash T, Sharon D, Levy J. Ultra-widefield fundus autofluorescence imaging in patients with autosomal recessive retinitis pigmentosa reveals a genotype–phenotype correlation. Graefe’s Archive for Clinical and Experimental Ophthalmology [Internet]. 2022;260(11):3471–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129316874&doi=10.1007%252fs00417-022-05683-w&partnerID=40&md5=9d23778f276538b1e23712b5898b1699

12.

Millo T, Rivera A, Obolensky A, Marks-Ohana D, Xu M, Li Y, et al. Identification of autosomal recessive novel genes and retinal phenotypes in members of the solute carrier (SLC) superfamily. Genetics in Medicine [Internet]. 2022;24(7):1523–35. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132666716&doi=10.1016%252fj.gim.2022.03.020&partnerID=40&md5=ef9b84ecb4b00ce4a64f80b31627dfe2

13.

Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, et al. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Progress in Retinal and Eye Research [Internet]. 2022;89. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121233511&doi=10.1016%252fj.preteyeres.2021.101029&partnerID=40&md5=58873bc5888245c01e7234134ea38c1a

14.

Corradi Z, Salameh M, Khan M, Héon E, Mishra K, Hitti-Malin RJ, et al. ABCA4 c.859-25A>G, a Frequent Palestinian Founder Mutation Affecting the Intron 7 Branchpoint, Is Associated With Early-Onset Stargardt Disease. Investigative Ophthalmology and Visual Science [Internet]. 2022;63(4). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129780166&doi=10.1167%252fiovs.63.4.20&partnerID=40&md5=0f5524030015845f04b21de46c11eb68

15.

Beryozkin A, Samanta A, Gopalakrishnan P, Khateb S, Banin E, Sharon D, et al. Translational Read-Through Drugs (TRIDs) Are Able to Restore Protein Expression and Ciliogenesis in Fibroblasts of Patients with Retinitis Pigmentosa Caused by a Premature Termination Codon in FAM161A. International Journal of Molecular Sciences [Internet]. 2022;23(7). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126862892&doi=10.3390%252fijms23073541&partnerID=40&md5=184868755474a27fa338e3e449c78754

16.

Ali-Nasser T, Zayit-Soudry S, Banin E, Sharon D, Ben-Yosef T. Autosomal dominant retinitis pigmentosa with incomplete penetrance due to an intronic mutation of the PRPF31 gene. Molecular Vision [Internet]. 2022;28:359–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139978727&partnerID=40&md5=d316afbb8e10d721c99094eec685fd16

17.

Khateb S, Shemesh A, Offenheim A, Sheffer R, Ben-Yosef T, Chowers I, et al. Relatively mild blue cone monochromacy phenotype caused by various haplotypes in the L-and M-cone opsin genes. Molecular Vision [Internet]. 2022;28:21–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127905940&partnerID=40&md5=a05e33ff6a1a3b7f9323a15e4092f20a

18.

Sangermano R, Deitch I, Peter VG, Ba-Abbad R, Place EM, Zampaglione E, et al. Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD. npj Genomic Medicine [Internet]. 2021;6(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109035764&doi=10.1038%252fs41525-021-00214-8&partnerID=40&md5=3e94997f1e0e2e50fe54ef4fdf97a9c0

19.

Perea-Romero I, Gordo G, Iancu IF, Del Pozo-Valero M, Almoguera B, Blanco-Kelly F, et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Scientific Reports [Internet]. 2021;11(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100124883&doi=10.1038%252fs41598-021-81093-y&partnerID=40&md5=21cb9c4cb91f17c914049e0fe410111d

20.

Levinger N, Hendler K, Banin E, Hanany M, Kimchi A, Mechoulam H, et al. Variable phenotype of Knobloch syndrome due to biallelic COL18A1 mutations in children. European Journal of Ophthalmology [Internet]. 2021;31(6):3349–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096783337&doi=10.1177%252f1120672120977343&partnerID=40&md5=445aff853685edd50103969168e4a756

21.

Beryozkin A, Aweidah H, Carrero Valenzuela RD, Berman M, Iguzquiza O, Cremers FPM, et al. Retinal Degeneration Associated With RPGRIP1: A Review of Natural History, Mutation Spectrum, and Genotype–Phenotype Correlation in 228 Patients. Frontiers in Cell and Developmental Biology [Internet]. 2021;9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118264602&doi=10.3389%252ffcell.2021.746781&partnerID=40&md5=5d042248e16470bb92425d04050c63f8

22.

Yahalom C, Volovelsky O, Macarov M, Altalbishi A, Alsweiti Y, Schneider N, et al. SENIOR-LØKEN SYNDROME: A Case Series and Review of the Renoretinal Phenotype and Advances of Molecular Diagnosis. Retina [Internet]. 2021;41(10):2179–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115765477&doi=10.1097%252fIAE.0000000000003138&partnerID=40&md5=8f43a00a83d4f2c6c901cfecd31d5260

23.

Georgiou M, Fujinami K, Vincent A, Nasser F, Khateb S, Vargas ME, et al. KCNV2-Associated Retinopathy: Detailed Retinal Phenotype and Structural Endpoints—KCNV2 Study Group Report 2. American Journal of Ophthalmology [Internet]. 2021;230:1–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108876875&doi=10.1016%252fj.ajo.2021.03.004&partnerID=40&md5=3802eda7c2019c7330a635222bd4c32d

24.

Mbefo M, Berger A, Schouwey K, Gérard X, Kostic C, Beryozkin A, et al. Enhancer of zeste homolog 2 (Ezh2) contributes to rod photoreceptor death process in several forms of retinal degeneration and its activity can serve as a biomarker for therapy efficacy. International Journal of Molecular Sciences [Internet]. 2021;22(17). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113750659&doi=10.3390%252fijms22179331&partnerID=40&md5=b85f284ae62f8697cca02f7d325d0044

25.

Brandwine T, Ifrah R, Bialistoky T, Zaguri R, Rhodes-Mordov E, Mizrahi-Meissonnier L, et al. Knockdown of Dehydrodolichyl Diphosphate Synthase in the Drosophila Retina Leads to a Unique Pattern of Retinal Degeneration. Frontiers in Molecular Neuroscience [Internet]. 2021;14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110466919&doi=10.3389%252ffnmol.2021.693967&partnerID=40&md5=2570bd2f7cfcdd2fe883c1349164574c

26.

Georgiou M, Robson AG, Fujinami K, Leo SM, Vincent A, Nasser F, et al. KCNV2-Associated Retinopathy: Genetics, Electrophysiology, and Clinical Course—KCNV2 Study Group Report 1. American Journal of Ophthalmology [Internet]. 2021;225:95–107. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101977838&doi=10.1016%252fj.ajo.2020.11.022&partnerID=40&md5=5aefe37b2bc7854c14ae58e90a8d86fd

27.

