Last updated September 2024 - Developmental Biology and Cancer Research
1.
Ghori A, Prinz V, Nieminen-Kehlä M, Bayerl SH, Kremenetskaia I, Riecke J, et al. Vascular Endothelial Growth Factor Augments the Tolerance Towards Cerebral Stroke by Enhancing Neurovascular Repair Mechanism. Translational Stroke Research [Internet]. 2022;13(5):774–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124769342&doi=10.1007%252fs12975-022-00991-z&partnerID=40&md5=a62b78fdfeeff5b757016f98c55de219
2.
Kumar S, Bar-Lev L, Sharife H, Grunewald M, Mogilevsky M, Licht T, et al. Identification of vascular cues contributing to cancer cell stemness and function. Angiogenesis [Internet]. 2022;25(3):355–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124099234&doi=10.1007%252fs10456-022-09830-z&partnerID=40&md5=a7c292ef052e4a1616260da0a8f50613
3.
Grunewald M, Kumar S, Sharife H, Volinsky E, Gileles-Hillel A, Licht T, et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science (New York, NY) [Internet]. 2021;373(6554). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112714761&doi=10.1126%252fscience.abc8479&partnerID=40&md5=4cd7020525f4f05895d3281168c70127
4.
Licht T, Sasson E, Bell B, Grunewald M, Kumar S, Kreisel T, et al. Hippocampal neural stem cells facilitate access from circulation via apical cytoplasmic processes. eLife [Internet]. 2020;9:1–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086681792&doi=10.7554%252feLife.52134&partnerID=40&md5=f9d1ba2f6546e63b2a19537a2c60a2f8
5.
Kumar S, Sharife H, Kreisel T, Bar-Lev L, Grunewald M, Keshet E. Isolation of Tumor Cells Based on Their Distance from Blood Vessels. Bio-protocol [Internet]. 2020;10(10). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111215438&doi=10.21769%252fBioProtoc.3628&partnerID=40&md5=b9db994b08a7582b992056bc6321b303
6.
Licht T, Kreisel T, Biala Y, Mohan S, Yaari Y, Anisimov A, et al. Age-dependent remarkable regenerative potential of the dentate gyrus provided by intrinsic stem cells. Journal of Neuroscience [Internet]. 2020;40(5):974–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078693731&doi=10.1523%252fJNEUROSCI.1010-19.2019&partnerID=40&md5=f3ae5546509930c96cd607c84afb910d
7.
Kumar S, Sharife H, Kreisel T, Mogilevsky M, Bar-Lev L, Grunewald M, et al. Intra-Tumoral Metabolic Zonation and Resultant Phenotypic Diversification Are Dictated by Blood Vessel Proximity. Cell Metabolism [Internet]. 2019;30(1):201-211.e6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067351666&doi=10.1016%252fj.cmet.2019.04.003&partnerID=40&md5=ad465eb1065e224f6dfd57e2344ef3de
8.
Kreisel T, Wolf B, Keshet E, Licht T. Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. GLIA [Internet]. 2019;67(4):594–618. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056719739&doi=10.1002%252fglia.23505&partnerID=40&md5=ee5c0691c40b2ba04946654b692b7e34
9.
Greenwald AC, Licht T, Kumar S, Oladipupo SS, Iyer S, Grunewald M, et al. VEGF expands erythropoiesis via hypoxia-independent induction of erythropoietin in noncanonical perivascular stromal cells. Journal of Experimental Medicine [Internet]. 2019;216(1):215–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059928965&doi=10.1084%252fjem.20180752&partnerID=40&md5=7b203bfa73d05c6543ade70ced604649
10.
Mogilevsky M, Shimshon O, Kumar S, Mogilevsky A, Keshet E, Yavin E, et al. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Research [Internet]. 2018;46(21):11396–404. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061126524&doi=10.1093%252fnar%252fgky921&partnerID=40&md5=f761ce1d0b8cf730cdc7edaf312d6f90
11.
Vandekeere S, Dubois C, Kalucka J, Sullivan MR, García-Caballero M, Goveia J, et al. Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. Cell Metabolism [Internet]. 2018;28(4):573-587.e13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049440606&doi=10.1016%252fj.cmet.2018.06.009&partnerID=40&md5=a94ab138bb47751078a96e516e5514f5
12.
Gamliel M, Goldman-Wohl D, Isaacson B, Gur C, Stein N, Yamin R, et al. Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies. Immunity [Internet]. 2018;48(5):951-962.e5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046652866&doi=10.1016%252fj.immuni.2018.03.030&partnerID=40&md5=b81357218cc39e6d4fff4197581ad895
13.
Fainsod-Levi T, Gershkovitz M, Völs S, Kumar S, Khawaled S, Sagiv JY, et al. Hyperglycemia Impairs Neutrophil Mobilization Leading to Enhanced Metastatic Seeding. Cell Reports [Internet]. 2017;21(9):2384–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035761355&doi=10.1016%252fj.celrep.2017.11.010&partnerID=40&md5=c15b78ced951f80962e327bd24e36050
14.
Staels W, Heremans Y, Leuckx G, Van Gassen N, Salinno C, De Groef S, et al. Conditional islet hypovascularisation does not preclude beta cell expansion during pregnancy in mice. Diabetologia [Internet]. 2017;60(6):1051–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015251714&doi=10.1007%252fs00125-017-4243-1&partnerID=40&md5=2658dc5cf7f1e43b851a234450e84057
15.
