Skip to Main Content

The Faculty of Medicine - Developmental Biology and Cancer Research: Glaser Gadi

Researchers

Last updated September 2023 - Developmental Biology and Cancer Research

List of Publications

1.

Gutiérrez R, Ram Y, Berman J, De Sousa KCM, Nachum-Biala Y, Britzi M, et al. Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis. Molecular Biology and Evolution [Internet]. 2021;38(10):4095–115. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117740130&doi=10.1093%252fmolbev%252fmsab196&partnerID=40&md5=86f18d5eabf1540c0d979cbb9a3d8614

2.

Kaspy I, Glaser G. Escherichia coli RelA Regulation via Its C-Terminal Domain. Frontiers in Microbiology [Internet]. 2020;11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096232431&doi=10.3389%252ffmicb.2020.572419&partnerID=40&md5=e6535fa8684f88f14af247ae66ff381e

3.

Chevion M, Mager J, Glaser G. Naturally occurring food toxicants: Favismproducing agents [Internet]. CRC Handbook of Naturally Occurring Food Toxicants. 2018. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990137425&doi=10.1201%252f9781351072946&partnerID=40&md5=90eb5b402928a15bfada4437ff4a8041

4.

Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nature Communications [Internet]. 2013;4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890639139&doi=10.1038%252fncomms4001&partnerID=40&md5=c1ee3007db4e4343288861eac7a4c4aa

5.

Wexselblatt E, Kaspy I, Glaser G, Katzhendler J, Yavin E. Design, synthesis and structure-activity relationship of novel Relacin analogs as inhibitors of Rel proteins. European Journal of Medicinal Chemistry [Internet]. 2013;70:497–504. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886738771&doi=10.1016%252fj.ejmech.2013.10.036&partnerID=40&md5=1cc1374ab2859e6b0d949a9b283a00d1

6.

Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, et al. Relacin, a Novel Antibacterial Agent Targeting the Stringent Response. PLoS Pathogens [Internet]. 2012;8(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866903496&doi=10.1371%252fjournal.ppat.1002925&partnerID=40&md5=bd0c2bd10fa53a9f98659c7fed62dfb0

7.

Wexselblatt E, Katzhendler J, Saleem-Batcha R, Hansen G, Hilgenfeld R, Glaser G, et al. ppGpp analogues inhibit synthetase activity of Rel proteins from Gram-negative and Gram-positive bacteria. Bioorganic and Medicinal Chemistry [Internet]. 2010;18(12):4485–97. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953134680&doi=10.1016%252fj.bmc.2010.04.064&partnerID=40&md5=172532dd1f0bad827c0b624420723051

8.

Drobnak I, Korenčič A, Loris R, Marianovsky I, Glaser G, Jamnik A, et al. Energetics of MazG Unfolding in Correlation with Its Structural Features. Journal of Molecular Biology [Internet]. 2009;392(1):63–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-68949191003&doi=10.1016%252fj.jmb.2009.05.086&partnerID=40&md5=f80110edb78779a5fbb4f9c009c75d79

9.

Gross M, Marianovsky I, Glaser G. MazG - A regulator of programmed cell death in Escherichia coli. Molecular Microbiology [Internet]. 2006;59(2):590–601. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645057206&doi=10.1111%252fj.1365-2958.2005.04956.x&partnerID=40&md5=256972db5553bed1e9d9393c8a29de0b

10.

Lah J, Šimić M, Vesnaver G, Marianovsky I, Glaser G, Engelberg-Kulka H, et al. Energetics of structural transitions of the addiction antitoxin MazE: Is a programmed bacterial cell death dependent on the intrinsically flexible nature of the antitoxins. Journal of Biological Chemistry [Internet]. 2005;280(17):17397–407. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-20444458293&doi=10.1074%252fjbc.M501128200&partnerID=40&md5=1a031c63cbf3c40963d61625138e953d

11.

Rochman M, Blot N, Dyachenko M, Glaser G, Travers A, Muskhelishvili G. Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence. Molecular Microbiology [Internet]. 2004;53(1):143–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-3142588939&doi=10.1111%252fj.1365-2958.2004.04126.x&partnerID=40&md5=9dc02ec5c8837dd2d92abdddaf0fb7a4

12.