Aweidah H, Salameh M, Yahalom C, Blumenfeld A, Macarov M, Weisschuh N, et al. A deep intronic substitution in CNGB3 is one of the major causes of achromatopsia among jewish patients. Molecular Vision [Internet]. 2021;27:588–600. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116423153&partnerID=40&md5=a7f693f4706defea5f2509a241b94464

28.

Ruberto FP, Balzano S, Namburi P, Kimchi A, Pescini-Gobert R, Obolensky A, et al. Heterozygous deletions of noncoding parts of the prpf31 gene cause retinitis pigmentosa via reduced gene expression. Molecular Vision [Internet]. 2021;27:107–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105054138&partnerID=40&md5=81c6932889698743146fe3a709edfdc4

29.

Beryozkin A, Khateb S, Idrobo-Robalino CA, Khan MI, Cremers FPM, Obolensky A, et al. Unique combination of clinical features in a large cohort of 100 patients with retinitis pigmentosa caused by FAM161A mutations. Scientific Reports [Internet]. 2020;10(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091128566&doi=10.1038%252fs41598-020-72028-0&partnerID=40&md5=9214170b4adbbab771ab88249687199c

30.

Khan M, Cornelis SS, Pozo-Valero MD, Whelan L, Runhart EH, Mishra K, et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genetics in Medicine [Internet]. 2020;22(7):1235–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083673696&doi=10.1038%252fs41436-020-0787-4&partnerID=40&md5=81ab7b1edeb23978fb9a7b1c0b5ba8d6

31.

Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JWB, et al. Advancing clinical trials for inherited retinal diseases: Recommendations from the second monaciano symposium. Translational Vision Science and Technology [Internet]. 2020;9(7). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086021830&doi=10.1167%252ftvst.9.7.2&partnerID=40&md5=9224696afc2dd8311c5efda478fe9bb4

32.

Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2020;117(5):2710–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079022829&doi=10.1073%252fpnas.1913179117&partnerID=40&md5=cb2d7b702c70ad0b46cebbeeb059bcae

33.

Namburi P, Khateb S, Meyer S, Bentovim T, Ratnapriya R, Khramushin A, et al. A unique PRDM13-associated variant in a Georgian Jewish family with probable North Carolina macular dystrophy and the possible contribution of a unique CFH variant. Molecular Vision [Internet]. 2020;26:299–310. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084235981&partnerID=40&md5=4b062b70aff17323c76f8889bbb76e22

34.

Weisschuh N, Sturm M, Baumann B, Audo I, Ayuso C, Bocquet B, et al. Deep-intronic variants in CNGB3 cause achromatopsia by pseudoexon activation. Human Mutation [Internet]. 2020;41(1):255–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073959505&doi=10.1002%252fhumu.23920&partnerID=40&md5=742722aa7c7264ef83e61def853b4543

35.

Sharon D, Ben-Yosef T, Goldenberg-Cohen N, Pras E, Gradstein L, Soudry S, et al. A nationwide genetic analysis of inherited retinal diseases in Israel as assessed by the Israeli inherited retinal disease consortium (IIRDC). Human Mutation [Internet]. 2020;41(1):140–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073785636&doi=10.1002%252fhumu.23903&partnerID=40&md5=337596d04bd5df72bd8dd5611cdca073

36.

AlTalbishi A, Zelinger L, Zeitz C, Hendler K, Namburi P, Audo I, et al. TRPM1 Mutations are the Most Common Cause of Autosomal Recessive Congenital Stationary Night Blindness (CSNB) in the Palestinian and Israeli Populations. Scientific Reports [Internet]. 2019;9(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070992492&doi=10.1038%252fs41598-019-46811-7&partnerID=40&md5=cf94866042a1fe3ab40dd1bdaa684a5a

37.

Kimchi A, Meiner V, Silverstein S, Macarov M, Mor-Shaked H, Blumenfeld A, et al. An Ashkenazi Jewish founder mutation in CACNA1F causes retinal phenotype in both hemizygous males and heterozygous female carriers. Ophthalmic Genetics [Internet]. 2019;40(5):443–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075595351&doi=10.1080%252f13816810.2019.1681008&partnerID=40&md5=376a665f3aa4118ed59d53ce27394018

38.

Hanany M, Sharon D. Allele frequency analysis of variants reported to cause autosomal dominant inherited retinal diseases question the involvement of 19% of genes and 10% of reported pathogenic variants. Journal of Medical Genetics [Internet]. 2019;56(8):536–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063510460&doi=10.1136%252fjmedgenet-2018-105971&partnerID=40&md5=fa5745790b74707f7be88b78e31ee2f4

39.

Zeitz C, Michiels C, Neuillé M, Friedburg C, Condroyer C, Boyard F, et al. Where are the missing gene defects in inherited retinal disorders? Intronic and synonymous variants contribute at least to 4% of CACNA1F-mediated inherited retinal disorders. Human Mutation [Internet]. 2019;40(6):765–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063476049&doi=10.1002%252fhumu.23735&partnerID=40&md5=af5348f6f895d7f742c0c834c4551244

40.

Abu Diab A, AlTalbishi A, Rosin B, Kanaan M, Kamal L, Swaroop A, et al. The combination of whole-exome sequencing and clinical analysis allows better diagnosis of rare syndromic retinal dystrophies. Acta Ophthalmologica [Internet]. 2019;97(6):e877–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063618160&doi=10.1111%252faos.14095&partnerID=40&md5=4a47ecf3a18aba37540b20dbaafb27e6

41.

Ner DB, Sher I, Hamburg A, Mhajna MO, Chibel R, Derazne E, et al. Chromatic pupilloperimetry for objective diagnosis of best vitelliform macular dystrophy. Clinical Ophthalmology [Internet]. 2019;13:465–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062986366&doi=10.2147%252fOPTH.S191486&partnerID=40&md5=197bebd51e5c4eca02317534a9c5992a

42.

Tatour Y, Tamaiev J, Shamaly S, Colombo R, Bril E, Rabinowitz T, et al. A novel intronic mutation of PDE6B is a major cause of autosomal recessive retinitis pigmentosa among caucasus jews. Molecular Vision [Internet]. 2019;25:155–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062435190&partnerID=40&md5=6fbb445766a13e5dca2b1508f4dd765d

43.

Wimberg H, Lev D, Yosovich K, Namburi P, Banin E, Sharon D, et al. Photoreceptor Guanylate Cyclase (GUCY2D) Mutations Cause Retinal Dystrophies by Severe Malfunction of Ca2+-Dependent Cyclic GMP Synthesis. Frontiers in Molecular Neuroscience [Internet]. 2018;11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054797257&doi=10.3389%252ffnmol.2018.00348&partnerID=40&md5=98b386523bd58dca6b786e5f0c16e49b

44.

