Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

Hadassah Medical Center: Sharon Dror

Last updated June 2021 - Hadassah Medical Center

List of Publications

(1) Beryozkin A, Matsevich C, Obolensky A, Kostic C, Arsenijevic Y, Wolfrum U, et al. A new mouse model for retinal degeneration due to Fam161a deficiency. Sci Rep 2021;11(1).

(2) Perea-Romero I, Gordo G, Iancu IF, Del Pozo-Valero M, Almoguera B, Blanco-Kelly F, et al. Author Correction: Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications (Scientific Reports, (2021), 11, 1, (1526), 10.1038/s41598-021-81093-y). Sci Rep 2021;11(1).

(3) Perea-Romero I, Gordo G, Iancu IF, Del Pozo-Valero M, Almoguera B, Blanco-Kelly F, et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci Rep 2021;11(1).

(4) Georgiou M, Robson AG, Fujinami K, Leo SM, Vincent A, Nasser F, et al. KCNV2-Associated Retinopathy: Genetics, Electrophysiology, and Clinical Course—KCNV2 Study Group Report 1. Am J Ophthalmol 2021;225:95-107.

(5) Ruberto FP, Balzano S, Namburi P, Kimchi A, Pescini-Gobert R, Obolensky A, et al. Heterozygous deletions of noncoding parts of the prpf31 gene cause retinitis pigmentosa via reduced gene expression. Mol Vision 2021;27:107-116.

(6) Beryozkin A, Khateb S, Idrobo-Robalino CA, Khan MI, Cremers FPM, Obolensky A, et al. Unique combination of clinical features in a large cohort of 100 patients with retinitis pigmentosa caused by FAM161A mutations. Sci Rep 2020;10(1).

(7) Khan M, Cornelis SS, Pozo-Valero MD, Whelan L, Runhart EH, Mishra K, et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Gen Med 2020;22(7):1235-1246.

(8) Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JWB, et al. Advancing clinical trials for inherited retinal diseases: Recommendations from the second monaciano symposium. Translational Vis Sci Technol 2020;9(7).

(9) Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci U S A 2020;117(5):2710-2716.

(10) Namburi P, Khateb S, Meyer S, Bentovim T, Ratnapriya R, Khramushin A, et al. A unique PRDM13-associated variant in a Georgian Jewish family with probable North Carolina macular dystrophy and the possible contribution of a unique CFH variant. Mol Vision 2020;26:299-310.

(11) Levinger N, Hendler K, Banin E, Hanany M, Kimchi A, Mechoulam H, et al. Variable phenotype of Knobloch syndrome due to biallelic COL18A1 mutations in children. Eur J Ophthalmol 2020.

(12) Sharon D, Ben-Yosef T, Goldenberg-Cohen N, Pras E, Gradstein L, Soudry S, et al. A nationwide genetic analysis of inherited retinal diseases in Israel as assessed by the Israeli inherited retinal disease consortium (IIRDC). Hum Mutat 2020;41(1):140-149.

(13) Weisschuh N, Sturm M, Baumann B, Audo I, Ayuso C, Bocquet B, et al. Deep-intronic variants in CNGB3 cause achromatopsia by pseudoexon activation. Hum Mutat 2020;41(1):255-264.

(14) AlTalbishi A, Zelinger L, Zeitz C, Hendler K, Namburi P, Audo I, et al. TRPM1 Mutations are the Most Common Cause of Autosomal Recessive Congenital Stationary Night Blindness (CSNB) in the Palestinian and Israeli Populations. Sci Rep 2019;9(1).

(15) Kimchi A, Meiner V, Silverstein S, Macarov M, Mor-Shaked H, Blumenfeld A, et al. An Ashkenazi Jewish founder mutation in CACNA1F causes retinal phenotype in both hemizygous males and heterozygous female carriers. Ophthalmic Genet 2019;40(5):443-448.

(16) Hanany M, Sharon D. Allele frequency analysis of variants reported to cause autosomal dominant inherited retinal diseases question the involvement of 19% of genes and 10% of reported pathogenic variants. J Med Genet 2019;56(8):536-542.

