Skip to Main Content

The Faculty of Medicine - Immunology and Cancer Research: Naor David

Researchers

Last updated September 2023 -  Immunology and Cancer Research

List of Publications

1.

Hemed-Shaked M, Cowman MK, Kim JR, Huang X, Chau E, Ovadia H, et al. MTADV 5-MER peptide suppresses chronic inflammations as well as autoimmune pathologies and unveils a new potential target-Serum Amyloid A. Journal of Autoimmunity [Internet]. 2021;124. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112376183&doi=10.1016%252fj.jaut.2021.102713&partnerID=40&md5=53049b148efb228ffab48f2b976b4ce1

2.

Murai T, Kawashima H, Naor D. Editorial: Cell-Cell and Cell-Matrix Adhesion in Immunobiology and Cancer. Frontiers in Immunology [Internet]. 2020;10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079107898&doi=10.3389%252ffimmu.2019.03126&partnerID=40&md5=71bb968289adad8bcae67692fb627ead

3.

Beider K, Naor D, Voevoda V, Ostrovsky O, Bitner H, Rosenberg E, et al. Dissecting the mechanisms involved in anti-human T-lymphocyte immunoglobulin (ATG)-induced tolerance in the setting of allogeneic stem cell transplantation - potential implications for graft versus host disease. Oncotarget [Internet]. 2017;8(53):90748–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032699792&doi=10.18632%252foncotarget.21797&partnerID=40&md5=b413a07ad127d62b606abe6a2bc878d9

4.

Pinner E, Gruper Y, Ben Zimra M, Kristt D, Laudon M, Naor D, et al. CD44 Splice Variants as Potential Players in Alzheimer’s Disease Pathology. Journal of Alzheimer’s Disease [Internet]. 2017;58(4):1137–49. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021260281&doi=10.3233%252fJAD-161245&partnerID=40&md5=a59ed64f78ef23e45c0e7f1adaee8387

5.

Barzilay R, Ventorp F, Segal-Gavish H, Aharony I, Bieber A, Dar S, et al. CD44 Deficiency Is Associated with Increased Susceptibility to Stress-Induced Anxiety-like Behavior in Mice. Journal of Molecular Neuroscience [Internet]. 2016;60(4):548–58. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987643807&doi=10.1007%252fs12031-016-0835-3&partnerID=40&md5=8175af0a02b4ea39de2f3956d4aeedbe

6.

Naor D. Editorial: Interaction between hyaluronic acid and its receptors (CD44, RHAMM) regulates the activity of inflammation and cancer. Frontiers in Immunology [Internet]. 2016;7(FEB). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962552024&doi=10.3389%252ffimmu.2016.00039&partnerID=40&md5=f9144ee4424843316bf442218bb0d122

7.

Assayag-Asherie N, Sever D, Bogdani M, Johnson P, Weiss T, Ginzberg A, et al. Can CD44 be a mediator of cell destruction? the challenge of type 1 diabetes. PLoS ONE [Internet]. 2015;10(12). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955583972&doi=10.1371%252fjournal.pone.0143589&partnerID=40&md5=5b9d7b01fbf0f6116b7bcda18f94f5d7

8.

Gesundheit B, Ashwood P, Keating A, Naor D, Melamed M, Rosenzweig JP. Therapeutic properties of mesenchymal stem cells for autism spectrum disorders. Medical Hypotheses [Internet]. 2015;84(3):169–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925365493&doi=10.1016%252fj.mehy.2014.12.016&partnerID=40&md5=f3ea48b5ee0090ca25fae9e0553e8744

9.

Gesundheit B, Rosenzweig JP, Naor D, Lerer B, Zachor DA, Procházka V, et al. Immunological and autoimmune considerations of Autism Spectrum Disorders. Journal of Autoimmunity [Internet]. 2013;44:1–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881375626&doi=10.1016%252fj.jaut.2013.05.005&partnerID=40&md5=0f3458f0443e56402ad05df8663f0512

10.