Khateb S, Kowalewski B, Bedoni N, Damme M, Pollack N, Saada A, et al. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genetics in Medicine [Internet]. 2018;20(9):1004–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042758889&doi=10.1038%252fgim.2017.227&partnerID=40&md5=aba98eb86cece27643ce044a7d48cc02

45.

Hanany M, Allon G, Kimchi A, Blumenfeld A, Newman H, Pras E, et al. Carrier frequency analysis of mutations causing autosomal-recessive-inherited retinal diseases in the Israeli population. European Journal of Human Genetics [Internet]. 2018;26(8):1159–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046069403&doi=10.1038%252fs41431-018-0152-0&partnerID=40&md5=c8795e03afedaefc1a4df3c0f839fad5

46.

Kimchi A, Khateb S, Wen R, Guan Z, Obolensky A, Beryozkin A, et al. Nonsyndromic Retinitis Pigmentosa in the Ashkenazi Jewish Population: Genetic and Clinical Aspects. Ophthalmology [Internet]. 2018;125(5):725–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038827838&doi=10.1016%252fj.ophtha.2017.11.014&partnerID=40&md5=7f6bb6b21f842ab17e6a9f480d9c9b89

47.

Sharon D, Wimberg H, Kinarty Y, Koch KW. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Progress in Retinal and Eye Research [Internet]. 2018;63:69–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034429734&doi=10.1016%252fj.preteyeres.2017.10.003&partnerID=40&md5=d3e10d90f0fdf083b7d6fef518fb1745

48.

Hubshman MW, Broekman S, van Wijk E, Cremers F, Abu-Diab A, Khateb S, et al. Whole-exome sequencing reveals poc5 as a novel gene associated with autosomal recessive retinitis pigmentosa. Human Molecular Genetics [Internet]. 2018;27(4):614–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041551736&doi=10.1093%252fhmg%252fddx428&partnerID=40&md5=1568b8a849d9690215492039c28fc10f

49.

Khalaileh A, Abu-Diab A, Ben-Yosef T, Raas-Rothschild A, Lerer I, Alswaiti Y, et al. The genetics of usher syndrome in the Israeli and palestinian populations. Investigative Ophthalmology and Visual Science [Internet]. 2018;59(2):1095–104. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042773688&doi=10.1167%252fiovs.17-22817&partnerID=40&md5=33f7f9a0731c2c7e90393fd96055f524

50.

Pierrache LHM, Kimchi A, Ratnapriya R, Roberts L, Astuti GDN, Obolensky A, et al. Whole-Exome Sequencing Identifies Biallelic IDH3A Variants as a Cause of Retinitis Pigmentosa Accompanied by Pseudocoloboma. Ophthalmology [Internet]. 2017;124(7):992–1003. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017464647&doi=10.1016%252fj.ophtha.2017.03.010&partnerID=40&md5=f2b97c1207ffd19d9690e007a3f64a10

51.

Namburi P, Ratnapriya R, Khateb S, Lazar CH, Kinarty Y, Obolensky A, et al. Correction: Bi-allelic Truncating Mutations in CEP78, Encoding Centrosomal Protein 78, Cause Cone-Rod Degeneration with Sensorineural Hearing Loss (The American Journal of Human Genetics (2016) 99(5) (1222–1223) (S0002929716302841) (10.1016/j.ajhg.2016.07.010)). American Journal of Human Genetics [Internet]. 2016;99(5):1222–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84997327963&doi=10.1016%252fj.ajhg.2016.09.012&partnerID=40&md5=6b805bb9b5ac0c5b218e63784aa6e5ae

52.

Sharon D, Kimchi A, Rivolta C. OR2W3 sequence variants are unlikely to cause inherited retinal diseases. Ophthalmic Genetics [Internet]. 2016;37(4):366–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958754581&doi=10.3109%252f13816810.2015.1081252&partnerID=40&md5=4a436441b709aa8394dbe22a953872c0

53.

Khateb S, Hanany M, Khalaileh A, Beryozkin A, Meyer S, Abu-Diab A, et al. Identification of genomic deletions causing inherited retinal degenerations by coverage analysis of whole exome sequencing data. Journal of Medical Genetics [Internet]. 2016;53(9):600–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964867567&doi=10.1136%252fjmedgenet-2016-103825&partnerID=40&md5=4863776a83f5aaceb60ba13462569487

54.

Gradstein L, Zolotushko J, Sergeev YV, Lavy I, Narkis G, Perez Y, et al. Novel GUCY2D mutation causes phenotypic variability of Leber congenital amaurosis in a large kindred. BMC Medical Genetics [Internet]. 2016;17(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979686901&doi=10.1186%252fs12881-016-0314-2&partnerID=40&md5=ecbdd6429a8095e5194a483caa90b8ee

55.

Grunin M, Tiosano L, Jaouni T, Averbukh E, Sharon D, Chowers I. Evaluation of the association of single nucleotide polymorphisms in the PRPH2 gene with adult-onset foveomacular vitelliform dystrophy. Ophthalmic Genetics [Internet]. 2016;37(3):285–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958549226&doi=10.3109%252f13816810.2015.1059456&partnerID=40&md5=8e27ae7d144e71a316b9a8e298faf1c9

56.

Biswas P, Chavali VR, Agnello G, Stone E, Chakarova C, Duncan JL, et al. A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Human molecular genetics [Internet]. 2016;25(12):2483–97. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988351690&partnerID=40&md5=e004593923c6ffb215e134f47c4c110d

57.

Xu M, Yamada T, Sun Z, Eblimit A, Lopez I, Wang F, et al. Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Human Molecular Genetics [Internet]. 2016;25(8):1479–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963739524&doi=10.1093%252fhmg%252fddw022&partnerID=40&md5=ce0b62b8e68e764406eb474b98c800a5

58.

Beryozkin A, Levy G, Blumenfeld A, Meyer S, Namburi P, Morad Y, et al. Genetic analysis of the rhodopsin gene identifies a mosaic dominant retinitis pigmentosa mutation in a healthy individual. Investigative Ophthalmology and Visual Science [Internet]. 2016;57(3):940–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960157554&doi=10.1167%252fiovs.15-18702&partnerID=40&md5=15fc6668b2666e76635b3a4b276f6c78

59.

Schatz P, Sharon D, Al-Hamdani S, Andréasson S, Larsen M. Retinal structure in young patients aged 10 years or less with Best vitelliform macular dystrophy. Graefe’s Archive for Clinical and Experimental Ophthalmology [Internet]. 2016;254(2):215–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955730477&doi=10.1007%252fs00417-015-3025-z&partnerID=40&md5=22fc85d73ed87a7d132993307c1818e5

60.