(17) Zeitz C, Michiels C, Neuillé M, Friedburg C, Condroyer C, Boyard F, et al. Where are the missing gene defects in inherited retinal disorders? Intronic and synonymous variants contribute at least to 4% of CACNA1F-mediated inherited retinal disorders. Hum Mutat 2019;40(6):765-787.

(18) Abu Diab A, AlTalbishi A, Rosin B, Kanaan M, Kamal L, Swaroop A, et al. The combination of whole-exome sequencing and clinical analysis allows better diagnosis of rare syndromic retinal dystrophies. Acta Ophthalmol 2019;97(6):e877-e886.

(19) Ner DB, Sher I, Hamburg A, Mhajna MO, Chibel R, Derazne E, et al. Chromatic pupilloperimetry for objective diagnosis of best vitelliform macular dystrophy. Clin Ophthalmol 2019;13:465-475.

(20) Tatour Y, Tamaiev J, Shamaly S, Colombo R, Bril E, Rabinowitz T, et al. A novel intronic mutation of PDE6B is a major cause of autosomal recessive retinitis pigmentosa among caucasus jews. Mol Vision 2019;25:155-164.

(21) Wimberg H, Lev D, Yosovich K, Namburi P, Banin E, Sharon D, et al. Photoreceptor Guanylate Cyclase (GUCY2D) Mutations Cause Retinal Dystrophies by Severe Malfunction of Ca2+-Dependent Cyclic GMP Synthesis. Front Mol Neurosci 2018;11.

(22) Khateb S, Kowalewski B, Bedoni N, Damme M, Pollack N, Saada A, et al. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Gen Med 2018;20(9):1004-1012.

(23) Hanany M, Allon G, Kimchi A, Blumenfeld A, Newman H, Pras E, et al. Carrier frequency analysis of mutations causing autosomal-recessive-inherited retinal diseases in the Israeli population. Eur J Hum Genet 2018;26(8):1159-1166.

(24) Kimchi A, Khateb S, Wen R, Guan Z, Obolensky A, Beryozkin A, et al. Nonsyndromic Retinitis Pigmentosa in the Ashkenazi Jewish Population: Genetic and Clinical Aspects. Ophthalmology 2018;125(5):725-734.

(25) Sharon D, Wimberg H, Kinarty Y, Koch K-. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog Retinal Eye Res 2018;63:69-91.

(26) Hubshman MW, Broekman S, van Wijk E, Cremers F, Abu-Diab A, Khateb S, et al. Whole-exome sequencing reveals poc5 as a novel gene associated with autosomal recessive retinitis pigmentosa. Hum Mol Genet 2018;27(4):614-624.

(27) Khalaileh A, Abu-Diab A, Ben-Yosef T, Raas-Rothschild A, Lerer I, Alswaiti Y, et al. The genetics of usher syndrome in the Israeli and palestinian populations. Invest Ophthalmol Vis Sci 2018;59(2):1095-1104.

(28) Pierrache LHM, Kimchi A, Ratnapriya R, Roberts L, Astuti GDN, Obolensky A, et al. Whole-Exome Sequencing Identifies Biallelic IDH3A Variants as a Cause of Retinitis Pigmentosa Accompanied by Pseudocoloboma. Ophthalmology 2017;124(7):992-1003.

(29) Namburi P, Ratnapriya R, Khateb S, Lazar CH, Kinarty Y, Obolensky A, et al. Correction: Bi-allelic Truncating Mutations in CEP78, Encoding Centrosomal Protein 78, Cause Cone-Rod Degeneration with Sensorineural Hearing Loss (The American Journal of Human Genetics (2016) 99(5) (1222–1223) (S0002929716302841) (10.1016/j.ajhg.2016.07.010)). Am J Hum Genet 2016;99(5):1222-1223.

(30) Sharon D, Kimchi A, Rivolta C. OR2W3 sequence variants are unlikely to cause inherited retinal diseases. Ophthalmic Genet 2016;37(4):366-368.