Girbl T, Hinterseer E, Grössinger EM, Asslaber D, Oberascher K, Weiss L, et al. CD40-mediated activation of chronic lymphocytic leukemia cells promotes their CD44-dependent adhesion to hyaluronan and restricts CCL21-induced motility. Cancer Research [Internet]. 2013;73(2):561–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872526123&doi=10.1158%252f0008-5472.CAN-12-2749&partnerID=40&md5=5792d840cbe13c470592ada727b87a60

11.

Shimony O, Nagler A, Gellman YN, Refaeli E, Rosenblum N, Eshkar-Sebban L, et al. Anti-T lymphocyte globulin (ATG) induces generation of regulatory T cells, at least part of them express activated CD44. Journal of Clinical Immunology [Internet]. 2012;32(1):173–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862259635&doi=10.1007%252fs10875-011-9599-2&partnerID=40&md5=4a1ca4008f8984fe5b9f7afba331c2ea

12.

Turley EA, Naor D. RHAMM and CD44 peptides-analytic tools and potential drugs. Frontiers in Bioscience [Internet]. 2012;17(5):1775–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859258205&doi=10.2741%252f4018&partnerID=40&md5=52b0de704884f1512c0e98e82f95bc48

13.

Kahaly GJ, Shimony O, Gellman YN, Lytton SD, Eshkar-Sebban L, Rosenblum N, et al. Regulatory T-cells in Graves’ orbitopathy: Baseline findings and immunomodulation by anti-T lymphocyte globulin. Journal of Clinical Endocrinology and Metabolism [Internet]. 2011;96(2):422–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79951693448&doi=10.1210%252fjc.2010-1424&partnerID=40&md5=896f84c4e49be6cff092095655e7ccbe

14.

Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV. Involvement of CD44, a Molecule with a Thousand Faces, in Cancer Dissemination [Internet]. Hyaluronan in Cancer Biology. 2009. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84882511282&doi=10.1016%252fB978-012374178-3.10008-0&partnerID=40&md5=0eae8405f7ab76b82737e73aa60d37d6

15.

Vagima Y, Avigdor A, Goichberg P, Shivtiel S, Tesio M, Kalinkovich A, et al. MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. Journal of Clinical Investigation [Internet]. 2009;119(3):492–503. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-65649104083&doi=10.1172%252fJCI36541&partnerID=40&md5=e14df4aab129ceb5258b2255a5bb6c4c

16.

Wallach-Dayan SB, Rubinstein AM, Hand C, Breuer R, Naor D. DNA vaccination with CD44 variant isoform reduces mammary tumor local growth and lung metastasis. Molecular Cancer Therapeutics [Internet]. 2008;7(6):1615–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-49849096701&doi=10.1158%252f1535-7163.MCT-07-2383&partnerID=40&md5=6dc52d5e2908d40ca4c9b29075e30b6a

17.

Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Seminars in Cancer Biology [Internet]. 2008;18(4):260–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-44749091840&doi=10.1016%252fj.semcancer.2008.03.015&partnerID=40&md5=b3bd2e7209bf7f97c1e05b0335ae0269

18.

Gonen E, Nedvetzki S, Naor D, Shpigel NY. CD44 is highly expressed on milk neutrophils in bovine mastitis and plays a role in their adhesion to matrix and mammary epithelium. Veterinary Research [Internet]. 2008;39(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-41449084971&doi=10.1051%252fvetres%253a2008005&partnerID=40&md5=ccd34c76bad761185c3a6b24e9ab4010

19.

Weiss L, Botero-Anug AM, Hand C, Slavin S, Naor D. CD44 gene vaccination for insulin-dependent diabetes mellitus in non-obese diabetic mice. Israel Medical Association Journal [Internet]. 2008;10(1):20–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-41149101607&partnerID=40&md5=8ddd837e0449c5e61b70b5d6d9409c8f

20.