Namburi P, Ratnapriya R, Khateb S, Lazar CH, Kinarty Y, Obolensky A, et al. Bi-allelic Truncating Mutations in CEP78, Encoding Centrosomal Protein 78, Cause Cone-Rod Degeneration with Sensorineural Hearing Loss. American Journal of Human Genetics [Internet]. 2016;99(3):777–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988458298&doi=10.1016%252fj.ajhg.2016.07.010&partnerID=40&md5=6a29368f83132c2652406af35da72f7a

61.

Lazar CH, Mutsuddi M, Kimchi A, Zelinger L, Mizrahi-Meissonnier L, Marks-Ohana D, et al. Whole exome sequencing reveals GUCY2D as a major gene associated with cone and cone–rod dystrophy in Israel. Investigative Ophthalmology and Visual Science [Internet]. 2015;56(1):420–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921453156&doi=10.1167%252fiovs.14-15647&partnerID=40&md5=7d631908a761d3f5e6833ee30f230488

62.

Banin E, Gootwine E, Obolensky A, Ezra-Elia R, Ejzenberg A, Zelinger L, et al. Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia. Molecular Therapy [Internet]. 2015;23(9):1423–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940719490&doi=10.1038%252fmt.2015.114&partnerID=40&md5=2a04b72e86e686166b28c50ac4f50049

63.

Lazar CH, Kimchi A, Namburi P, Mutsuddi M, Zelinger L, Beryozkin A, et al. Nonsyndromic Early-Onset Cone-Rod Dystrophy and Limb-Girdle Muscular Dystrophy in a Consanguineous Israeli Family are Caused by Two Independent yet Linked Mutations in ALMS1 and DYSF. Human Mutation [Internet]. 2015;36(9):836–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938955881&doi=10.1002%252fhumu.22822&partnerID=40&md5=d233642ff1e229f27954168840fc3380

64.

Beryozkin A, Shevah E, Kimchi A, Mizrahi-Meissonnier L, Khateb S, Ratnapriya R, et al. Whole Exome Sequencing Reveals Mutations in Known Retinal Disease Genes in 33 out of 68 Israeli Families with Inherited Retinopathies. Scientific Reports [Internet]. 2015;5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940030605&doi=10.1038%252fsrep13187&partnerID=40&md5=175aa0ad7d170ac45bacee9a22ad2076

65.

Sharon D, Banin E. Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Molecular Vision [Internet]. 2015;21:783–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937579813&partnerID=40&md5=e5d61d06138aa7c7ab6c3052b8c676de

66.

Haer-Wigman L, Newman H, Leibu R, Bax NM, Baris HN, Rizel L, et al. Non-syndromic retinitis pigmentosa due to mutations in the mucopolysaccharidosis type IIIC gene, heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT). Human Molecular Genetics [Internet]. 2015;24(13):3742–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936774930&doi=10.1093%252fhmg%252fddv118&partnerID=40&md5=8fd7b53804c96caa2453d8c420bf2373

67.

Yahalom C, Sharon D, Dalia E, Simhon SB, Shemesh E, Blumenfeld A. Combined Occurrence of Autosomal Dominant Aniridia and Autosomal Recessive Albinism in Several Members of a Family. Ophthalmic Genetics [Internet]. 2015;36(2):175–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84931833111&doi=10.3109%252f13816810.2015.1005318&partnerID=40&md5=ee5b1824c8d8a23cc4e79f69f3f29e6d

68.

Zelinger L, Cideciyan AV, Kohl S, Schwartz SB, Rosenmann A, Eli D, et al. Genetics and disease expression in the CNGA3 form of achromatopsia: Steps on the path to gene therapy. Ophthalmology [Internet]. 2015;122(5):997–1007. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928823922&doi=10.1016%252fj.ophtha.2014.11.025&partnerID=40&md5=1b98d315bbb5af020ae9c9796c1178ff

69.

Shevach E, Ali M, Mizrahi-Meissonnier L, McKibbin M, El-Asrag M, Watson CM, et al. Association between missense mutations in the BBS2 gene and nonsyndromic retinitis pigmentosa. JAMA Ophthalmology [Internet]. 2015;133(3):312–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929003190&doi=10.1001%252fjamaophthalmol.2014.5251&partnerID=40&md5=e4a5820bcca18422efe893b5f0aafabd

70.

Di Gioia SA, Farinelli P, Letteboer SJF, Arsenijevic Y, Sharon D, Roepman R, et al. Interactome analysis reveals that FAM161A, deficient in recessive retinitis pigmentosa, is a component of the Golgi-centrosomal network. Human Molecular Genetics [Internet]. 2015;24(12):3359–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930440766&doi=10.1093%252fhmg%252fddv085&partnerID=40&md5=591483feab8857294d6b53447be11b0e

71.

Kmoch S, Majewski J, Ramamurthy V, Cao S, Fahiminiya S, Ren H, et al. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness. Nature Communications [Internet]. 2015;6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940939805&doi=10.1038%252fncomms6614&partnerID=40&md5=04dfd201d9344e2dc9baf5ce1b8f3c4c

72.

Van Schil K, Klevering BJ, Leroy BP, Pott JWR, Bandah-Rozenfeld D, Zonneveld-Vrieling MN, et al. A nonsense mutation in FAM161A is a recurrent founder allele in dutch and belgian individuals with autosomal recessive retinitis pigmentosa. Investigative Ophthalmology and Visual Science [Internet]. 2015;56(12):7418–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947483933&doi=10.1167%252fiovs.15-17920&partnerID=40&md5=bfa54b0a15de5d568054a03365c30643

73.

Beryozkin A, Zelinger L, Bandah-Rozenfeld D, Shevach E, Harel A, Storm T, et al. Identification of mutations causing inherited retinal degenerations in the Israeli and Palestinian populations using homozygosity mapping. Investigative Ophthalmology and Visual Science [Internet]. 2014;55(2):1149–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894465581&doi=10.1167%252fiovs.13-13625&partnerID=40&md5=1695d93e67b6000314ba05d5f2654d2c

74.

Khateb S, Zelinger L, Mizrahi-Meissonnier L, Ayuso C, Koenekoop RK, Laxer U, et al. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. Journal of Medical Genetics [Internet]. 2014;51(7):460–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902549923&doi=10.1136%252fjmedgenet-2014-102287&partnerID=40&md5=e8b7b444d6c54da41ec81b20abd02e72

75.

Sharon D, Al-Hamdani S, Engelsberg K, Mizrahi-Meissonnier L, Obolensky A, Banin E, et al. Ocular phenotype analysis of a family with biallelic mutations in the BEST1 gene. American Journal of Ophthalmology [Internet]. 2014;157(3):697-709.e2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894193841&doi=10.1016%252fj.ajo.2013.12.010&partnerID=40&md5=9793d501078275b12aba00072b87b6c4

76.