(31) Khateb S, Hanany M, Khalaileh A, Beryozkin A, Meyer S, Abu-Diab A, et al. Identification of genomic deletions causing inherited retinal degenerations by coverage analysis of whole exome sequencing data. J Med Genet 2016;53(9):600-607.

(32) Gradstein L, Zolotushko J, Sergeev YV, Lavy I, Narkis G, Perez Y, et al. Novel GUCY2D mutation causes phenotypic variability of Leber congenital amaurosis in a large kindred. BMC Med Genet 2016;17(1).

(33) Grunin M, Tiosano L, Jaouni T, Averbukh E, Sharon D, Chowers I. Evaluation of the association of single nucleotide polymorphisms in the PRPH2 gene with adult-onset foveomacular vitelliform dystrophy. Ophthalmic Genet 2016;37(3):285-289.

(34) Biswas P, Chavali VR, Agnello G, Stone E, Chakarova C, Duncan JL, et al. A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Hum Mol Genet 2016;25(12):2483-2497.

(35) Xu M, Yamada T, Sun Z, Eblimit A, Lopez I, Wang F, et al. Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum Mol Genet 2016;25(8):1479-1488.

(36) Beryozkin A, Levy G, Blumenfeld A, Meyer S, Namburi P, Morad Y, et al. Genetic analysis of the rhodopsin gene identifies a mosaic dominant retinitis pigmentosa mutation in a healthy individual. Invest Ophthalmol Vis Sci 2016;57(3):940-947.

(37) Schatz P, Sharon D, Al-Hamdani S, Andréasson S, Larsen M. Retinal structure in young patients aged 10 years or less with Best vitelliform macular dystrophy. Graefe's Arch Clin Exp Ophthalmol 2016;254(2):215-221.

(38) Namburi P, Ratnapriya R, Khateb S, Lazar CH, Kinarty Y, Obolensky A, et al. Bi-allelic Truncating Mutations in CEP78, Encoding Centrosomal Protein 78, Cause Cone-Rod Degeneration with Sensorineural Hearing Loss. Am J Hum Genet 2016;99(3):777-784.

(39) Lazar CH, Mutsuddi M, Kimchi A, Zelinger L, Mizrahi-Meissonnier L, Marks-Ohana D, et al. Whole exome sequencing reveals GUCY2D as a major gene associated with cone and cone–rod dystrophy in Israel. Invest Ophthalmol Vis Sci 2015;56(1):420-430.

(40) Banin E, Gootwine E, Obolensky A, Ezra-Elia R, Ejzenberg A, Zelinger L, et al. Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia. Mol Ther 2015;23(9):1423-1433.

(41) Lazar CH, Kimchi A, Namburi P, Mutsuddi M, Zelinger L, Beryozkin A, et al. Nonsyndromic Early-Onset Cone-Rod Dystrophy and Limb-Girdle Muscular Dystrophy in a Consanguineous Israeli Family are Caused by Two Independent yet Linked Mutations in ALMS1 and DYSF. Hum Mutat 2015;36(9):836-841.

(42) Beryozkin A, Shevah E, Kimchi A, Mizrahi-Meissonnier L, Khateb S, Ratnapriya R, et al. Whole Exome Sequencing Reveals Mutations in Known Retinal Disease Genes in 33 out of 68 Israeli Families with Inherited Retinopathies. Sci Rep 2015;5.

(43) Sharon D, Banin E. Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Mol Vision 2015;21:783-792.

(44) Haer-Wigman L, Newman H, Leibu R, Bax NM, Baris HN, Rizel L, et al. Non-syndromic retinitis pigmentosa due to mutations in the mucopolysaccharidosis type IIIC gene, heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT). Hum Mol Genet 2015;24(13):3742-3751.

(45) Zelinger L, Cideciyan AV, Kohl S, Schwartz SB, Rosenmann A, Eli D, et al. Genetics and disease expression in the CNGA3 form of achromatopsia: Steps on the path to gene therapy. Ophthalmology 2015;122(5):997-1007.