Licht T, Rothe G, Kreisel T, Wolf B, Benny O, Rooney AG, et al. VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2016;113(48):E7828–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84999208625&doi=10.1073%252fpnas.1609592113&partnerID=40&md5=710d4fa08973dcabb670727d386c41da
16.
He Z, Grunewald M, Dor Y, Keshet E. VEGF regulates relative allocation of Isl1+ cardiac progenitors to myocardial and endocardial lineages. Mechanisms of Development [Internet]. 2016;142:40–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006307464&doi=10.1016%252fj.mod.2016.10.004&partnerID=40&md5=c4b3ce30b25c3d7fba33ca432a911379
17.
Licht T, Keshet E. The vascular niche in adult neurogenesis. Mechanisms of Development [Internet]. 2015;138:56–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84983095294&doi=10.1016%252fj.mod.2015.06.001&partnerID=40&md5=05cb548424b33950ca1814da6867e3e6
18.
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, et al. State-of-the-art methods for evaluation of angiogenesis and tissue vascularization: A scientific statement from The American Heart Association. Circulation Research [Internet]. 2015;116(11):e99–132. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938520168&doi=10.1161%252fRES.0000000000000054&partnerID=40&md5=4d71c32f78703c02b98b417c75db3182
19.
Licht T, Dor-Wollman T, Ben-Zvi A, Rothe G, Keshet E. Vessel maturation schedule determines vulnerability to neuronal injuries of prematurity. Journal of Clinical Investigation [Internet]. 2015;125(3):1319–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924044302&doi=10.1172%252fJCI79401&partnerID=40&md5=687a7d46414955604259a190bef1bb5d
20.
Gordon O, He Z, Gilon D, Gruener S, Pietranico-Cole S, Oppenheim A, et al. A transgenic platform for testing drugs intended for reversal of cardiac remodeling identifies a novel 11βHSD1 inhibitor rescuing hypertrophy independently of re-vascularization. PLoS ONE [Internet]. 2014;9(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899793524&doi=10.1371%252fjournal.pone.0092869&partnerID=40&md5=2126a9adbe62260d7f13fac0f12871d1
21.
De Leu N, Heremans Y, Coppens V, Van Gassen N, Cai Y, D’Hoker J, et al. Short-term overexpression of VEGF-A in mouse beta cells indirectly stimulates their proliferation and protects against diabetes. Diabetologia [Internet]. 2014;57(1):140–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890925943&doi=10.1007%252fs00125-013-3076-9&partnerID=40&md5=1be8b21de0532e12744531724fb78f06
22.
D’Hoker J, De Leu N, Heremans Y, Baeyens L, Minami K, Ying C, et al. Conditional hypovascularization and hypoxia in islets do not overtly influence adult b-cell mass or function. Diabetes [Internet]. 2013;62(12):4165–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891819307&doi=10.2337%252fdb12-1827&partnerID=40&md5=f1bff81a9f8e829dc8d431b1921912bc
23.
Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, et al. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. Journal of Experimental Medicine [Internet]. 2013;210(12):2611–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888081111&doi=10.1084%252fjem.20120690&partnerID=40&md5=9f626bfeb9eb3306fb73ebb0cb58cf11
24.
Licht T, Keshet E. Delineating multiple functions of VEGF-A in the adult brain. Cellular and Molecular Life Sciences [Internet]. 2013;70(10):1727–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876903454&doi=10.1007%252fs00018-013-1280-x&partnerID=40&md5=40b69f183b3a78c078df42ff94af7432
25.
Gordon O, Gilon D, He Z, May D, Lazarus A, Oppenheim A, et al. Vascular endothelial growth factor-induced neovascularization rescues cardiac function but not adverse remodeling at advanced ischemic heart disease. Arteriosclerosis, thrombosis, and vascular biology [Internet]. 2012;32(7):1642–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865280454&doi=10.1161%252fATVBAHA.112.248674&partnerID=40&md5=f731edb020d1b23253c5c1e4bd31095c
26.
Hlushchuk R, Ehrbar M, Reichmuth P, Heinimann N, Styp-Rekowska B, Escher R, et al. Decrease in VEGF expression induces intussusceptive vascular pruning. Arteriosclerosis, Thrombosis, and Vascular Biology [Internet]. 2011;31(12):2836–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-81755184136&doi=10.1161%252fATVBAHA.111.231811&partnerID=40&md5=fd9850d99ded9b20116f44f77d1b4c10
27.
Lazarus A, Keshet E. Vascular endothelial growth factor and vascular homeostasis. Proceedings of the American Thoracic Society [Internet]. 2011;8(6):508–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80655128304&doi=10.1513%252fpats.201102-021MW&partnerID=40&md5=de2446809899fd91dd255f8f46478b27
28.
Magenheim J, Ilovich O, Lazarus A, Klochendler A, Ziv O, Werman R, et al. Blood vessels restrain pancreas branching, differentiation and growth. Development [Internet]. 2011;138(21):4743–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80054002188&doi=10.1242%252fdev.066548&partnerID=40&md5=cf991e83d63f3fd4b2936e573b26ffbe
29.