Loris R, Marianovsky I, Lah J, Laeremans T, Engelberg-Kulka H, Glaser G, et al. Crystal structure of the intrinsically flexible addiction antidote MazE. Journal of Biological Chemistry [Internet]. 2003;278(30):28252–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0042346293&doi=10.1074%252fjbc.M302336200&partnerID=40&md5=482dd8d7af6113717cd4dde713dcadb5

13.

Lah J, Marianovsky I, Glaser G, Engelberg-Kulka H, Kinne J, Wyns L, et al. Recognition of the intrinsically flexible addiction antidote MazE by a dromedary single domain antibody fragment: Structure, thermodynamics of binding, stability, and influence on interactions with DNA. Journal of Biological Chemistry [Internet]. 2003;278(16):14101–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037515721&doi=10.1074%252fjbc.M209855200&partnerID=40&md5=b96824bac9b8d7ae38300c66ab9896d9

14.

Rochman M, Aviv M, Glaser G, Muskhelishvili G. Promoter protection by a transcription factor acting as a local topological homeostat. EMBO Reports [Internet]. 2002;3(4):355–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036251235&doi=10.1093%252fembo-reports%252fkvf067&partnerID=40&md5=047d9af31f0144ae979e696d02d28e34

15.

Sat B, Hazan R, Fisher T, Khaner H, Glaser G, Engelberg-Kulka H. Programmed cell death in Escherichia coli: Some antibiotics can trigger mazEF lethality. Journal of Bacteriology [Internet]. 2001;183(6):2041–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035108209&doi=10.1128%252fJB.183.6.2041-2045.2001&partnerID=40&md5=b2e63dfe2faf55d74becbdc133d78aff

16.

Marianovsky I, Aizenman E, Engelberg-Kulka H, Glaser G. The Regulation of the Escherichia coli mazEF Promoter Involves an Unusual Alternating Palindrome. Journal of Biological Chemistry [Internet]. 2001;276(8):5975–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035937194&doi=10.1074%252fjbc.M008832200&partnerID=40&md5=c9213677fd43222030db8d4b3debd43b

17.

Gropp M, Strausz Y, Gross M, Glaser G. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. Journal of Bacteriology [Internet]. 2001;183(2):570–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035150018&doi=10.1128%252fJB.183.2.570-579.2001&partnerID=40&md5=cfd2f2b25bfd89970844f81803bd823e

18.

Engelberg-Kulka H, Glaser G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annual Review of Microbiology [Internet]. 1999;53:43–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032696759&doi=10.1146%252fannurev.micro.53.1.43&partnerID=40&md5=1577ba83433b1ce53b120690fa7bffe1

19.

Engelberg-Kulka H, Reches M, Narasimhan S, Schoulaker-Schwarz R, Klemes Y, Aizenman E, et al. rexB of bacteriophage λ is an anti-cell death gene. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1998;95(26):15481–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032416638&doi=10.1073%252fpnas.95.26.15481&partnerID=40&md5=929742488cafaa293d400aa085e237c5

20.

Aviv M, Giladi H, Oppenheim AB, Glaser G. Analysis of the shut-off of ribosomal RNA promoters in Escherichia coli upon entering the stationary phase of growth. FEMS Microbiology Letters [Internet]. 1996;140(1):71–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029998455&doi=10.1016%2f0378-1097%2896%2900163-2&partnerID=40&md5=721fa1809deedb5e224fcad506615d63

21.

Aizenman E, Engelberg-Kulka H, Glaser G. An Escherichia coli chromosomal “addiction module” regulated by 3′,5′-bispyrophosphate: A model for programmed bacterial cell death. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1996;93(12):6059–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030008368&doi=10.1073%252fpnas.93.12.6059&partnerID=40&md5=1a32b03b37218d40da008aea3c59e225

22.

Aizenman E, Engelberg-Kulka H, Glaser G. Erratum: An Escherichia coli chromosomal “addiction module” regulated by 3’,5’-bispyrophosphate: A model for programmed bacterial cell death (Proceedings of the National Academy of Sciences of the United States of America (June 11, 1996) 93:12 (6059-6063)). Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1996;93(18):9991. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029796254&partnerID=40&md5=50239eb6eff80aa413d33275bbb339b0

23.