(46) Shevach E, Ali M, Mizrahi-Meissonnier L, McKibbin M, El-Asrag M, Watson CM, et al. Association between missense mutations in the BBS2 gene and nonsyndromic retinitis pigmentosa. JAMA Ophthalmol 2015;133(3):312-318.

(47) Di Gioia SA, Farinelli P, Letteboer SJF, Arsenijevic Y, Sharon D, Roepman R, et al. Interactome analysis reveals that FAM161A, deficient in recessive retinitis pigmentosa, is a component of the Golgi-centrosomal network. Hum Mol Genet 2015;24(12):3359-3371.

(48) Kmoch S, Majewski J, Ramamurthy V, Cao S, Fahiminiya S, Ren H, et al. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness. Nat Commun 2015;6.

(49) Yahalom C, Sharon D, Dalia E, Simhon SB, Shemesh E, Blumenfeld A. Combined Occurrence of Autosomal Dominant Aniridia and Autosomal Recessive Albinism in Several Members of a Family. Ophthalmic Genet 2015;36(2):175-179.

(50) Van Schil K, Klevering BJ, Leroy BP, Pott JWR, Bandah-Rozenfeld D, Zonneveld-Vrieling MN, et al. A nonsense mutation in FAM161A is a recurrent founder allele in dutch and belgian individuals with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 2015;56(12):7418-7426.

(51) Beryozkin A, Zelinger L, Bandah-Rozenfeld D, Shevach E, Harel A, Storm T, et al. Identification of mutations causing inherited retinal degenerations in the Israeli and Palestinian populations using homozygosity mapping. Invest Ophthalmol Vis Sci 2014;55(2):1149-1160.

(52) Khateb S, Zelinger L, Mizrahi-Meissonnier L, Ayuso C, Koenekoop RK, Laxer U, et al. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. J Med Genet 2014;51(7):460-469.

(53) Sharon D, Al-Hamdani S, Engelsberg K, Mizrahi-Meissonnier L, Obolensky A, Banin E, et al. Ocular phenotype analysis of a family with biallelic mutations in the BEST1 gene. Am J Ophthalmol 2014;157(3):697-709.e2.

(54) Sharon D, Zelnger L, Banin E. Author reply. Ophthalmology 2013;120(11).

(55) Zelinger L, Wissinger B, Eli D, Kohl S, Sharon D, Banin E. Cone dystrophy with supernormal rod response: Novel KCNV2 mutations in an underdiagnosed phenotype. Ophthalmology 2013;120(11):2338-2343.

(56) Nishiguchi KM, Tearle RG, Liu YP, Oh EC, Miyake N, Benaglio P, et al. Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene. Proc Natl Acad Sci U S A 2013;110(40):16139-16144.

(57) Davidson AE, Schwarz N, Zelinger L, Stern-Schneider G, Shoemark A, Spitzbarth B, et al. Mutations in ARL2BP, encoding ADP-ribosylation-factor-like 2 binding protein, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet 2013;93(2):321-329.

(58) Roosing S, Rohrschneider K, Beryozkin A, Sharon D, Weisschuh N, Staller J, et al. Mutations in RAB28, encoding a farnesylated small gtpase, are associated with autosomal-recessive cone-rod dystrophy. Am J Hum Genet 2013;93(1):110-117.

(59) Beryozkin A, Zelinger L, Bandah-Rozenfeld D, Harel A, Strom TA, Merin S, et al. Mutations in CRB1 are a relatively common cause of autosomal recessive early-onset retinal degeneration in the Israeli and Palestinian populations. Invest Ophthalmol Vis Sci 2013;54(3):2068-2075.

(60) Bitner H, Schatz P, Mizrahi-Meissonnier L, Sharon D, Rosenberg T. Erratum: Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: Data from a national Center in Denmark (American Journal of Ophthalmology (2012) 154:2 (403-412)). Am J Ophthalmol 2013;155(1):201.