Sebban LE, Ronen D, Levartovsky D, Elkayam O, Caspi D, Aamar S, et al. The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation. Journal of Immunology [Internet]. 2007;179(2):1225–35. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34548794937&doi=10.4049%252fjimmunol.179.2.1225&partnerID=40&md5=31c600b1e36e3e8b7ea5f193cb7d9b5e

21.

Garin T, Rubinstein A, Grigoriadis N, Nedvetzki S, Abramsky O, Mizrachi-Koll R, et al. CD44 variant DNA vaccination with virtual lymph node ameliorates experimental autoimmune encephalomyelitis through the induction of apoptosis. Journal of the Neurological Sciences [Internet]. 2007;258(1–2):17–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34250028986&doi=10.1016%252fj.jns.2007.01.079&partnerID=40&md5=e3cd308e92a5cb4c241b295e34b60557

22.

Golan I, Nedvetzki S, Golan I, Eshkar-Sebban L, Levartovsky D, Elkayam O, et al. Expression of extra trinucleotide in CD44 variant of rheumatoid arthritis patients allows generation of disease-specific monoclonal antibody. Journal of Autoimmunity [Internet]. 2007;28(2–3):99–113. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34247584464&doi=10.1016%252fj.jaut.2007.02.007&partnerID=40&md5=bc85faa186edd49a8e34f231cd93f06a

23.

Naor D, Nedvetzki S, Walmsley M, Yayon A, Turley EA, Golan I, et al. CD44 involvement in autoimmune inflammations: The lesson to be learned from CD44-targeting by antibody or from knockout mice. Annals of the New York Academy of Sciences [Internet]. 2007;1110:233–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35748954360&doi=10.1196%252fannals.1423.025&partnerID=40&md5=f420f3dc5568a0f1aa7f5201a29dcc83

24.

Nedvetzki S, Gonen E, Assayag N, Reich R, Williams RO, Thurmond RL, et al. Erratum: RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: A different interpretation of redundancy (Proceedings of the National Academy of Sciences of the United States of America (December 28, 2004) 101, 52 (18081-18086)). Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2005;102(4):1263. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-19944430245&doi=10.1073%252fpnas.0409514102&partnerID=40&md5=21cb7c9a630c328353f34ab845378114

25.

Naor D, Nedvetzki S, Assayag N, Thurmond RL, Huang JF, Turley EA. The mechanism of molecular redundancy in autoimmune inflammation in the context of CD44 deficiency. Annals of the New York Academy of Sciences [Internet]. 2005;1050:52–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-23744486993&doi=10.1196%252fannals.1313.007&partnerID=40&md5=e9da296ce6f00b9e6c00761ec5c5528f

26.

Nedvetzki S, Gonen E, Assayag N, Reich R, Williams RO, Thurmond RL, et al. RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: A different interpretation of redundancy. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2004;101(52):18081–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-19944428853&doi=10.1073%252fpnas.0407378102&partnerID=40&md5=6930e441c459d0e6e7f21a28f77c5ba5

27.

Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood [Internet]. 2004;103(8):2981–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-11144358161&doi=10.1182%252fblood-2003-10-3611&partnerID=40&md5=9a26e417554946395a266123942aa5e6

28.

Naor D, Nedvetzki S. CD4 in rheumatoid arthritis. Arthritis Research and Therapy [Internet]. 2003;5(3):105–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038639722&partnerID=40&md5=2978946f237c6bc777041b4f6abaa916

29.

Ursø B, Ilondo MM, Holst PA, Christoffersen CT, Ouwens M, Giorgetti S, et al. IRS-4 mediated mitogenic signalling by insulin and growth hormone in LB cells, a murine T-cell lymphoma devoid of IGF-I receptors. Cellular Signalling [Internet]. 2003;15(4):385–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-12244268682&doi=10.1016%2fS0898-6568%2802%2900113-4&partnerID=40&md5=f6b883553a5fe3890c59af8797424517

30.