Schreiber G, Ron EZ, Glaser G. ppGpp-mediated regulation of DNA replication and cell division in Escherichia coli. Current Microbiology [Internet]. 1995;30(1):27–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028960079&doi=10.1007%252fBF00294520&partnerID=40&md5=3e90eed7ccc70364b6bd75a397e99dc7

24.

Gafny R, Cohen S, Nachaliel N, Glaser G. Isolated P2 rRNA promoters of Escherichia coli are strong promoters that are subject to stringent control. Journal of Molecular Biology [Internet]. 1994;243(2):152–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028019112&doi=10.1006%252fjmbi.1994.1641&partnerID=40&md5=88e93dd7cb8ee9a099b0589cb45292f6

25.

Gropp M, Eizenman E, Glaser G, Samarrai W, Rudner R. A relAS suppressor mutant allele of Bacillus subtilis which maps to relA and responds only to carbon limitation. Gene [Internet]. 1994;140(1):91–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028345832&doi=10.1016%2f0378-1119%2894%2990736-6&partnerID=40&md5=a41af76d21ae1e85012feced8458686a

26.

Aviv M, Giladi H, Schreiber G, Oppenheim AB, Glaser G. Expression of the genes coding for the Escherichia coli integration host factor are controlled by growth phase, rpoS, ppGpp and by autoregulation. Molecular Microbiology [Internet]. 1994;14(5):1021–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028149835&doi=10.1111%252fj.1365-2958.1994.tb01336.x&partnerID=40&md5=3b967bf20a3afeeaab45dcd723acda98

27.

Rahav-Manor O, Carmel O, Karpel R, Taglicht D, Glaser G, Schuldiner S, et al. NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. Journal of Biological Chemistry [Internet]. 1992;267(15):10433–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026739788&partnerID=40&md5=c4875f55b59606d078efd3a225a833e1

28.

Jones PG, Cashel M, Glaser G, Neidhardt FC. Function of a relaxed-like state following temperature downshifts in Escherichia coli. Journal of Bacteriology [Internet]. 1992;174(12):3903–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026680453&doi=10.1128%252fjb.174.12.3903-3914.1992&partnerID=40&md5=770207deda3d510caacc3ec9cd982c39

29.

Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. Residual guanosine 3’,5’-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. Journal of Biological Chemistry [Internet]. 1991;266(9):5980–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025992789&partnerID=40&md5=488cec281dad1d094dd4060edf025fbb

30.

Schreiber G, Metzger S, Aizenman E, Roza S, Cashel M, Glaser G. Overexpression of the relA gene in Escherichia coli. Journal of Biological Chemistry [Internet]. 1991;266(6):3760–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025857678&partnerID=40&md5=7efe5f72c0a8254501f034a71b48fee8

31.

Karpel R, Alon T, Glaser G, Schuldiner S, Padan E. Expression of a sodium proton antiporter (NhaA) in Escherichia coli is induced by Na+ and Li+ ions. Journal of Biological Chemistry [Internet]. 1991;266(32):21753–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025786184&partnerID=40&md5=8627f3294db2d60be2987c671638a8d8

32.

Nachaliel N, Melnick J, Gafny R, Glaser G. Ribosome associated protein(s) specifically bind(s) to the upstream activator sequence of the E. coli rrnA P1 promoter. Nucleic Acids Research [Internet]. 1989;17(23):9811–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024835891&doi=10.1093%252fnar%252f17.23.9811&partnerID=40&md5=ed217be92da1c653a1664387ab8ffd5c

33.

Metzger S, Schreiber G, Aizenman E, Cashel M, Glaser G. Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. Journal of Biological Chemistry [Internet]. 1989;264(35):21146–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024801633&partnerID=40&md5=dbe9bea631fa49330ace9ff4ddabf23b

34.

Gross SR, Levine PH, Metzger S, Glaser G. Recombination and replication of plasmid-like derivatives of a short section of the mitochondrial chromosome of Neurospora crassa. Genetics [Internet]. 1989;121(4):693–701. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024653878&partnerID=40&md5=7d9f6fb5ba9958bcb5dd56da47b4c409

35.

Metzger S, Sarubbi E, Glaser G, Cashel M. Protein sequences encoded by the relA and the spoT genes of Escherichia coli are interrelated. Journal of Biological Chemistry [Internet]. 1989;264(16):9122–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024327693&partnerID=40&md5=2ae121f64d2d1ee90ed2c0e7784ae9f5

36.