May D, Djonov V, Zamir G, Bala M, Safadi R, Sklair-Levy M, et al. A transgenic model for conditional induction and rescue of portal hypertension reveals a role of VEGF-mediated regulation of sinusoidal fenestrations. PLoS ONE [Internet]. 2011;6(7). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960109597&doi=10.1371%252fjournal.pone.0021478&partnerID=40&md5=4cb2ce3be79c01bb053824defedb0c91
30.
Lazarus A, Del-Moral PM, Ilovich O, Mishani E, Warburton D, Keshet E. A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways. Development [Internet]. 2011;138(11):2359–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79956320721&doi=10.1242%252fdev.060723&partnerID=40&md5=a68021821af6580f402beffed3bbb545
31.
Mayr M, May D, Gordon O, Madhu B, Gilon D, Yin X, et al. Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. Journal of Molecular and Cellular Cardiology [Internet]. 2011;50(6):982–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955650300&doi=10.1016%252fj.yjmcc.2011.02.010&partnerID=40&md5=7015588cf5cf44e86d5fac12e76c42a4
32.
Sela S, Natanson-Yaron S, Zcharia E, Vlodavsky I, Yagel S, Keshet E. Local retention versus systemic release of soluble VEGF receptor-1 are mediated by heparin-binding and regulated by heparanase. Circulation Research [Internet]. 2011;108(9):1063–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955582750&doi=10.1161%252fCIRCRESAHA.110.239665&partnerID=40&md5=11b6d5757a84a42f5d78f45bbbbaa7b5
33.
Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, et al. Reversible modulations of neuronal plasticity by VEGF. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2011;108(12):5081–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79953170934&doi=10.1073%252fpnas.1007640108&partnerID=40&md5=048519d9e394653be9e0db8472b8f1f6
34.
Jesudason EC, Keshet E, Warburton D. Entrained pulmonary clocks: Epithelium and vasculature keeping pace. American Journal of Physiology - Lung Cellular and Molecular Physiology [Internet]. 2010;299(4):L453–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957348318&doi=10.1152%252fajplung.00263.2010&partnerID=40&md5=a70d94eaf810ed2cbcf175bd404d8fd2
35.
Licht T, Eavri R, Goshen I, Shlomai Y, Mizrahi A, Keshet E. VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development [Internet]. 2010;137(2):261–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-73649124594&doi=10.1242%252fdev.039636&partnerID=40&md5=a3554e4a4214f64bc3a796e5da0eec16
36.
Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. Journal of Clinical Investigation [Internet]. 2008;118(12):3954–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-57449101121&doi=10.1172%252fJCI36682&partnerID=40&md5=a73966c0ad0c5feb96e66ab9102d3e8e
37.
Ueno S, Pease ME, Bonnet Wersinger DM, Masuda T, Vinores SA, Licht T, et al. Prolonged blockade of VEGF family members does not cause identifiable damage to retinal neurons or vessels. Journal of Cellular Physiology [Internet]. 2008;217(1):13–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-49649103814&doi=10.1002%252fjcp.21445&partnerID=40&md5=bc0c03b6db376057d52d43c47d6a0a33
38.
Sela S, Itin A, Natanson-Yaron S, Greenfield C, Goldman-Wohl D, Yagel S, et al. A novel human-specific soluble vascular endothelial growth factor receptor 1: Cell type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circulation Research [Internet]. 2008;102(12):1566–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-48249090832&doi=10.1161%252fCIRCRESAHA.108.171504&partnerID=40&md5=e3c18cea419cacaabd0665ce6a24099a
39.
May D, Gilon D, Djonov V, Itin A, Lazarus A, Gordon O, et al. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2008;105(1):282–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-38349138807&doi=10.1073%252fpnas.0707778105&partnerID=40&md5=1a749ef974f30d9da299a2394742105b
40.
Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, et al. Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Developmental Biology [Internet]. 2007;307(2):237–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34347364738&doi=10.1016%252fj.ydbio.2007.04.033&partnerID=40&md5=1021638f16b966f812c10d2dadf0559e
41.
Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine [Internet]. 2006;12(9):1065–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748440547&doi=10.1038%252fnm1452&partnerID=40&md5=4ff0ea85f9762525aebd1fb144eeecab
42.
Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S, et al. VEGF-Induced Adult Neovascularization: Recruitment, Retention, and Role of Accessory Cells (DOI:10.1016/j.cell.2005.10.036). Cell [Internet]. 2006;126(4):811. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747183738&doi=10.1016%252fj.cell.2006.08.015&partnerID=40&md5=d94a6e805de7a3d689bcb801c8442a2b
43.
Campochiaro PA, Alani R, Alitalo K, Brooks P, Caldwell R, Carmeliet P, et al. Ocular versus extraocular neovascularization: Mirror images or vague resemblances. Investigative Ophthalmology and Visual Science [Internet]. 2006;47(2):462–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33644862258&doi=10.1167%252fiovs.05-1494&partnerID=40&md5=3319b885df68cfe3bd38063fcc0a868f
44.