Nedvetzki S, Golan I, Assayag N, Gonen E, Caspi D, Gladnikoff M, et al. A mutation in a CD44 variant of inflammatory cells enhances the mitogenic interaction of FGF with its receptor. Journal of Clinical Investigation [Internet]. 2003;111(8):1211–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037397009&doi=10.1172%252fJCI17100&partnerID=40&md5=b8348cb7e70cb6bc3310e6211f29842c

31.

Guy R, Yefenof E, Naor D, Dorogin A, Zilberman Y. CD44 co-stimulates apoptosis in thymic lymphomas and T cell hybridomas. Cellular Immunology [Internet]. 2002;216(1–2):82–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036399025&doi=10.1016%2fS0008-8749%2802%2900505-1&partnerID=40&md5=9fbec79c8caaf8be0fd0240d20a8168f

32.

Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in cancer. Critical Reviews in Clinical Laboratory Sciences [Internet]. 2002;39(6):527–79. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036445586&doi=10.1080%252f10408360290795574&partnerID=40&md5=da1ee24caf6a9dc47096c720c6b5158a

33.

Wallach-Dayan SB, Grabovsky V, Moll J, Sleeman J, Herrlich P, Alon R, et al. CD44-dependent lymphoma cell dissemination: A cell surface CD44 variant, rather than standard CD44, supports in vitro lymphoma cell rolling on hyaluronic acid substrate and its in vivo accumulation in the peripheral lymph nodes. Journal of Cell Science [Internet]. 2001;114(19):3463–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034757064&partnerID=40&md5=16d5809d19999a4b57d2123d6c06f701

34.

Batya Wallach S, Friedmann A, Naor D. The CD44 receptor of the mouse LB T-cell lymphoma: Analysis of the isoform repertoire and ligand binding properties by reverse-transcriptase polymerase chain reaction and antisense oligonucleotides. Cancer Detection and Prevention [Internet]. 2000;24(1):33–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034013966&partnerID=40&md5=08f706d373450326be866711985bf181

35.

Weiss L, Slavin S, Reich S, Cohen P, Shuster S, Stern R, et al. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2000;97(1):285–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-12944331941&doi=10.1073%252fpnas.97.1.285&partnerID=40&md5=72b8dff183569ed101b4fc11fe25a415

36.

Rochman M, Moll J, Herrlich P, Wallach SB, Nedvetzki S, Sionov RV, et al. The CD44 receptor of lymphoma cells: Structure-function relationships and mechanism of activation. Cell Adhesion and Communication [Internet]. 2000;7(4):331–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033973369&doi=10.3109%252f15419060009015004&partnerID=40&md5=e565ff279e99e5dc331d101238eb6210

37.

Nedvetzki S, Walmsley M, Alpert E, Williams RO, Feldmann M, Naor D. CD44 involvement in experimental collagen-induced arthritis (CIA). Journal of Autoimmunity [Internet]. 1999;13(1):39–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032791517&doi=10.1006%252fjaut.1999.0294&partnerID=40&md5=6f3ae8fec049d15bac5fbf06c896dd22

38.

Sionov RV, Naor D. Calcium- and calmodulin-dependent PMA-activation of the CD44 adhesion molecule. Cell Adhesion and Communication [Internet]. 1998;6(6):503–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032433155&doi=10.3109%252f15419069809010798&partnerID=40&md5=2652fdcc7b2fdc1e502f007907c2489b

39.

Naor D, Vogt Sionov R, Zahalka M, Rochman M, Holzmann B, Ish-Shalom D. Organ-specific requirements for cell adhesion molecules during lymphoma cell dissemination. Current Topics in Microbiology and Immunology [Internet]. 1997;231:143–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031458711&partnerID=40&md5=c81b6e79d00cfa8e44d8c63a2ef35378

40.