Gafny R, Hyman HC, Razin S, Glaser G. Promoters of Mycoplasma capricolum ribosomal RNA operons: Identical activities but different regulation in homologous and heterologous cells. Nucleic Acids Research [Internet]. 1988;16(1):61–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024283920&doi=10.1093%252fnar%252f16.1.61&partnerID=40&md5=ccf93dc4309ae793fbdc7a5c96dcffdb

37.

Hyman HC, Gafny R, Glaser G, Razin S. Promoter of the Mycoplasma pneumoniae rRNA operon. Journal of bacteriology [Internet]. 1988;170(7):3262–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024041570&doi=10.1128%252fjb.170.7.3262-3268.1988&partnerID=40&md5=e5fa218551ecd73d7f714d5b594cdae9

38.

Hopmeier P, Shenhav A, Glaser G, Rachmilewitz EA, Oppenheim A. A patient of german descent with (δbeta;deg;thalassemia carrying the sicilian type deletion of the δ and β globin genes. Hemoglobin [Internet]. 1988;12(1):39–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023885226&doi=10.3109%252f03630268808996881&partnerID=40&md5=a366b398742c083f4cbfc99b9f82f9ea

39.

Metzger S, Dror IB, Aizenman E, Schreiber G, Toone M, Friesen JD, et al. The nucleotide sequence and characterization of the relA gene of Escherichia coli. Journal of Biological Chemistry [Internet]. 1988;263(30):15699–704. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023736066&partnerID=40&md5=80bdd3134d2ddd9cd8ee2b17d6ff83d5

40.

Hyman HC, Gafny R, Glaser G, Razin S. Transcription control elements of the Mycoplasma pneumoniae rRNA operon. Israel journal of medical sciences [Internet]. 1987;23(6):585–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023358530&partnerID=40&md5=868d49a223e92e333375dc12ef2e90df

41.

Razin S, Nur I, Glaser G. Spiroplasma plasmids. Israel journal of medical sciences [Internet]. 1987;23(6):678–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023352525&partnerID=40&md5=c8930188c92dfd7848c6dc27d14f97c2

42.

Nur I, Glaser G, Razin S. Free and integrated plasmid DNA in spiroplasmas. Current Microbiology [Internet]. 1986;14(3):169–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022885214&doi=10.1007%252fBF01568370&partnerID=40&md5=f20543d7e43b22263889f82ebc98b9f9

43.

Qppenheim A, Karsai A, Treisman R, Fibach E, Treves A, Goldfarb A, et al. Beta-thalassemia: Analysis of mrna precursors of a mutant human globin gene with defective splicing using peripheral blood nucleated red blood cells. Hemoglobin [Internet]. 1986;10(6):573–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022878724&doi=10.3109%252f03630268609036562&partnerID=40&md5=f51a0992224e6124877b5459d9d111bc

44.

Nur I, Szyf M, Razin A, Glaser G, Rottem S. Procaryotic and eucaryotic traits of DNA methylation in spiroplasmas (Mycoplasmas). Journal of Bacteriology [Internet]. 1985;164(1):19–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022351206&partnerID=40&md5=a6ce7770395220723b2fc6c846cab39d

45.

Razin S, Amikam D, Glaser G. Mycoplasmal ribosomal RNA genes and their use as probes for detection and identification of Mollicutes. Israel Journal of Medical Sciences [Internet]. 1984;20(9):758–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021715139&partnerID=40&md5=d28a94f3d52e30a0ebb7b707ab44978d

46.

Glaser G, Amikam D, Razin S. Physical mapping of the ribosomal RNA genes of Mycoplasma capricolum. Nucleic Acids Research [Internet]. 1984;12(5):2421–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021760895&doi=10.1093%252fnar%252f12.5.2421&partnerID=40&md5=eaea91159f2a6ffe3b4a6950043164df

47.

Razin S, Gross M, Worer M, Pollack Y, Glaser G. Detection of mycoplasmas infecting cell cultures by DNA hybridization. In Vitro [Internet]. 1984;20(5):404–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021719271&doi=10.1007%252fBF02619586&partnerID=40&md5=4874ff2f15f272195362216080cf89a4

48.