Del Moral PM, Sala FG, Tefft D, Shi W, Keshet E, Bellusci S, et al. VEGF-A signaling through Flk-1 is a critical facilitator of early embryonic lung epithelial to endothelial crosstalk and branching morphogenesis. Developmental Biology [Internet]. 2006;290(1):177–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-30544449814&doi=10.1016%252fj.ydbio.2005.11.022&partnerID=40&md5=1a81d24575a00d8bf4f730e31b0f57de
45.
Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S, et al. VEGF-induced adult neovascularization: Recruitment, retention, and role of accessory cells. Cell [Internet]. 2006;124(1):175–89. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-30344437303&doi=10.1016%252fj.cell.2005.10.036&partnerID=40&md5=35b70cc959d397236caafcb4c20efe59
46.
May D, Itin A, Gal O, Kalinski H, Feinstein E, Keshet E. Ero1-Lα plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: Implication for cancer. Oncogene [Internet]. 2005;24(6):1011–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-13944276380&doi=10.1038%252fsj.onc.1208325&partnerID=40&md5=0533331f53b0c343148787c1f1fafabb
47.
Porat RM, Grunewald M, Globerman A, Itin A, Barshtein G, Alhonen L, et al. Specific Induction of tie1 Promoter by Disturbed Flow in Atherosclerosis-Prone Vascular Niches and Flow-Obstructing Pathologies. Circulation Research [Internet]. 2004;94(3):394–401. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1242342715&doi=10.1161%252f01.RES.0000111803.92923.D6&partnerID=40&md5=04e2ab30442586145681d6ff58827913
48.
Keshet E. Preventing pathological regression of blood vessels. Journal of Clinical Investigation [Internet]. 2003;112(1):27–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0041803035&doi=10.1172%252fJCI200319093&partnerID=40&md5=d1232b85fb1f5c25f22b23208b38a439
49.
Dor Y, Klewer SE, McDonald JA, Keshet E, Camenisch TD. VEGF modulates early heart valve formation. Anatomical Record - Part A Discoveries in Molecular, Cellular, and Evolutionary Biology [Internet]. 2003;271(1):202–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0042576951&doi=10.1002%252far.a.10026&partnerID=40&md5=4a8dde746d65a63d40ca650843b12cad
50.
Dor Y, Djonov V, Keshet E. Making vascular networks in the adult: Branching morphogenesis without a roadmap. Trends in Cell Biology [Internet]. 2003;13(3):131–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037334338&doi=10.1016%2fS0962-8924%2803%2900022-9&partnerID=40&md5=495e5d2f62c7235381bfb9991e1647a6
51.
Dor Y, Djonov V, Keshet E. Induction of vascular networks in adult organs: Implications to proangiogenic therapy. Annals of the New York Academy of Sciences [Internet]. 2003;995:208–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038806411&doi=10.1111%252fj.1749-6632.2003.tb03224.x&partnerID=40&md5=2c901219ff7661fd20242f3e62ae5e0f
52.
Nilsen-Hamilton M, Werb Z, Keshet E. Tissue remodeling: Preface. Annals of the New York Academy of Sciences [Internet]. 2003;995:ix–xii. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038129645&doi=10.1111%252fj.1749-6632.2003.tb03204.x&partnerID=40&md5=522bee80c530f756ca92573808309d5d
53.
Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A. Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1α expression under normoxia. Journal of Biological Chemistry [Internet]. 2002;277(45):42919–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037044578&doi=10.1074%252fjbc.M206141200&partnerID=40&md5=fa991aa0ae0207d62c4d9af87e705661
54.
Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, et al. Erratum: Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice (Nature Medicine (2002) 8 (702-710)). Nature Medicine [Internet]. 2002;8(11):1329. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-18744403942&doi=10.1038%252fnm1102-1329a&partnerID=40&md5=26f4addee5e043a9fde2749e0ab471b3
55.
Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Molecular and Cellular Biology [Internet]. 2002;22(7):2283–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036118562&doi=10.1128%252fMCB.22.7.2283-2293.2002&partnerID=40&md5=546204cd817ba62b2bfcb61e9547253f
56.
Upalakalin JN, Hemo I, Dehio C, Keshet E, Benjamin LE. Survival mechanisms of VEGF and PIGF during microvascular remodeling. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 2002;67:181–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038801369&doi=10.1101%252fsqb.2002.67.181&partnerID=40&md5=83c2ce5cae3af098b3570e8b8f69ee98
57.
Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nature Medicine [Internet]. 2002;8(7):702–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035983324&doi=10.1038%252fnm721&partnerID=40&md5=c1762830fa54b50efee3b9928a10b754
58.
Chowers I, Banin E, Hemo Y, Porat R, Falk H, Keshet E, et al. Gene transfer by viral vectors into blood vessels in a rat model of retinopathy of prematurity. British Journal of Ophthalmology [Internet]. 2001;85(8):991–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034895201&doi=10.1136%252fbjo.85.8.991&partnerID=40&md5=211cd88080c463e62ac0851505c5df76
59.
Leker RR, Teichner A, Ovadia H, Keshet E, Reinherz E, Ben-Hur T. Expression of endothelial nitric oxide synthase in the ischemic penumbra: Relationship to expression of neuronal nitric oxide synthase and vascular endothelial growth factor. Brain Research [Internet]. 2001;909(1–2):1–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035800586&doi=10.1016%2fS0006-8993%2801%2902561-6&partnerID=40&md5=ce8b6b2d48d55287728f8c73cbc68771
60.