Ish-Shalom D, Christoffersen CT, Vorwerk P, Sacerdoti-Sierra N, Shymko RM, Naor D, et al. Mitogenic properties of insulin and insulin analogues mediated by the insulin receptor. Diabetologia [Internet]. 1997;40(SUPPL. 2):S25–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030851268&doi=10.1007%252fs001250051393&partnerID=40&md5=9c30a32b1bf549c106d0a2795c9707c9

41.

Sionov RV, Naor D. Hyaluronan-independent lodgment of CD44+ lymphoma cells in lymphoid organs. International Journal of Cancer [Internet]. 1997;71(3):462–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031009021&doi=10.1002%2f%28SICI%291097-0215%2819970502%2971%3a3%3c462%3a%3aAID-IJC26%3e3.0.CO%3b2-G&partnerID=40&md5=ca2f6227e02ab06bfbf5b62240dfa255

42.

Naor D, Sionov RV, Ish-Shalom D. CD44: Structure, function, and association with the malignant process. Advances in Cancer Research [Internet]. 1997;71:241–319. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030966842&doi=10.1016%2fs0065-230x%2808%2960101-3&partnerID=40&md5=8deba69c5f20602cc030b4fa380d919c

43.

Gosslar U, Jonas P, Luz A, Lifka A, Naor D, Hamann A, et al. Predominant role of α4-integrins for distinct steps of lymphoma metastasis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1996;93(10):4821–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029953938&doi=10.1073%252fpnas.93.10.4821&partnerID=40&md5=1a4878f2749082a204b061c7e2d9ebe7

44.

Rocha M, Krüger A, Umansky V, Von Hoegen P, Naor D, Schirrmacher V. Dynamic expression changes in vivo of adhesion and costimulatory molecules determine load and pattern of lymphoma liver metastasis. Clinical Cancer Research [Internet]. 1996;2(5):811–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029903195&partnerID=40&md5=317cdafd630d0c1c53653628c20fd7e9

45.

Urs⊘ B, Christoffersen CT, Tornqvist H, De Meyts P, Ouwens M, Vlahos C, et al. Mitogenic signalling by insulin in a T-cell lymphoma, the LB cell line, devoid of IGF-I receptors: Evidence for the lack of involvement of the RAS-MAP kinase pathway and for a possibly novel IRS-like molecule. Experimental and Clinical Endocrinology and Diabetes [Internet]. 1996;104:52–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1842470630&doi=10.1055%252fs-0029-1211533&partnerID=40&md5=bc362a7eec124dded7bc2281e2d4fadb

46.

ISH‐SHALOM D, TZIVION G, CHRISTOFFERSEN CT, URSØ B, DE MEYTS P, NAOR D. Mitogenic Potential of Insulin on Lymphoma Cells Lacking IGF‐1 Receptor. Annals of the New York Academy of Sciences [Internet]. 1995;766(1):409–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029550646&doi=10.1111%252fj.1749-6632.1995.tb26690.x&partnerID=40&md5=1626031d60a69f2cddcc837d70552e2c

47.

Zahalka MA, Okon E, Gosslar U, Holzmann B, Naor D. Lymph node (but not spleen) invasion by murine lymphoma is both CD44- and hyaluronate-dependent. Journal of Immunology [Internet]. 1995;154(10):5345–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029032423&partnerID=40&md5=ff6f07c8330f62c7c942e086267b6a17

48.

Stock R, Naor D. Induction of an autoimmune response against syngeneic lymphoma cells by immunogenic 64-kDa protein isolated from normal blast cells of BALB/c mice. Cancer Immunology Immunotherapy [Internet]. 1995;40(1):48–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028816345&doi=10.1007%252fBF01517235&partnerID=40&md5=b461615d0d8edf636f9d7e0d3d7ce6ee

49.

Zahalka MA, Naor D. β2-lntegrin dependent aggregate formation between LB T cell lymphoma and spleen cells: Assessment of correlation with spleen invasiveness. International Immunology [Internet]. 1994;6(6):917–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028178142&doi=10.1093%252fintimm%252f6.6.917&partnerID=40&md5=340568657a44099e742a97d13062d104

50.