Sharon D, Zelnger L, Banin E. Author reply. Ophthalmology [Internet]. 2013;120(11):e80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891959317&doi=10.1016%252fj.ophtha.2013.07.031&partnerID=40&md5=d8dd3ecd481b8fa6761bf6fcbce4846b

77.

Zelinger L, Wissinger B, Eli D, Kohl S, Sharon D, Banin E. Cone dystrophy with supernormal rod response: Novel KCNV2 mutations in an underdiagnosed phenotype. Ophthalmology [Internet]. 2013;120(11):2338–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887204033&doi=10.1016%252fj.ophtha.2013.03.031&partnerID=40&md5=6ae59c5d7d2583da2161408ac7a4b268

78.

Nishiguchi KM, Tearle RG, Liu YP, Oh EC, Miyake N, Benaglio P, et al. Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2013;110(40):16139–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885055513&doi=10.1073%252fpnas.1308243110&partnerID=40&md5=2f31f1b3b4b7d906d89b668d2440cfc0

79.

Davidson AE, Schwarz N, Zelinger L, Stern-Schneider G, Shoemark A, Spitzbarth B, et al. Mutations in ARL2BP, encoding ADP-ribosylation-factor-like 2 binding protein, cause autosomal-recessive retinitis pigmentosa. American Journal of Human Genetics [Internet]. 2013;93(2):321–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881662509&doi=10.1016%252fj.ajhg.2013.06.003&partnerID=40&md5=f031ef4aaf88d16a4e965bdd60b315ec

80.

Roosing S, Rohrschneider K, Beryozkin A, Sharon D, Weisschuh N, Staller J, et al. Mutations in RAB28, encoding a farnesylated small gtpase, are associated with autosomal-recessive cone-rod dystrophy. American Journal of Human Genetics [Internet]. 2013;93(1):110–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880292323&doi=10.1016%252fj.ajhg.2013.05.005&partnerID=40&md5=5b2181135f4957878511dfff363a01d6

81.

Beryozkin A, Zelinger L, Bandah-Rozenfeld D, Harel A, Strom TA, Merin S, et al. Mutations in CRB1 are a relatively common cause of autosomal recessive early-onset retinal degeneration in the Israeli and Palestinian populations. Investigative Ophthalmology and Visual Science [Internet]. 2013;54(3):2068–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875675574&doi=10.1167%252fiovs.12-11419&partnerID=40&md5=6edd8dfbcc45297290241246409d22f0

82.

Bitner H, Schatz P, Mizrahi-Meissonnier L, Sharon D, Rosenberg T. Erratum: Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: Data from a national Center in Denmark (American Journal of Ophthalmology (2012) 154:2 (403-412)). American Journal of Ophthalmology [Internet]. 2013;155(1):201. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871230637&doi=10.1016%252fj.ajo.2012.11.014&partnerID=40&md5=5a546917fae16d93bf1090e932248fee

83.

Khateb S, Zelinger L, Ben-Yosef T, Merin S, Crystal-Shalit O, Gross M, et al. Exome Sequencing Identifies a Founder Frameshift Mutation in an Alternative Exon of USH1C as the Cause of Autosomal Recessive Retinitis Pigmentosa with Late-Onset Hearing Loss. PLoS ONE [Internet]. 2012;7(12). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871186467&doi=10.1371%252fjournal.pone.0051566&partnerID=40&md5=9c0fddc339ba33d1713c35773fae373e

84.

Carroll J, Dubra A, Gardner JC, Mizrahi-Meissonnier L, Cooper RF, Dubis AM, et al. The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. Investigative Ophthalmology and Visual Science [Internet]. 2012;53(13):8006–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873337052&doi=10.1167%252fiovs.12-11087&partnerID=40&md5=35eddf86b694c8750722c22c6b541aad

85.

Di gioia SA, Letteboer SJ, Kostic C, Bandah-rozenfeld D, Hetterschijt L, Sharon D, et al. FAM161a, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies. Human Molecular Genetics [Internet]. 2012;21(23):5174–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869074316&doi=10.1093%252fhmg%252fdds368&partnerID=40&md5=e87cac2bcea7b30758c981d1c4e10c82

86.

Estrada-Cuzcano A, Koenekoop RK, Senechal A, De Baere EBW, De Ravel T, Banfi S, et al. BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to bardet-biedl syndrome. Archives of Ophthalmology [Internet]. 2012;130(11):1425–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867135409&doi=10.1001%252farchophthalmol.2012.2434&partnerID=40&md5=802d4d6f57c0aca5c854e98e9a9df897

87.

Jaouni T, Averbukh E, Burstyn-Cohen T, Grunin M, Banin E, Sharon D, et al. Association of pattern dystrophy with an HTRA1 single-nucleotide polymorphism. Archives of Ophthalmology [Internet]. 2012;130(8):987–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865574792&doi=10.1001%252farchophthalmol.2012.1483&partnerID=40&md5=06fffd196fe880c987e94c97c8eff8fc

88.

Audo I, Bujakowska K, Orhan E, Poloschek CM, Defoort-Dhellemmes S, Drumare I, et al. Erratum: Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness (American Journal of Human Genetics (2012) 90 (321-330)). American Journal of Human Genetics [Internet]. 2012;91(1):209. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863968689&doi=10.1016%252fj.ajhg.2012.06.001&partnerID=40&md5=d3111a61d78361f647a20687cf2577ee

89.

Pras E, Pras E, Reznik-Wolf H, Sharon D, Raivech S, Barkana Y, et al. Fundus albipunctatus: Novel mutations and phenotypic description of Israeli patients. Molecular Vision [Internet]. 2012;18:1712–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864292322&partnerID=40&md5=6c604ca075d6260dc74a76891e4fa9cc

90.

Schatz P, Bregnhoj J, Arvidsson H, Sharon D, Mizrahi-Meissonnier L, Sander B, et al. A tapetal-like fundus reflex in a healthy male: Evidence against a role in the pathophysiology of retinal degeneration? Molecular Vision [Internet]. 2012;18:1147–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863300242&partnerID=40&md5=b8a26c058964b72c5f92a4df82ec1874

91.

Audo I, Bujakowska K, Orhan E, Poloschek CM, Defoort-Dhellemmes S, Drumare I, et al. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. American Journal of Human Genetics [Internet]. 2012;90(2):321–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856867776&doi=10.1016%252fj.ajhg.2011.12.007&partnerID=40&md5=fc6c3a5f19650f517aa14abadd94c89f

92.