Dor Y, Camenisch TD, Itin A, Fishman GI, McDonald JA, Carmeliet P, et al. A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development [Internet]. 2001;128(9):1531–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034985151&partnerID=40&md5=bda457025d85141e2c0fa2fc6491073e
61.
Keshet E. More weapons in the arsenal against ischemic retinopathy. Journal of Clinical Investigation [Internet]. 2001;107(8):945–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035045069&doi=10.1172%252fJCI12704&partnerID=40&md5=207f433cd17fefe9685e5e4aec5fc841
62.
Dor Y, Porat R, Keshet E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. American Journal of Physiology - Cell Physiology [Internet]. 2001;280(6 49-6):C1367–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034979159&doi=10.1152%252fajpcell.2001.280.6.c1367&partnerID=40&md5=d135574616562ebc865ff2b487dd3706
63.
Zhang Y, Porat RM, Alon T, Keshet E, Stone J. Tissue oxygen levels control astrocyte movement and differentiation in developing retina. Developmental Brain Research [Internet]. 1999;118(1–2):135–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033430149&doi=10.1016%2fS0165-3806%2899%2900140-6&partnerID=40&md5=7ebd75283f58c31c927df9656a8acbd3
64.
Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Medicine [Internet]. 1999;5(10):1135–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032826035&doi=10.1038%252f13459&partnerID=40&md5=3a5b82507f129a226cd0d216e54e9772
65.
Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. Journal of Clinical Investigation [Internet]. 1999;103(2):159–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032952010&doi=10.1172%252fJCI5028&partnerID=40&md5=b10348845a60b0a697dc16ffcc9d2c0c
66.
Keshet E, Ben-Sasson SA. Anticancer drug targets: Approaching angiogenesis. Journal of Clinical Investigation [Internet]. 1999;104(11):1497–501. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033454716&doi=10.1172%252fJCI8849&partnerID=40&md5=29ce35e4e57f5cc0eb72873eb9a5921f
67.
Jain RK, Safabakhsh N, Sckell A, Chen Y, Jiang P, Benjamin L, et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: Role of vascular endothelial growth factor. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1998;95(18):10820–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032169018&doi=10.1073%252fpnas.95.18.10820&partnerID=40&md5=b00eff28432343fe436cb65a4f4ba96e
68.
Bacharach E, Itin A, Keshet E. Apposition-dependent induction of plasminogen activator inhibitor type 1 expression: A mechanism for balancing pericellular proteolysis during angiogenesis. Blood [Internet]. 1998;92(3):939–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032147026&doi=10.1182%252fblood.v92.3.939.415k28_939_945&partnerID=40&md5=d35d12e28fca8273e42cd7d10ec93bf1
69.
Carmeliet P, Dor Y, Herber JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1α in hypoxiamediated apoptosis, cell proliferation and tumour angiogenesis. Nature [Internet]. 1998;394(6692):485–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032581277&doi=10.1038%252f28867&partnerID=40&md5=62f069d77dc15ba989e2a44ef15cb0ff
70.
Abramovitch R, Neeman M, Reich R, Stein I, Keshet E, Abraham J, et al. Intercellular communication between vascular smooth muscle and endothelial cells mediated by heparin-binding epidermal growth factor-like growth factor and vascular endothelial growth factor. FEBS Letters [Internet]. 1998;425(3):441–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032478654&doi=10.1016%2fS0014-5793%2898%2900283-X&partnerID=40&md5=4df492b654db5e3e970fe4c9784aa7db
71.
Pe’er J, Folberg R, Itin A, Gnessin H, Hemo I, Keshet E. Vascular endothelial growth factor upregulation in human central retinal vein occlusion. Ophthalmology [Internet]. 1998;105(3):412–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031940281&doi=10.1016%2fS0161-6420%2898%2993020-2&partnerID=40&md5=42f9539a9e53dc4e20052e48f2b5c057
72.
Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: Implications for translation under hypoxia. Molecular and Cellular Biology [Internet]. 1998;18(6):3112–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031869662&doi=10.1128%252fMCB.18.6.3112&partnerID=40&md5=913c03e2e8562c73e6a8a93473884b0c
73.
Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development [Internet]. 1998;125(9):1591–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031834239&partnerID=40&md5=c8e5b6b36e0255bd73c0f812a148e2d4
74.
Schiffenbauer YS, Abramovitch R, Meir G, Nevo N, Holzinger M, Itin A, et al. Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1997;94(24):13203–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030667034&doi=10.1073%252fpnas.94.24.13203&partnerID=40&md5=0a19a5091f4f12cf8094dcd772c5e0c3
75.
Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: Induction of endothelial cell shedding and regression of hemangioblastoma-like vessels bv VEGF withdrawal. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1997;94(16):8761–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030806273&doi=10.1073%252fpnas.94.16.8761&partnerID=40&md5=b2dba4c863c592d646946a2a83dfa8c8
76.
Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. Journal of Biological Chemistry [Internet]. 1997;272(11):7151–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030614869&doi=10.1074%252fjbc.272.11.7151&partnerID=40&md5=00ab1edaaa470c66e68d4f013e68e8e0
77.