Sharon R, Pillemer G, Ish‐Shalom D, Kalman R, Ziv E, Berry EM, et al. Insulin dependence of murine T‐cell lymphoma. II. Insulin‐deficient diabetic mice and mice fed low‐energy diet develop resistance to lymphoma growth. International Journal of Cancer [Internet]. 1993;53(5):843–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027523609&doi=10.1002%252fijc.2910530523&partnerID=40&md5=37117361e7f9554020dd6ffa6e8bdff4

51.

Zahalka MA, Okon E, Naor D. Blocking lymphoma invasiveness with a monoclonal antibody directed against the β-chain of the leukocyte adhesion molecule (CD18). Journal of Immunology [Internet]. 1993;150(10):4466–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027294675&partnerID=40&md5=6662afd83ccc4ab0133ed2efeb9cc6fd

52.

Naor D. Bifunctional T cell clones challenge the traditional compartmentalization concept of the immune system. Archivum Immunologiae et Therapiae Experimentalis [Internet]. 1992;40(1):67–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027090168&partnerID=40&md5=de51973588fbd241a48eedd9de43f706

53.

Sharon R, Naor D. Experimental model of autoimmune hemolytic anemia induced in mice with levodopa by intraperitoneal injection or oral feeding. International Journal of Immunopharmacology [Internet]. 1992;14(7):1241–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026731394&doi=10.1016%2f0192-0561%2892%2990060-X&partnerID=40&md5=fadbc9f7b9f751871509a47e1a03ec15

54.

Pillemer G, Lugasi‐Evgi H, Scharovsky G, Naor D. Insulin dependence of murine lymphoid T‐cell leukemia. International Journal of Cancer [Internet]. 1992;50(1):80–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026558410&doi=10.1002%252fijc.2910500117&partnerID=40&md5=290da1a6863dbf005c889537709587a0

55.

Naor D. A different outlook at the phenotype-function relationships of T cell subpopulations: Fundamental and clinical implications. Clinical Immunology and Immunopathology [Internet]. 1992;62(2):127–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026542751&doi=10.1016%2f0090-1229%2892%2990064-U&partnerID=40&md5=9692afcf6effcb2f58f251987c187c10

56.

NAOR D, ESSERY G, TARCIC N, KAHAN M, FELDMANN M. Regulatory Interactions among Autologous T Cell Clones Human Bifunctional T Cell Clones Regulate the Activity of an Autologous T Cell Clone. Annals of the New York Academy of Sciences [Internet]. 1991;636(1):135–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026378477&doi=10.1111%252fj.1749-6632.1991.tb33444.x&partnerID=40&md5=89d489e3aa09206c0956316306add1d0

57.

Zahalka MA, Naor D. Inflammatory response induced with an isolated syngeneic activation antigen shared by normal lymphoblasts and YAC lymphoma cells. Clinical Immunology and Immunopathology [Internet]. 1991;59(1):72–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025817544&doi=10.1016%2f0090-1229%2891%2990083-M&partnerID=40&md5=ddcc71320e7ed13cb6b4daf742ea35fe

58.

Naor D, Essery G, Tarcic N, Kahan M, Feldmann M. Interactions between autologous T cell clones. Cellular Immunology [Internet]. 1990;128(2):490–502. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025297503&doi=10.1016%2f0008-8749%2890%2990043-Q&partnerID=40&md5=6005ecf0fee40b3d162f87e94a63873b

59.

Naor D, Essery G, Taroc N, Kahan M, Lamb JR, Feldmann M. Specific Interactions between a Human CD4+ Clone and Autologous CD4+ Bifunctional Immunoregulatory Clones. Immunological Reviews [Internet]. 1990;116(1):63–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025195544&doi=10.1111%252fj.1600-065X.1990.tb00804.x&partnerID=40&md5=99192b0c95c582933c25f6cad5e6d7d3

60.