(61) Khateb S, Zelinger L, Ben-Yosef T, Merin S, Crystal-Shalit O, Gross M, et al. Exome Sequencing Identifies a Founder Frameshift Mutation in an Alternative Exon of USH1C as the Cause of Autosomal Recessive Retinitis Pigmentosa with Late-Onset Hearing Loss. PLoS ONE 2012;7(12).

(62) Di gioia SA, Letteboer SJ, Kostic C, Bandah-rozenfeld D, Hetterschijt L, Sharon D, et al. FAM161a, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies. Hum Mol Genet 2012;21(23):5174-5184.

(63) Carroll J, Dubra A, Gardner JC, Mizrahi-Meissonnier L, Cooper RF, Dubis AM, et al. The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. Invest Ophthalmol Vis Sci 2012;53(13):8006-8015.

(64) Estrada-Cuzcano A, Koenekoop RK, Senechal A, De Baere EBW, De Ravel T, Banfi S, et al. BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to bardet-biedl syndrome. Arch Ophthalmol 2012;130(11):1425-1432.

(65) Jaouni T, Averbukh E, Burstyn-Cohen T, Grunin M, Banin E, Sharon D, et al. Association of pattern dystrophy with an HTRA1 single-nucleotide polymorphism. Arch Ophthalmol 2012;130(8):987-991.

(66) Audo I, Bujakowska K, Orhan E, Poloschek CM, Defoort-Dhellemmes S, Drumare I, et al. Erratum: Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness (American Journal of Human Genetics (2012) 90 (321-330)). Am J Hum Genet 2012;91(1):209.

(67) Pras E, Pras E, Reznik-Wolf H, Sharon D, Raivech S, Barkana Y, et al. Fundus albipunctatus: Novel mutations and phenotypic description of Israeli patients. Mol Vision 2012;18:1712-1718.

(68) Schatz P, Bregnhoj J, Arvidsson H, Sharon D, Mizrahi-Meissonnier L, Sander B, et al. A tapetal-like fundus reflex in a healthy male: Evidence against a role in the pathophysiology of retinal degeneration? Mol Vision 2012;18:1147-1155.

(69) Audo I, Bujakowska K, Orhan E, Poloschek CM, Defoort-Dhellemmes S, Drumare I, et al. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 2012;90(2):321-330.

(70) Estrada-Cuzcano A, Neveling K, Kohl S, Banin E, Rotenstreich Y, Sharon D, et al. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement. Am J Hum Genet 2012;90(1):102-109.

(71) Bitner H, Schatz P, Mizrahi-Meissonnier L, Sharon D, Rosenberg T. Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: Data from a national center in Denmark. Am J Ophthalmol 2012;154(2):403-412.e4.

(72) Kinori M, Pras E, Kolker A, Ferman-Attar G, Moroz I, Moisseiev J, et al. Enhanced S-cone function with preserved rod function: A new clinical phenotype. Mol Vision 2011;17:2241-2247.

(73) Özgül RK, Siemiatkowska AM, Yücel D, Myers CA, Collin RWJ, Zonneveld MN, et al. Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. Am J Hum Genet 2011;89(2):253-264.

(74) Piñeiro-Gallego T, Álvarez M, Pereiro I, Campos S, Sharon D, Schatz P, et al. Clinical evaluation of two consanguineous families with homozygous mutations in BEST1. Mol Vision 2011;17:1607-1617.

(75) Bitner H, Mizrahi-Meissonnier L, Griefner G, Erdinest I, Sharon D, Banin E. A homozygous frameshift mutation in BEST1 causes the classical form of best disease in an autosomal recessive mode. Invest Ophthalmol Vis Sci 2011;52(8):5332-5338.

(76) Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D, et al. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in ashkenazi jews. Am J Hum Genet 2011;88(2):207-215.

(77) Banin E, Bandah-Rozenfeld D, Obolensky A, Cideciyan AV, Aleman TS, Marks-Ohana D, et al. Molecular anthropology meets genetic medicine to treat blindness in the North African jewish population: Human gene therapy initiated in Israel. Hum Gene Ther 2010;21(12):1749-1757.