Pe’er J, Neufeld M, Baras M, Gnessin H, Itin A, Keshet E. Rubeosis iridis in retinoblastoma: Histologic findings and the possible role of vascular endothelial growth factor in its induction. Ophthalmology [Internet]. 1997;104(8):1251–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031472967&doi=10.1016%2fs0161-6420%2897%2930150-x&partnerID=40&md5=ce0a18352ec490f5b82602105ae34dcf
78.
Dor Y, Keshet E. Ischemia-driven angiogenesis. Trends in Cardiovascular Medicine [Internet]. 1997;7(8):289–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030712335&doi=10.1016%2fS1050-1738%2897%2900091-1&partnerID=40&md5=a3efc95e5fb433dcc4603e226ffddd91
79.
Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E. Development of the human retinal vasculature: Cellular relations and VEGF expression. Experimental Eye Research [Internet]. 1997;65(4):555–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030668663&doi=10.1006%252fexer.1997.0365&partnerID=40&md5=26f35e56461203825d11a0b2936e15bb
80.
Hemo I, Pe’er J, Alon T, Itin A, Stone J, Keshet E. Studies on the mechanism of vessel regression in a rat model of ROP. Investigative Ophthalmology and Visual Science [Internet]. 1996;37(3):S132. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750170723&partnerID=40&md5=bad7f73474d824bc3ba3a09e035b3e83
81.
Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Investigative Ophthalmology and Visual Science [Internet]. 1996;37(2):290–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030044257&partnerID=40&md5=bb42df3680445af7c2ea0e6da737cf1d
82.
Pe’er J, Folberg R, Itin A, Gnessin H, Hemo I, Keshet E. Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy. British Journal of Ophthalmology [Internet]. 1996;80(3):241–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029920567&doi=10.1136%252fbjo.80.3.241&partnerID=40&md5=cc0799c2dd9d3df99cb3ad85c9fc3bf4
83.
Shweiki D, Neeman M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: Implications for tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1995;92(3):768–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028870050&doi=10.1073%252fpnas.92.3.768&partnerID=40&md5=94a6fcc6a1a0637442c5b0109cba0d38
84.
Stein I, Neeman M, Shweiki D, Itin A, Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Molecular and Cellular Biology [Internet]. 1995;15(10):5363–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029082384&doi=10.1128%252fMCB.15.10.5363&partnerID=40&md5=4448a970686a653691a347bae5be28e9
85.
Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. Journal of Neuroscience [Internet]. 1995;15(7 I):4738–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029074024&doi=10.1523%252fjneurosci.15-07-04738.1995&partnerID=40&md5=eb99c04103680b734b5c06b64618fe26
86.
Weil M, Itin A, Keshet E. A role for mesenchyme-derived tachykinins in tooth and mammary gland morphogenesis. Development [Internet]. 1995;121(8):2419–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029023205&partnerID=40&md5=62b7a204549f55130be93fddd18b16ee
87.
Pe’er J, Shweiki D, Itin A, Hemo I, Gnessin H, Keshet E. Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Laboratory Investigation [Internet]. 1995;72(6):638–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029018364&partnerID=40&md5=8137d5bd8a41c364eb2a235a4fd37240
88.
Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Medicine [Internet]. 1995;1(10):1024–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028803509&doi=10.1038%252fnm1095-1024&partnerID=40&md5=3d3d6f40dbd0a12765688df559a93f34
89.
Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: Implications for coronary angiogenesis. Cardiovascular Research [Internet]. 1994;28(8):1176–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028030470&doi=10.1093%252fcvr%252f28.8.1176&partnerID=40&md5=d5960c50d4d479d54e0739084937d800
90.
Schiff R, Arensburg J, Itin A, Keshet E, Orly J. Expression and cellular localization of uterine side-chain cleavage cytochrome p450 messenger ribonucleic acid during early pregnancy in mice. Endocrinology [Internet]. 1993;133(2):529–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027248981&doi=10.1210%252fendo.133.2.8344198&partnerID=40&md5=886658c482049836fbb27e223480aad8
91.
Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. Journal of Clinical Investigation [Internet]. 1993;91(5):2235–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027241752&doi=10.1172%252fJCI116450&partnerID=40&md5=c80d97bbc7406e07c900826e134298bf
92.
Bacharach E, Itin A, Keshet E. In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1992;89(22):10686–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026443723&doi=10.1073%252fpnas.89.22.10686&partnerID=40&md5=311d04378d912d355220ca2371af5f4c
93.
Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature [Internet]. 1992;359(6398):843–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026485002&doi=10.1038%252f359843a0&partnerID=40&md5=a5489000dad523d91acb589ea2beb6f5
94.
Keshet E, Schlff R, Itin A. Mouse retrotransposons: A cellular reservoir of long terminal repeat (LTR) elements with diverse transcriptional specificities. Advances in Cancer Research [Internet]. 1991;56(C):215–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026096543&doi=10.1016%2fS0065-230X%2808%2960482-0&partnerID=40&md5=2df5535ca452302aa9952afa69c4c0e1
95.
Schiff R, Itin A, Keshet E. Transcriptional activation of mouse retrotransposons in vivo: Specific expression in steroidogenic cells in response to trophic hormones. Genes and Development [Internet]. 1991;5(4):521–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025877254&doi=10.1101%252fgad.5.4.521&partnerID=40&md5=3ed58b634157ca8bcc2bd2386e3fa404
96.