Razin S, Glaser G, Amikam D. Molecular and biological features of mollicutes (mycoplasmas). Annales de l’Institut Pasteur Microbiology [Internet]. 1984;135(1):9–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021337513&doi=10.1016%2fS0769-2609%2884%2980053-8&partnerID=40&md5=bd9a0211a11635af288e3c4902fdbecf

49.

Amikam D, Glaser G, Razin S. Mycoplasmas (Mollicutes) have a low number of rRNA genes. Journal of Bacteriology [Internet]. 1984;158(1):376–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021234947&partnerID=40&md5=187c71186afec2c2c324b8240053a9e5

50.

Razin S, Barile MF, Harasawa R, Amikam D, Glaser G. Characterization of the mycoplasma genome. Yale Journal of Biology and Medicine [Internet]. 1983;56(5–6):357–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020898924&partnerID=40&md5=c8d179e3e2ba2502ebbd67505c02fbbe

51.

Glaser G, Sarmientos P, Cashel M. Functional interrelationship between two tandem E. coli ribosomal RNA promoters. Nature [Internet]. 1983;302(5903):74–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020658879&doi=10.1038%252f302074a0&partnerID=40&md5=bd91bc4dcf16a3480e139162cb1aa4e0

52.

Glaser G, Rachmilewitz E. Gene therapy. Harefuah [Internet]. 1982;103(11):316–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020453419&partnerID=40&md5=3f79885aec5d1367e25f731448e62d37

53.

Glaser G, Karsai A, Kerem H, Yarkoni S, Rachmilewitz E. Prenatal diagnosis of β-thalassemia using genetic engineering techniques. Harefuah [Internet]. 1982;103(11):293-294+336. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020262796&partnerID=40&md5=e613650485f88ecba831d3f9f81c6ede

54.

Amikam D, Razin S, Glaser G. Ribosomal RNA genes in mycoplasma. Nucleic Acids Research [Internet]. 1982;10(14):4215–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020489902&doi=10.1093%252fnar%252f10.14.4215&partnerID=40&md5=ea82a8cb7267721d45f72f511ddd0a60

55.

CHEVION M, NAVOK T, GLASER G, MAGER J. The Chemistry of Favism‐Inducing Compounds: The Properties of Isouramil and Divicine and Their Reaction with Glutathione. European Journal of Biochemistry [Internet]. 1982;127(2):405–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020400134&doi=10.1111%252fj.1432-1033.1982.tb06886.x&partnerID=40&md5=28b6a74b3e5bff86d671fa7f88bab6d7

56.

Glaser G, Razin A, Razin S. Stable RNA synthesis and its control in mycoplasma capricolum. Nucleic Acids Research [Internet]. 1981;9(15):3641–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019878166&doi=10.1093%252fnar%252f9.15.3641&partnerID=40&md5=8e150c1287dd04dce2a57e6e83e99e66

57.

Glaser G, Kobi S, Oppenheim AB. Fusion of the promoter region of rRNA operon rrnB to lac Z gene. Nucleic Acids Research [Internet]. 1980;8(19):4327–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019178095&doi=10.1093%252fnar%252f8.19.4327&partnerID=40&md5=5bb03c1ec81836aaef80087349634498

58.

Razin A, Urieli S, Pollack Y, Gruenbaum Y, Glaser G. Studies on the biological role of DNA methylation; IV. Mode of methylation of DNA in E. coli cells. Nucleic Acids Research [Internet]. 1980;8(8):1783–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018969229&doi=10.1093%252fnar%252f8.8.1783&partnerID=40&md5=ff302e6d3a90c6efc4ea081d73801de7

59.

Glaser G, Giloh H, Kasir J, Gross M, Mager J. On the mechanism of the glucose-induced ATP catabolism in ascites tumour cells and its reversal by pyruvate. Biochemical Journal [Internet]. 1980;192(3):793–800. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019133749&doi=10.1042%252fbj1920793&partnerID=40&md5=26c2a68d3aba0eff895dad9e0e955b40

60.

Faliks D, Cohen H, Glaser G, Reshef L. Cycloheximide and pactamycin inhibit the rapid decrease in translatable mRNA activity of P-enolpyruvate carboxykinase (GTP). FEBS Letters [Internet]. 1980;109(1):112–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018882246&doi=10.1016%2f0014-5793%2880%2981322-6&partnerID=40&md5=dc8d2fe731027cf959a5f0c258a71bf7

61.