Estrada-Cuzcano A, Neveling K, Kohl S, Banin E, Rotenstreich Y, Sharon D, et al. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement. American Journal of Human Genetics [Internet]. 2012;90(1):102–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855827116&doi=10.1016%252fj.ajhg.2011.11.015&partnerID=40&md5=dd9201e63792c5aafd52b580e02fea5f

93.

Bitner H, Schatz P, Mizrahi-Meissonnier L, Sharon D, Rosenberg T. Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: Data from a national center in Denmark. American Journal of Ophthalmology [Internet]. 2012;154(2):403-412.e4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866430841&doi=10.1016%252fj.ajo.2012.02.036&partnerID=40&md5=d2c410a7a1d0d25d6777c74171c8693b

94.

Kinori M, Pras E, Kolker A, Ferman-Attar G, Moroz I, Moisseiev J, et al. Enhanced S-cone function with preserved rod function: A new clinical phenotype. Molecular Vision [Internet]. 2011;17:2241–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052986271&partnerID=40&md5=5917c044deb20194090b90e5dbaaf10e

95.

Özgül RK, Siemiatkowska AM, Yücel D, Myers CA, Collin RWJ, Zonneveld MN, et al. Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. American Journal of Human Genetics [Internet]. 2011;89(2):253–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80051608305&doi=10.1016%252fj.ajhg.2011.07.005&partnerID=40&md5=35ceefad6f2c70cd61507c1eee618cc8

96.

Piñeiro-Gallego T, Álvarez M, Pereiro I, Campos S, Sharon D, Schatz P, et al. Clinical evaluation of two consanguineous families with homozygous mutations in BEST1. Molecular Vision [Internet]. 2011;17:1607–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959937313&partnerID=40&md5=093f21be9e59fb1926da556508d0ffa7

97.

Bitner H, Mizrahi-Meissonnier L, Griefner G, Erdinest I, Sharon D, Banin E. A homozygous frameshift mutation in BEST1 causes the classical form of best disease in an autosomal recessive mode. Investigative Ophthalmology and Visual Science [Internet]. 2011;52(8):5332–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052924653&doi=10.1167%252fiovs.11-7174&partnerID=40&md5=ad6658370a189d18930bfb6d49005984

98.

Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D, et al. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in ashkenazi jews. American Journal of Human Genetics [Internet]. 2011;88(2):207–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79851508986&doi=10.1016%252fj.ajhg.2011.01.002&partnerID=40&md5=24782fab9125f393fd38ada574bed0ae

99.

Banin E, Bandah-Rozenfeld D, Obolensky A, Cideciyan AV, Aleman TS, Marks-Ohana D, et al. Molecular anthropology meets genetic medicine to treat blindness in the North African jewish population: Human gene therapy initiated in Israel. Human Gene Therapy [Internet]. 2010;21(12):1749–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650093375&doi=10.1089%252fhum.2010.047&partnerID=40&md5=1b5dcd6b36646df125137ab7c4e29402

100.

Bandah-Rozenfeld D, Mizrahi-Meissonnier L, Farhy C, Obolensky A, Chowers I, Pe’Er J, et al. Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa. American Journal of Human Genetics [Internet]. 2010;87(3):382–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956393918&doi=10.1016%252fj.ajhg.2010.07.022&partnerID=40&md5=bee6e7f2ff6885100b2885da18e8f36e

101.

Bandah-Rozenfeld D, Littink KW, Ben-Yosef T, Strom TM, Chowers I, Collin RWJ, et al. Novel null mutations in the EYS gene are a frequent cause of autosomal recessive retinitis pigmentosa in the Israeli population. Investigative Ophthalmology and Visual Science [Internet]. 2010;51(9):4387–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956175664&doi=10.1167%252fiovs.09-4732&partnerID=40&md5=e8a460be5240038305b8a27de13cbb5c

102.

Zelinger L, Greenberg A, Kohl S, Banin E, Sharon D. An ancient autosomal haplotype bearing a rare achromatopsia-causing founder mutation is shared among Arab Muslims and Oriental Jews. Human Genetics [Internet]. 2010;128(3):261–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956058284&doi=10.1007%252fs00439-010-0846-z&partnerID=40&md5=f3f469c20d27de6c9da270fe9dc2dca4

103.

Schatz P, Bitner H, Sander B, Holfort S, Andreasson S, Larsen M, et al. Evaluation of macular structure and function by OCT and electrophysiology in patients with vitelliform macular dystrophy due to mutations in BEST1. Investigative Ophthalmology and Visual Science [Internet]. 2010;51(9):4754–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955901553&doi=10.1167%252fiovs.10-5152&partnerID=40&md5=14fdaf1d45b9e5857b8f67bd1058516c

104.

Bandah-Rozenfeld D, Collin RWJ, Banin E, Ingeborgh Van Den Born L, Coene KLM, Siemiatkowska AM, et al. Mutations in IMPG2, Encoding interphotoreceptor matrix proteoglycan 2, cause autosomal-recessive retinitis pigmentosa. American Journal of Human Genetics [Internet]. 2010;87(2):199–208. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955581331&doi=10.1016%252fj.ajhg.2010.07.004&partnerID=40&md5=01a58bba25848426bd3cf4059f9457d7

105.

Mizrahi-Meissonnier L, Merin S, Banin E, Sharon D. Variable retinal phenotypes caused by mutations in the X-linked photopigment gene array. Investigative Ophthalmology and Visual Science [Internet]. 2010;51(8):3884–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955894415&doi=10.1167%252fiovs.09-4592&partnerID=40&md5=3b2de94dd660226be26f0a3ba0b6c060

106.

Asleh SA, Lederman M, Weinstein O, Horowitz S, Meir T, Lahad A, et al. Lack of association between the C2 allele of transferrin and age-related macular degeneration in the Israeli population. Ophthalmic Genetics [Internet]. 2009;30(4):161–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350444553&doi=10.3109%252f13816810903147998&partnerID=40&md5=c58ec3e457b8ad2bf6c9d8a5834f9653

107.

Parry DA, Toomes C, Bida L, Danciger M, Towns KV, McKibbin M, et al. Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice. American Journal of Human Genetics [Internet]. 2009;84(5):683–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-65149087659&doi=10.1016%252fj.ajhg.2009.04.005&partnerID=40&md5=844be15ab9b04f218cfa5c45058c4b5c

108.

Bandah D, Merin S, Ashhab M, Banin E, Sharon D. The spectrum of retinal diseases caused by NR2E3 mutations in Israeli and Palestinian patients. Archives of Ophthalmology [Internet]. 2009;127(3):297–302. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-62449289250&doi=10.1001%252farchophthalmol.2008.615&partnerID=40&md5=48c78f7b6254e87fc91c4a355388e74d

109.