Keshet E, Lyman SD, Williams DE, Anderson DM, Jenkins NA, Copeland Parada NGLF. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO Journal [Internet]. 1991;10(9):2425–35. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025850522&doi=10.1002%252fj.1460-2075.1991.tb07782.x&partnerID=40&md5=658d5ef6380d3fae337d3e1914cbd145
97.
Naveh-Many T, Marx R, Keshet E, Pike JW, Silver J. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. Journal of Clinical Investigation [Internet]. 1990;86(6):1968–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025695162&doi=10.1172%252fJCI114931&partnerID=40&md5=fe7aee55542c3b420bd0a90294977133
98.
Motro B, Itin A, Sachs L, Keshet E. Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1990;87(8):3092–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025212688&doi=10.1073%252fpnas.87.8.3092&partnerID=40&md5=05c644a90e3f99fc09c57365a398c467
99.
Keshet E, Itin A, Fischman K, Nir U. The testis-specific transcript (ferT) of the tyrosine kinase FER is expressed during spermatogenesis in a stage-specific manner. Molecular and Cellular Biology [Internet]. 1990;10(9):5021–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025161207&doi=10.1128%252fMCB.10.9.5021&partnerID=40&md5=87cda6f568dce7b606f6c8cee812661a
100.
Rosen H, Itin A, Schiff R, Keshet E. Local regulation within the female reproductive system and upon embryonic implantation: Identification of cells expressing proenkephalin A. Molecular Endocrinology [Internet]. 1990;4(1):146–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025141601&doi=10.1210%252fmend-4-1-146&partnerID=40&md5=6abe3ca7112fe7a49f06c1e204e5a006
101.
Keshet E, Polakiewicz RD, Itin A, Ornoy A, Rosen H. Proenkephalin A is expressed in mesodermal lineages during organogenesis. EMBO Journal [Internet]. 1989;8(10):2917–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024387169&doi=10.1002%252fj.1460-2075.1989.tb08441.x&partnerID=40&md5=001833ee66ec744cf1ff667fa4f3c837
102.
Lock LF, Keshet E, Gilbert DJ, Jenkins NA, Copeland NG. Studies of the mechanism of spontaneous germline ecotropic provirus acquisition in mice. The EMBO journal [Internet]. 1988;7(13):4169–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024293485&doi=10.1002%252fj.1460-2075.1988.tb03313.x&partnerID=40&md5=48d38d3ad5228b8f9b7757c0ea838e79
103.
Keshet E, Rosenberg MP, Mercer JA, Propst F, Vande Woude GF, Jenkins NA, et al. Developmental regulation of ovarian-specific Mos expression. Oncogene [Internet]. 1988;2(3):235–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023852006&partnerID=40&md5=89f1bb354a4af5295ae5a52817601095
104.
Rotman G, Itin A, Keshet E. Promoter and enhancer activities of long terminal repeats associated with cellular retrovirus-like (VL30) elements. Nucleic Acids Research [Internet]. 1986;14(2):645–58. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023055852&doi=10.1093%252fnar%252f14.2.645&partnerID=40&md5=d303cfe8110db49cbcb3a65dee8d2740
105.
Itin A, Keshet E. Diverse long terminal repeats are associated with murine retroviruslike (VL30) elements. Molecular and Cellular Biology [Internet]. 1986;6(4):1276–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022651285&doi=10.1128%252fMCB.6.4.1276&partnerID=40&md5=2f10687395acea82e9ca9d497ebf43db
106.
Itin A, Keshet E. A novel retroviruslike family in mouse DNA. Journal of Virology [Internet]. 1986;59(2):301–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022477121&doi=10.1128%252fjvi.59.2.301-307.1986&partnerID=40&md5=794ac00e5a960511e6281d788f9af418
107.
Itin A, Keshet E. Primer binding sites correponding to several tRNA species are present in DNAs of different members of the same retrovirus-like gene family (VL30). Journal of Virology [Internet]. 1985;53(4):236–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022053711&partnerID=40&md5=5ccbd1578c75432f9d1df3dbef5f7ced
108.
Rotman G, Itin A, Keshet E. “solo” large terminal repeats (LTR) of an endogenous retrovirus-like gene family (VL30) in the mouse genome. Nucleic Acids Research [Internet]. 1984;12(5):2273–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021760919&doi=10.1093%252fnar%252f12.5.2273&partnerID=40&md5=9311f32a3a7a92164757f05e391144c2
109.
Tur‐Kaspa R, Keshet E, Eliakim M, Shouval D. Detection and characterization of hepatitis B virus DNA in serum of HBe antigen‐negative HBsAg carriers. Journal of Medical Virology [Internet]. 1984;14(1):17–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021278794&doi=10.1002%252fjmv.1890140104&partnerID=40&md5=59e07ee2c50ba3984f33f623f8e2aaac
110.
Itin A, Keshet E. Apparent recombinants between virus-like (VL30) and murine leukemia virus-related sequences in mouse DNA. Journal of Virology [Internet]. 1983;47(1):178–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020609074&doi=10.1128%252fjvi.47.1.178-184.1983&partnerID=40&md5=951143f0aeceed505d7befd6e7652bfb
111.
