Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

The Faculty of Medicine - Biochemistry and Molecular Biology: Ravid Shosh

Researchers

 Last updated June 2021 - School of Pharmacy

List of Publications

(1) Abedrabbo M, Ravid S. Scribble, Lgl1, and myosin II form a complex in vivo to promote directed cell migration. Mol Biol Cell 2020;31(20):2234-2248.

(2) Babkoff A, Cohen-Kfir E, Aharon H, Ronen D, Rosenberg M, Wiener R, et al. A direct interaction between survivin and myosin II is required for cytokinesis. J Cell Sci 2019;132(14).

(3) Petrov D, Dahan I, Cohen-Kfir E, Ravid S. aPKCζ affects directed cell migration through the regulation of myosin light chain phosphorylation. Cell Adhesion Migr 2017;11(4):347-359.

(4) Rosenberg, Shalev, Rosenberg, Rotem, Friedler, Ravid. Erratum:The positively charged region of the myosin IIC non-helical tailpiece promotes filament assembly (Journal of Biological Chemistry (2010) 285 (7079-7086) (DOI:10.1074/jbc.A109.049221)). J Biol Chem 2015;290(15):9362.

(5) Ravid S. The tumor suppressor Lgl1 regulates front-rear polarity of migrating cells. Cell Adhesion Migr 2014;8(4):378-383.

(6) Dahan I, Petrov D, Cohen-Kfir E, Ravid S. The tumor suppressor Lgl1 forms discrete complexes with NMII-A and Par6α-aPKCζ that are affected by Lgl1 phosphorylation. J Cell Sci 2014;127(2):295-304.

(7) Rosenberg MM, Ronen D, Lahav N, Nazirov E, Ravid S, Friedler A. High resolution characterization of myosin IIC protein tailpiece and its effect on filament assembly. J Biol Chem 2013;288(14):9779-9789.

(8) Dahan I, Yearim A, Touboul Y, Ravid S. The tumor suppressor Lgl1 regulates NMII-A cellular distribution and focal adhesion morphology to optimize cell migration. Mol Biol Cell 2012;23(4):591-601.

(9) Ronen D, Rosenberg MM, Shalev DE, Rosenberg M, Rotem S, Friedler A, et al. The positively charged region of the myosin IIC non-helical tailpiece promotes filament assembly. J Biol Chem 2010;285(10):7079-7086.

(10) Ronen D, Ravid S. Myosin II tailpiece determines its paracrystal structure, filament assembly properties, and cellular localization. J Biol Chem 2009;284(37):24948-24957.

(11) Arora PD, Conti MA, Ravid S, Sacks DB, Kapus A, Adelstein RS, et al. Rap1 activation in collagen phagocytosis is dependent on nonmuscle myosin II-A. Mol Biol Cell 2008;19(12):5032-5046.

(12) Rosenberg M, Straussmann R, Ben-Yaácov A, Ronen D, Ravid S. MHC-IIB filament assembly and cellular localization are governed by the rod net charge. PLoS ONE 2008;3(1).

(13) Straussman R, Ben-Ya'acov A, Woolfson DN, Ravid S. Kinking the Coiled Coil - Negatively Charged Residues at the Coiled-coil Interface. J Mol Biol 2007;366(4):1232-1242.

(14) Even-Faitelson L, Ravid S. PAK1 and aPKCζ regulate myosin II-B phosphorylation: A novel signaling pathway regulating filament assembly. Mol Biol Cell 2006;17(7):2869-2881.

(15) Rosenberg M, Ravid S. Protein kinase Cγ regulates myosin IIB phosphorylation, cellular localization, and filament assembly. Mol Biol Cell 2006;17(3):1364-1374.

(16) Straussman R, Squire JM, Ben-Ya'acov A, Ravid S. Skip residues and charge interactions in myosin II coiled-coils: Implications for molecular packing. J Mol Biol 2005;353(3):613-628.

(17) Even-Faitelson L, Rosenberg M, Ravid S. PAK1 regulates myosin II-B phosphorylation, filament assembly, localization and cell chemotaxis. Cell Signal 2005;17(9):1137-1148.

(18) Ben-Ya'acov A, Ravid S. Epidermal growth factor-mediated transient phosphorylation and membrane localization of myosin II-B are required for efficient chemotaxis. J Biol Chem 2003;278(41):40032-40040.

(19) Rubin H, Ravid S. Polarization of myosin II heavy chain-protein kinase C in chemotaxing Dictyostelium cells. J Biol Chem 2002;277(39):36005-36008.

(20) Straussman R, Even L, Ravid S. Myosin II heavy chain isoforms are phosphorylated in an EGF-dependent manner: Involvement of protein kinase C. J Cell Sci 2001;114(16):3047-3057.

(21) Dembinsky A, Rubin H, Ravid S. Autophosphorylation of Dictyostelium myosin II heavy chain-specific protein kinase C is required for its activation and membrane dissociation. J Biol Chem 1997;272(2):828-834.

(22) Matto-Yelin M, Aitken A, Ravid S. 14-3-3 inhibits the Dictyostelium myosin II heavy-chain, specific protein kinase C activity by a direct interaction: Identification of the 14- 3-3 binding domain. Mol Biol Cell 1997;8(10):1889-1899.

(23) Abu-Elneel K, Karchi M, Ravid S. Dictyostelium myosin II is regulated during chemotaxis by a novel protein kinase C. J Biol Chem 1996;271(2):977-984.

(24) Wang Y, Rubin H, Ravid S. Dictyostelium protein kinase C-delta-like protein is localized in the cell nucleus. Biol Cell 1996;86(2-3):103-109.

(25) Dembinsky A, Rubin H, Ravid S. Chemoattractant-mediated increases in cGMP induce changes in Dictyostelium myosin II heavy chain-specific protein kinase C activities. J Cell Biol 1996;134(4):911-921.

(26) Ravid S, Spudich JA. Membrane-bound Dictyostelium myosin heavy chain kinase: A developmentally regulated substrate-specific member of the protein kinase C family. Proc Natl Acad Sci U S A 1992;89(13):5877-5881.

(27) Tan JL, Ravid S, Spudich JA. Control of nonmuscle myosins by phosphorylation. ANNU REV BIOCHEM 1992;61:721-759.

(28) O'Halloran TJ, Ravid S, Spudich JA. Expression of Dictyostelium myosin tail segments in Escherichia coli: Domains required for assembly and phosphorylation. J Cell Biol 1990;110(1):63-70.

(29) Ravid S, Spudich JA. Myosin heavy chain kinase from developed Dictyostelium cells. Purification and characterization. J Biol Chem 1989;264(25):15144-15150.

(30) Pasternak C, Flicker PF, Ravid S, Spudich JA. Intermolecular versus intramolecular interactions of Dictyostelium myosin: possible regulation by heavy chain phosphorylation. J Cell Biol 1989;109(1):203-210.