Cedar H, Solage A, Glaser G, Razin A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme Mspl. Nucleic Acids Research [Internet]. 1979;6(6):2125–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018370141&doi=10.1093%252fnar%252f6.6.2125&partnerID=40&md5=82ff1b319cd1e7d350c15b19ff41e2a8

62.

Glaser G, Cashel M. In vitro transcripts from the rrn B ribosomal RNA cistron originate from two tandem promoters. Cell [Internet]. 1979;16(1):111–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018374340&doi=10.1016%2f0092-8674%2879%2990192-2&partnerID=40&md5=72e599eac916cfc9258fe9e3f748dc0f

63.

Reshef L, Faliks D, Bentor-Getter V, Glaser G. Effect of glucose feeding to fasted rats on the translational efficiency of liver cytosol phosphoenolpyruvate carboxykinase mRNA. FEBS Letters [Internet]. 1979;97(1):96–100. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018347232&doi=10.1016%2f0014-5793%2879%2980060-5&partnerID=40&md5=c4bc0e6051bc1526c0dfe1b9c2163b64

64.

Glaser G, Enquist L, Cashel M. ColE1 cloning of a ribosomal RNA promoter region from λrifd18 by selection for lambda integration and excision functions. Gene [Internet]. 1977;2(3–4):159–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017585804&doi=10.1016%2f0378-1119%2877%2990015-4&partnerID=40&md5=576eaf001a163cab627f082510c39991

65.

Glaser G, Mager J. Proceedings: Studies on fructose hepatotoxicity in intact rats and in isolated liver cells. Israel Journal of Medical Sciences [Internet]. 1975;11(11):1176. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016574706&partnerID=40&md5=ff62b3285c52bcc9381c2c09690dc8bc

66.

Glaser G, Mager J. Biochemical studies on the mechanism of action of liver poisons III. Depletion of liver glutathione in ethionine poisoning. BBA - General Subjects [Internet]. 1974;372(1):237–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016279444&doi=10.1016%2f0304-4165%2874%2990091-9&partnerID=40&md5=ae8e8b000ce35a8665bf36ff165e479b

67.

Glaser G, Mager J. Protective effect of adrenalectomy against the selective toxicity of ethionine to female rats. Israel Journal of Medical Sciences [Internet]. 1972;8(10):1754–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015408070&partnerID=40&md5=03526a15fdd59847fe7ef0750f09c16a

68.

Glaser G, Mager J. Biochemical studies on the mechanism of action of liver poisons II. Induction of fatty livers. BBA - General Subjects [Internet]. 1972;261(2):500–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015008298&doi=10.1016%2f0304-4165%2872%2990074-8&partnerID=40&md5=5bd72a4065b4a431283adf8ac7066f77

69.

Glaser G, Mager J. Biochemical studies on the mechanism of action of liver poisons I. Inhibition of protein synthesis. BBA - General Subjects [Internet]. 1972;261(2):487–99. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015007874&doi=10.1016%2f0304-4165%2872%2990073-6&partnerID=40&md5=f06a37e427c40afbc88bc6d550370e17

70.

Razin A, Hershko A, Glaser G, Mager J. The oxidant effect of isouramil on red cell glutathione and its synergistic enhancement by ascorbic acid or 3,4-dihydroxyphenylalanine. Possible relation to the pathogenesis of favism. Israel Journal of Medical Sciences [Internet]. 1968;4(4):852–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014305397&partnerID=40&md5=ef05492ea9d2167c2b61185e013efac1

71.

Mager J, Glaser G, Razin A, Izak G, Bien S, Noam M. Metabolic effects of pyrimidines derived from fava bean glycosides on human erythrocytes deficient in glucose-6-phosphate dehydrogenase. Biochemical and Biophysical Research Communications [Internet]. 1965;20(2):235–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0013846697&doi=10.1016%2f0006-291X%2865%2990352-9&partnerID=40&md5=2ec358f664b2481738dbacd8e255a0d3

72.

Razin A, Hershko A, Glaser G, Izak G, Mager J. Inhibition of hexokinase in glucose-6-phosphate dehydrogenase deficient erythrocytes by acetylphenylhydrazine. Israel Journal of Medical Sciences [Internet]. 1965;1(4):843. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-18144443060&partnerID=40&md5=0a105d38f4460a931363b8f9be673e09