Itin A, Keshet E. Nucleotide sequence analysis of the long terminal repeat of murine virus-like DNA (VL30) and its adjacent sequences: Resemblance to retrovirus proviruses. Journal of Virology [Internet]. 1983;47(3):656–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020603376&doi=10.1128%252fjvi.47.3.656-659.1983&partnerID=40&md5=0362785829208e6e20a2b984395c1c89
112.
Itin A, Rotman G, Keshet E. Conservation patterns of mouse “virus-like” (VL30) DNA sequences. Virology [Internet]. 1983;127(2):374–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020559994&doi=10.1016%2f0042-6822%2883%2990151-4&partnerID=40&md5=502b1a892f9b231240ce34ee13d65963
113.
Keshet E, Itin A. Patterns of genomic distribution ans sequence heterogeneity of a murine “retrovirus-like” multigene family. Journal of Virology [Internet]. 1982;43(1):50–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019957598&doi=10.1128%252fjvi.43.1.50-58.1982&partnerID=40&md5=bf6dfa762a877eb5be7dd2be29000ed8
114.
Rosner A, Keshet E, Gutstein R, Aviv H. Expression of a cloned bovine growth hormone gene in Escherichia coli minicells. Canadian Journal of Biochemistry [Internet]. 1982;60(5):521–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019898980&doi=10.1139%252fo82-063&partnerID=40&md5=b24eba27ab2d3c190c3c8ed1380a335c
115.
Keshet E, Shaul Y. Terminal direct repeats in a retrovirus-like repeated mouse gene family. Nature [Internet]. 1981;289(5793):83–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019363877&doi=10.1038%252f289083a0&partnerID=40&md5=14a318f02c335062de172b6d058aecb9
116.
Keshet E, Rosner A, Bernstein Y, Gorecki M, Aviv H. Cloning of bovine growth hormone gene and its expression in bacteria. Nucleic Acids Research [Internet]. 1981;9(1):19–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019423748&doi=10.1093%252fnar%252f9.1.19&partnerID=40&md5=91fe45580557c8c4b5d4a1278921ce2c
117.
Mory YY, Keshet E, Ram D, Kaminchik Y. Analysis of mouse embryonic gene library for the frequency of single and multiple copy genes. Molecular Biology Reports [Internet]. 1980;6(4):203–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019336908&doi=10.1007%252fBF00777525&partnerID=40&md5=228da24b300fd7559122e944c590e8e8
118.
Keshet E, Shaul Y, Kaminchik J, Aviv H. Heterogeneity of “virus-like” genes encoding retrovirus-associated 30S RNA and their organization within the mouse genome. Cell [Internet]. 1980;20(2):431–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018850579&doi=10.1016%2f0092-8674%2880%2990629-7&partnerID=40&md5=2555a5b42ce6c30fbe3a4fc1b4e3c4e4
119.
Temin HM, Keshet E, Weller SK. Correlation of transient accumulation of linear unintegrated viral DNA and transient cell killing by avian leukosis and reticuloendotheliosis viruses. Symposia on Quantitative Biology [Internet]. 1979;44(2):773–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018732940&partnerID=40&md5=1ce277401515328db978da749b056533
120.
Keshet E, Temin HM. Cell killing by spleen necrosis virus is correlated with a transient accumulation of spleen necrosis virus DNA. Journal of Virology [Internet]. 1979;31(2):376–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018757063&doi=10.1128%252fjvi.31.2.376-388.1979&partnerID=40&md5=02412be8a15c508724d87b16f212497e
121.
Keshet E, O’Rear JJ, Temin HM. DNA of noninfectious and infectious integrated spleen necrosis virus (SNV) is colinear with unintegrated SNV DNA and not grossly abnormal. Cell [Internet]. 1979;16(1):51–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018419045&doi=10.1016%2f0092-8674%2879%2990187-9&partnerID=40&md5=1a451b49d979b1441844719a5af91261
122.
Keshet E, Temin HM. Sites of integration of reticuloendotheliosis virus DNA in chicken DNA. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1978;75(7):3372–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018100932&doi=10.1073%252fpnas.75.7.3372&partnerID=40&md5=eaa9650a56097acf4a000ad0e956e94c
123.
Keshet (baksht) E, Gal A, Groot ND, Hochberg AA, Sprinzl M, Cramer F. Properties of phenylalanine transfer ribonucleic acid with modified 3′-terminal end in protein biosynthesis using a rabbit reticulocyte cell-free system: Effect of the replacement of cytidine residues from the CpCpA end of tRNA by 5-iodocytidine or 2-thiocytidine. Nucleic Acids Research [Internet]. 1977;4(7):2205–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017372893&doi=10.1093%252fnar%252f4.7.2205&partnerID=40&md5=7305ed6ab280a2007189e4ad6cdfab76
124.
Keshet E, Temin HM. Nucleotide sequences derived from pheasant DNA in the genome of recombinant avian leukosis viruses with subgroup F specificity. Journal of Virology [Internet]. 1977;24(2):505–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017692503&doi=10.1128%252fjvi.24.2.505-513.1977&partnerID=40&md5=7c7b95eb9f4c7b3e7191b7d5c0c728b8