Lugasi H, Hajos S, Murphy JR, Strom TB, Nichols J, Peñarroja C, et al. Murine spontaneous T‐cell leukemia constitutively expressing IL‐2 receptor—a model for human T‐cell malignancies expressing IL‐2 receptor. International Journal of Cancer [Internet]. 1990;45(1):163–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025021908&doi=10.1002%252fijc.2910450129&partnerID=40&md5=478026c0f573b27bc016d442fd5cf0f3

61.

Duke-Cohan JS, Rubinow A, Hirt R, Naor D. The reaction against autologous lymphoblasts as an indicator of lymphocyte hyperreactivity in rheumatoid arthritis. Clinical Immunology and Immunopathology [Internet]. 1990;54(2):298–308. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025021451&doi=10.1016%2f0090-1229%2890%2990091-4&partnerID=40&md5=658374bff5baebd671fb6bd5b08082c5

62.

Alvarez E, Mongini C, Waldner CI, Fenandez TB, Naor D, Hajos SE. The inter-relationships between spontaneous murine T cell leukaemia LB and the immune system: LB is a nonimmunogenic tumor in its syngeneic host. Journal of Experimental and Clinical Cancer Research [Internet]. 1989;8(4):181–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024942665&partnerID=40&md5=411ad2140ad23568902754930f5482f7

63.

Naor D, Essery G, Tarcic N, De Berardinis P, Kahan M, Feldmann M. Autoreactivity against class I or class II antigens - Immunological downregulation mechanism? Bulletin de l’Institut Pasteur [Internet]. 1989;87(1):3–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024542649&partnerID=40&md5=5c11d7d192a65837c956c77a8f07711c

64.

DUKE‐COHAN JS, HIRT R, ROTTEM M, BEN‐ZVI A, RUBINOW A, NAOR D. Use of an autologous reaction in vitro to assess contributions of T and B lymphocytes to immune hyperreactivity of atopics. Clinical & Experimental Allergy [Internet]. 1989;19(2):163–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024518328&doi=10.1111%252fj.1365-2222.1989.tb02359.x&partnerID=40&md5=0ca68e4972a152dc222b353970e1325a

65.

Sharon R, Naor D. Experimental model of autoimmune hemolytic anemia induced in mice with Levodopa. Clinical Immunology and Immunopathology [Internet]. 1989;52(2):160–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024369750&doi=10.1016%2f0090-1229%2889%2990169-4&partnerID=40&md5=c51296d8f756e8f8e0e52130189b30c3

66.

Tarcic N, David CS, Naor D. Auto-delayed-type hypersensitivity induced in immunodeficient mice with modified self-antigens. V. Cellular autoreactivity directed against self-H-2D(d) subregion mediates the inflammatory responses. Immunology [Internet]. 1989;67(2):184–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024309355&partnerID=40&md5=d8bf11fec3cc46c59b2c391a13736b91

67.

Sharon R, Giloh H, Naor D. Experimental autoimmune anemia induced with haptenated syngeneic mouse red blood cells and low dose X-irradiation. Clinical Immunology and Immunopathology [Internet]. 1988;47(3):310–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023939717&partnerID=40&md5=dd7a04b228a90f38fff887a1a22b4de1

68.

KLEIN I, NAOR D. Self‐Reactive Delayed Type Hypersensitivity Induced in Mice by Syngeneic Lymphoblasts: III. Immunological Characterization of the Small and Large Antigens of the Blast Cells. Scandinavian Journal of Immunology [Internet]. 1988;27(4):385–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023921182&doi=10.1111%252fj.1365-3083.1988.tb02361.x&partnerID=40&md5=a7056f14cbaf07dbd2058737e3f44a9a

69.

Klein I, Naor D. Autoinflammatory response to self-antigens of lymphoblasts. Israel Journal of Medical Sciences [Internet]. 1988;24(7):373–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023720783&partnerID=40&md5=fdd0a01209eaa47341defd80542351f3

70.