Auslender N, Bandah D, Rizel L, Behar DM, Shohat M, Banin E, et al. Four USH2A founder mutations underlie the majority of Usher syndrome type 2 cases among non-Ashkenazi Jews. Genetic Testing [Internet]. 2008;12(2):289–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-45549107998&doi=10.1089%252fgte.2007.0107&partnerID=40&md5=375c7015c1717bfd51e3bdf71490a03e

110.

Ben-Shlomo G, Ofri R, Bandah D, Rosner M, Sharon D. Microarray-based gene expression analysis during retinal maturation of albino rats. Graefe’s Archive for Clinical and Experimental Ophthalmology [Internet]. 2008;246(5):693–702. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-42049115662&doi=10.1007%252fs00417-008-0772-0&partnerID=40&md5=d3ba517ac2ed0d4ee06192617ee6424b

111.

Bandah D, Rosenmann A, Blumenfeld A, Averbukh E, Banin E, Sharon D. A novel de novo PAX6 mutation in an Ashkenazi-Jewish family with aniridia. Molecular Vision [Internet]. 2008;14:142–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-38749094505&partnerID=40&md5=213c6e4cc1d6792416d56dd9e5268bfe

112.

Auslender N, Sharon D, Abbasi AH, Garzozi HJ, Banin E, Ben-Yosef T. A common founder mutation of CERKL underlies autosomal recessive retinal degeneration with early macular involvement among Yemenite Jews. Investigative Ophthalmology and Visual Science [Internet]. 2007;48(12):5431–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-38549111184&doi=10.1167%252fiovs.07-0736&partnerID=40&md5=68cd4b24a93eb5d874b02be52c0ecee1

113.

Beit-Ya’acov A, Mizrahi-Meissonnier L, Obolensky A, Landau C, Blumenfeld A, Rosenmann A, et al. Homozygosity for a novel ABCA4 founder splicing mutation is associated with progressive and severe Stargardt-like disease. Investigative Ophthalmology and Visual Science [Internet]. 2007;48(9):4308–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35148857086&doi=10.1167%252fiovs.07-0244&partnerID=40&md5=c4aaec79f7b64ee089ae2cbb48cb6aa6

114.

Bandah D, Swissa T, Ben-Shlomo G, Banin E, Ofri R, Sharon D. A complex expression pattern of Pax6 in the pigeon retina. Investigative Ophthalmology and Visual Science [Internet]. 2007;48(6):2503–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34347268843&doi=10.1167%252fiovs.06-1014&partnerID=40&md5=23cf5d9851030d0ba985015a8c035b5b

115.

Banin E, Mizrahi-Meissonnier L, Neis R, Silverstein S, Magyar I, Abeliovich D, et al. A non-ancestral RPGR missense mutation in families with either recessive or semi-dominant X-linked retinitis pigmentosa. American Journal of Medical Genetics, Part A [Internet]. 2007;143(11):1150–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34249866185&doi=10.1002%252fajmg.a.31642&partnerID=40&md5=2f93eb5bb76e4f4ae0f2869b994e2f71

116.

Kaiserman N, Obolensky A, Banin E, Sharon D. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and usher syndrome type 2. Archives of Ophthalmology [Internet]. 2007;125(2):219–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846987563&doi=10.1001%252farchopht.125.2.219&partnerID=40&md5=77e12dcb96204c8a6e9fe6b737aaed57

117.

Fishman GA, Roberts MF, Derlacki DJ, Grimsby JL, Yamamoto H, Sharon D, et al. Novel Mutations in the Cellular Retinaldehyde-Binding Protein Gene (RLBP1) Associated with Retinitis Punctata Albescens: Evidence of Interfamilial Genetic Heterogeneity and Fundus Changes in Heterozygotes. Archives of Ophthalmology [Internet]. 2004;122(1):70–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0346724556&doi=10.1001%252farchopht.122.1.70&partnerID=40&md5=22305b4cb72026da15c5706cf727db9c

118.

Sharon D, Sandberg MA, Caruso RC, Berson EL, Dryja TP. Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Archives of Ophthalmology [Internet]. 2003;121(9):1316–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0141722455&doi=10.1001%252farchopht.121.9.1316&partnerID=40&md5=3ec425ef7a311279bacf403b41e705c0

119.

Rivolta C, Sharon D, DeAngelis MM, Dryja TP. Erratum: Retinitis pigmentosa and allied diseases: Numerous diseases, genes and inheritance patterns (Human Molecular Genetics (2002) vol. 11 (1219-1227)). Human Molecular Genetics [Internet]. 2003;12(5):583–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037338635&doi=10.1093%252fhmg%252f12.5.583&partnerID=40&md5=7d6a14ff1c8b06fc0993e32228b2f1f2

120.

Sharon D, Sandberg MA, Rabe VW, Stillberger M, Dryja TP, Berson EL. RP2 and RPGR Mutations and Clinical Correlations in Patients with X-Linked Retinitis Pigmentosa. American Journal of Human Genetics [Internet]. 2003;73(5):1131–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0242522448&doi=10.1086%252f379379&partnerID=40&md5=fc9ff8b9b6feab50a2310449eede4969

121.

Sharon D, Yamamoto H, McGee TL, Rabe V, Szerencsei RT, Winkfein RJ, et al. Mutated alleles of the rod and cone Na-Ca+K- exchanger genes in patients with retinal diseases. Investigative Ophthalmology and Visual Science [Internet]. 2002;43(6):1971–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036276366&partnerID=40&md5=a64ac9a1b47637df538276e7e1b4af30

122.

Rivolta C, Sharon D, De Angelis MM, Dryja TP. Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Human molecular genetics [Internet]. 2002;11(10):1219–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037095736&doi=10.1093%252fhmg%252f12.5.583&partnerID=40&md5=32bc16e36bcb9d0891fa7870c377eb81

123.

Sharon D, Blackshaw S, Cepko CL, Dryja TP. Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE). Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2002;99(1):315–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037039378&doi=10.1073%252fpnas.012582799&partnerID=40&md5=f36dcc496b208b00c40f501e28e763a2

124.

Lapidot M, Pilpel Y, Gilad Y, Falcovitz A, Sharon D, Haaf T, et al. Mouse-human orthology relationships in an olfactory receptor gene cluster. Genomics [Internet]. 2001;71(3):296–306. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035251774&doi=10.1006%252fgeno.2000.6431&partnerID=40&md5=0e33bb252cccc958c3919248b4de0f3d

125.

Sharon D, Gilad Y, Glusman G, Khen M, Lancet D, Kalush F. Identification and characterization of coding single-nucleotide polymorphisms within a human olfactory receptor gene cluster. Gene [Internet]. 2000;260(1–2):87–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034736579&doi=10.1016%2fS0378-1119%2800%2900467-4&partnerID=40&md5=8319b34f17f47e8b8a5b627230f52d97

126.