(78) Bandah-Rozenfeld D, Mizrahi-Meissonnier L, Farhy C, Obolensky A, Chowers I, Pe'Er J, et al. Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa. Am J Hum Genet 2010;87(3):382-391.

(79) Zelinger L, Greenberg A, Kohl S, Banin E, Sharon D. An ancient autosomal haplotype bearing a rare achromatopsia-causing founder mutation is shared among Arab Muslims and Oriental Jews. Hum Genet 2010;128(3):261-267.

(80) Schatz P, Bitner H, Sander B, Holfort S, Andreasson S, Larsen M, et al. Evaluation of macular structure and function by OCT and electrophysiology in patients with vitelliform macular dystrophy due to mutations in BEST1. Invest Ophthalmol Vis Sci 2010;51(9):4754-4765.

(81) Bandah-Rozenfeld D, Littink KW, Ben-Yosef T, Strom TM, Chowers I, Collin RWJ, et al. Novel null mutations in the EYS gene are a frequent cause of autosomal recessive retinitis pigmentosa in the Israeli population. Invest Ophthalmol Vis Sci 2010;51(9):4387-4394.

(82) Bandah-Rozenfeld D, Collin RWJ, Banin E, Ingeborgh Van Den Born L, Coene KLM, Siemiatkowska AM, et al. Mutations in IMPG2, Encoding interphotoreceptor matrix proteoglycan 2, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet 2010;87(2):199-208.

(83) Mizrahi-Meissonnier L, Merin S, Banin E, Sharon D. Variable retinal phenotypes caused by mutations in the X-linked photopigment gene array. Invest Ophthalmol Vis Sci 2010;51(8):3884-3892.

(84) Asleh SA, Lederman M, Weinstein O, Horowitz S, Meir T, Lahad A, et al. Lack of association between the C2 allele of transferrin and age-related macular degeneration in the Israeli population. Ophthalmic Genet 2009;30(4):161-164.

(85) Parry DA, Toomes C, Bida L, Danciger M, Towns KV, McKibbin M, et al. Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice. Am J Hum Genet 2009;84(5):683-691.

(86) Bandah D, Merin S, Ashhab M, Banin E, Sharon D. The spectrum of retinal diseases caused by NR2E3 mutations in Israeli and Palestinian patients. Arch Ophthalmol 2009;127(3):297-302.

(87) Auslender N, Bandah D, Rizel L, Behar DM, Shohat M, Banin E, et al. Four USH2A founder mutations underlie the majority of Usher syndrome type 2 cases among non-Ashkenazi Jews. Genet Test 2008;12(2):289-294.

(88) Ben-Shlomo G, Ofri R, Bandah D, Rosner M, Sharon D. Microarray-based gene expression analysis during retinal maturation of albino rats. Graefe's Arch Clin Exp Ophthalmol 2008;246(5):693-702.

(89) Bandah D, Rosenmann A, Blumenfeld A, Averbukh E, Banin E, Sharon D. A novel de novo PAX6 mutation in an Ashkenazi-Jewish family with aniridia. Mol Vision 2008;14:142-145.

(90) Auslender N, Sharon D, Abbasi AH, Garzozi HJ, Banin E, Ben-Yosef T. A common founder mutation of CERKL underlies autosomal recessive retinal degeneration with early macular involvement among Yemenite Jews. Invest Ophthalmol Vis Sci 2007;48(12):5431-5438.

(91) Beit-Ya'acov A, Mizrahi-Meissonnier L, Obolensky A, Landau C, Blumenfeld A, Rosenmann A, et al. Homozygosity for a novel ABCA4 founder splicing mutation is associated with progressive and severe Stargardt-like disease. Invest Ophthalmol Vis Sci 2007;48(9):4308-4314.

(92) Bandah D, Swissa T, Ben-Shlomo G, Banin E, Ofri R, Sharon D. A complex expression pattern of Pax6 in the pigeon retina. Invest Ophthalmol Vis Sci 2007;48(6):2503-2509.

(93) Banin E, Mizrahi-Meissonnier L, Neis R, Silverstein S, Magyar I, Abeliovich D, et al. A non-ancestral RPGR missense mutation in families with either recessive or semi-dominant X-linked retinitis pigmentosa. Am J Med Genet Part A 2007;143(11):1150-1158.

(94) Kaiserman N, Obolensky A, Banin E, Sharon D. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and usher syndrome type 2. Arch Ophthalmol 2007;125(2):219-224.

(95) Fishman GA, Roberts MF, Derlacki DJ, Grimsby JL, Yamamoto H, Sharon D, et al. Novel Mutations in the Cellular Retinaldehyde-Binding Protein Gene (RLBP1) Associated with Retinitis Punctata Albescens: Evidence of Interfamilial Genetic Heterogeneity and Fundus Changes in Heterozygotes. Arch Ophthalmol 2004;122(1):70-75.

(96) Sharon D, Sandberg MA, Caruso RC, Berson EL, Dryja TP. Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol 2003;121(9):1316-1323.

(97) Rivolta C, Sharon D, DeAngelis MM, Dryja TP. Erratum: Retinitis pigmentosa and allied diseases: Numerous diseases, genes and inheritance patterns (Human Molecular Genetics (2002) vol. 11 (1219-1227)). Hum Mol Genet 2003;12(5):583-584.

(98) Sharon D, Sandberg MA, Rabe VW, Stillberger M, Dryja TP, Berson EL. RP2 and RPGR Mutations and Clinical Correlations in Patients with X-Linked Retinitis Pigmentosa. Am J Hum Genet 2003;73(5):1131-1146.

(99) Sharon D, Yamamoto H, McGee TL, Rabe V, Szerencsei RT, Winkfein RJ, et al. Mutated alleles of the rod and cone Na-Ca+K- exchanger genes in patients with retinal diseases. Invest Ophthalmol Vis Sci 2002;43(6):1971-1979.

(100) Rivolta C, Sharon D, De Angelis MM, Dryja TP. Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet 2002;11(10):1219-1227.

(101) Sharon D, Blackshaw S, Cepko CL, Dryja TP. Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE). Proc Natl Acad Sci U S A 2002;99(1):315-320.

(102) Lapidot M, Pilpel Y, Gilad Y, Falcovitz A, Sharon D, Haaf T, et al. Mouse-human orthology relationships in an olfactory receptor gene cluster. Genomics 2001;71(3):296-306.

(103) Sharon D, Gilad Y, Glusman G, Khen M, Lancet D, Kalush F. Identification and characterization of coding single-nucleotide polymorphisms within a human olfactory receptor gene cluster. Gene 2000;260(1-2):87-94.

(104) Gilad Y, Segré D, Skorecki K, Nachman MW, Lancet D, Sharon D. Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat Genet 2000;26(2):221-224.

(105) Sharon D, Bruns GAP, McGee TL, Sandberg MA, Berson EL, Dryja TP. X-linked retinitis pigmentosa: Mutation spectrum of the RPGR and RP2 genes and correlation with visual function. Invest Ophthalmol Vis Sci 2000;41(9):2712-2721.

(106) Glusman G, Bahar A, Sharon D, Pilpel Y, White J, Lancet D. The olfactory receptor gene superfamily: Data mining, classification, and nomenclature. Mamm Genome 2000;11(11):1016-1023.

(107) Sharon D, Glusman G, Pilpel Y, Khen M, Gruetzner F, Haaf T, et al. Primate evolution of an olfactory receptor cluster: Diversification by gene conversion and recent emergence of pseudogenes. Genomics 1999;61(1):24-36.

(108) Sharon D, Glusman G, Pilpel Y, Horn-Saban S, Lancet D. Genome dynamics, evolution, and protein modeling in the olfactory receptor gene superfamily. Ann New York Acad Sci 1998;855:182-193.