Gilad Y, Segré D, Skorecki K, Nachman MW, Lancet D, Sharon D. Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nature Genetics [Internet]. 2000;26(2):221–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033779877&doi=10.1038%252f79957&partnerID=40&md5=0ecacedff8d54db63cd1a5d077b49747

127.

Sharon D, Bruns GAP, McGee TL, Sandberg MA, Berson EL, Dryja TP. X-linked retinitis pigmentosa: Mutation spectrum of the RPGR and RP2 genes and correlation with visual function. Investigative Ophthalmology and Visual Science [Internet]. 2000;41(9):2712–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033854355&partnerID=40&md5=2262456d2f88c18b5c4e182e8082b5de

128.

Glusman G, Bahar A, Sharon D, Pilpel Y, White J, Lancet D. The olfactory receptor gene superfamily: Data mining, classification, and nomenclature. Mammalian Genome [Internet]. 2000;11(11):1016–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033777499&doi=10.1007%252fs003350010196&partnerID=40&md5=9c12b35a050cf349ce3dbb96346d7233

129.

Sharon D, Glusman G, Pilpel Y, Khen M, Gruetzner F, Haaf T, et al. Primate evolution of an olfactory receptor cluster: Diversification by gene conversion and recent emergence of pseudogenes. Genomics [Internet]. 1999;61(1):24–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032862870&doi=10.1006%252fgeno.1999.5900&partnerID=40&md5=ecc84d054fce827cd9e09a3cf647ba53

130.

Lavi U, Sharon D, Mhameed S, Kashkush H, Adato A, Kaufman D, et al. Molecular markers in tropical and subtropical horticulture reviewed article. Acta Horticulturae [Internet]. 1998;461:49–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879474506&doi=10.17660%252fActaHortic.1998.461.3&partnerID=40&md5=8a075a1e1ec4603c733e15e9bb28d30f

131.

Sharon D, Glusman G, Pilpel Y, Horn-Saban S, Lancet D. Genome dynamics, evolution, and protein modeling in the olfactory receptor gene superfamily. Annals of the New York Academy of Sciences [Internet]. 1998;855:182–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032451969&doi=10.1111%252fj.1749-6632.1998.tb10564.x&partnerID=40&md5=6ac9b3a5228cf0742e4fcfe8e7b1f408

132.

Sharon D, Hillel J, Mhameed S, Cregan PB, Lahav E, Lavi U. Association between DNA markers and loci controlling avocado traits. Journal of the American Society for Horticultural Science [Internet]. 1998;123(6):1016–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031760259&doi=10.21273%252fjashs.123.6.1016&partnerID=40&md5=833581eded841630186dce0cbab05bde

133.

Sharon D, Cregan PB, Mhameed S, Kusharska M, Hillel J, Lahav E, et al. An integrated genetic linkage map of avocado. Theoretical and Applied Genetics [Internet]. 1997;95(5–6):911–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030779535&doi=10.1007%252fs001220050642&partnerID=40&md5=d098e1b51d9d02d8d7543b21408bc7b9

134.

Mhameed S, Sharon D, Kaufman D, Lahav E, Hillel J, Degani C, et al. Genetic relationships within avocado (Persea americana Mill) cultivars and between Persea species. Theoretical and Applied Genetics [Internet]. 1997;94(2):279–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031049512&doi=10.1007%252fs001220050411&partnerID=40&md5=bd2015866bf9fbeb9e064974cd528c5c

135.

Lavi U, Kaufman D, Sharon D, Adato A, Tomer E, Gazit S, et al. Mango breeding and genetics -review. Acta Horticulturae [Internet]. 1997;455:268–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037632917&doi=10.17660%252fActaHortic.1997.455.35&partnerID=40&md5=db269a24cc7485ea2ec789183f6b0bdf

136.

Lavi U, Kaufman D, Sharon D, Gazit S, Tomer E. 1 Shelly’ : A new mango cultivar. HortScience [Internet]. 1997;32(1):138. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030983446&doi=10.21273%252fhortsci.32.1.138&partnerID=40&md5=b4cfedce9bf38214dd4f86006507d640

137.

Lavi U, Sharon D, Kaufman D, Gazit S, Tomer E. “Tango”: A new mango cultivar. HortScience [Internet]. 1997;32(1):137. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030958238&doi=10.21273%252fhortsci.32.1.137&partnerID=40&md5=a056d858359936b819ab938bcf8a6b2b

138.

Lavi U, Sharon D, Kaufman D, Saada D, Chapnik A, Zaniet D, et al. ’Eden’-A new avocado cultivar. HortScience [Internet]. 1997;32(1):151. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030907086&doi=10.21273%252fhortsci.32.1.151&partnerID=40&md5=2dfb3b37cff4931ce86d99f90a52da2d

139.

Mhameed S, Sharon D, Hillel J, Lahav E, Kaufman D, Lavi U. Level of heterozygosity and mode of inheritance of variable number of tandem repeat loci in avocado. Journal of the American Society for Horticultural Science [Internet]. 1996;121(5):768–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030473086&doi=10.21273%252fjashs.121.5.768&partnerID=40&md5=1ed6c85bb4367fe31e2a3c3745a6496d

140.

Mhameed S, Hillel J, Lahav E, Sharon D, Lavi U. Genetic association between DNA fingerprint fragments and loci controlling agriculturally important traits in avocado (Persea americana Mill.). Euphytica [Internet]. 1995;84(1):81–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028812134&doi=10.1007%252fBF01677560&partnerID=40&md5=490231820b36298a7c29dc3430a0e6d7

141.

Sharon D, Adato A, Mhameed S, Lavi U, Hillel J, Gomolka M, et al. DNA fingerprints in plants using simple-sequence repeat and minisatellite probes. HortScience [Internet]. 1995;30(1):109–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029158752&doi=10.21273%252fhortsci.30.1.109&partnerID=40&md5=b6567728a7f75277ff60b938503ba41c

142.

Adato A, Sharon D, Lavi U, Hillel J, Gazit S. Application of DNA fingerprints for identification and genetic analyses of mango (Mangifera indica) genotypes. Journal of the American Society for Horticultural Science [Internet]. 1995;120(2):259–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029132485&doi=10.21273%252fjashs.120.2.259&partnerID=40&md5=fd231a80584e5ecfb0119ef791e3b917

143.

Sharon D, Hillel J, Vainstein A, Lavi U. Application of DNA fingerprints for identification and genetic analysis of Carica papaya and other Carica species. Euphytica [Internet]. 1992;62(2):119–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000867703&doi=10.1007%252fBF00037937&partnerID=40&md5=5924e0ae4fde41ca16f779902dc3a233