KLEIN I, KLEIN BY, NAOR D. Self‐Reactive Delayed Type Hypersensitivity Induced in Mice by Syngeneic Lymphoblasts: II. Isolation of Two Distinct Lymphoblast Antigens, One of Which Reacts (or Cross‐Reacts) with Anti‐H‐2Dd Monoclonal Antibody. Scandinavian Journal of Immunology [Internet]. 1988;27(2):209–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023693220&doi=10.1111%252fj.1365-3083.1988.tb02341.x&partnerID=40&md5=bd43e417732422b11a61850a78c522a2

71.

Naor D. Suppressor cells and human malignancy. Clinical Immunology Newsletter [Internet]. 1987;8(5):65–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-45949121133&doi=10.1016%2f0197-1859%2887%2990009-4&partnerID=40&md5=05bad22f28da1eb5dcd5179ad364a6ca

72.

Duke-Cohan JS, Hirt R, Dahan A, Naor D. On the immune reaction to autologous human lymphoblasts: Evidence for the stimulation by activating factors rather than induction by autoantigens. Clinical Immunology and Immunopathology [Internet]. 1987;43(2):229–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023177594&doi=10.1016%2f0090-1229%2887%2990131-0&partnerID=40&md5=9c43b91758e6d020e6b29dd5a51183d7

73.

Naor D, Duke-Cohan JS. Suppressor cells and malignancy. I. Suppressor macrophages and suppressor T cells in experimental animals. Advances in immunity and cancer therapy [Internet]. 1986;2:1–129. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022841646&partnerID=40&md5=6dd0d27b7200fa8149d1512c52a41d81

74.

Kelley VE, Naor D, Tarcic N, Gaulton GN, Strom TB. Anti-interleukin 2 receptor antibody suppresses delayed-type hypersensitivity to foreign and syngeneic antigens. Journal of Immunology [Internet]. 1986;137(7):2122–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022468269&partnerID=40&md5=26d6bf03fddceb1128cd3d7a52b0469b

75.

Tarcic N, Naor D. The genetic control of syngeneic delayed type hypersensitivity (syn-DTH). Immunogenetics [Internet]. 1986;24(2):131–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022486217&doi=10.1007%252fBF00373123&partnerID=40&md5=28eaab7c1b2170d7928f85cf075a34ef

76.

Hutchings P, Naor D, Cooke A. Effects of low doses of cyclophosphamide and low doses of irradiation on the regulation of induced erythrocyte autoantibodies in mice. Immunology [Internet]. 1985;54(1):97–104. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021948793&partnerID=40&md5=e5261aee8fbb9cd58afb59913a93b989

77.

Naor D, Tarcic N, Baler R. Control of in vivo immunological autoreactivities with suppressive T cell factor derived from a hybridoma cell line. Transplantation Proceedings [Internet]. 1985;17(6):2617–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022377147&partnerID=40&md5=f1d642efc55f1a0ae247bdf6a2fd99e2

78.

Langer A, Rosenmann E, Naor D. The effect of cyclosporin on murine autoreactive delayed type hypersensitivity induced with syngeneic lymphoblasts. Immunopharmacology [Internet]. 1985;10(3):147–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022369551&doi=10.1016%2f0162-3109%2885%2990020-7&partnerID=40&md5=ad56798b6e7f560fbb16f1a163ac355c

79.

Naor D, Langer A. Analysis of the cyclosporine mechanism in an immunological autoreactive model of delayed-type hypersensitivity. Transplantation Proceedings [Internet]. 1985;17(6):2706–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022346807&partnerID=40&md5=102eded1c1643cf2b9c101a389427382

80.

Duke-Cohan JS, Weinberg H, Sharon R, Naor D. Immunological function in osteoporosis. Clinical Immunology and Immunopathology [Internet]. 1985;35(1):125–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021960599&doi=10.1016%2f0090-1229%2885%2990085-6&partnerID=40&md5=c708a26d54223ec647cca8fc56d717fc

81.

Klein I, Naor D. Self Reactive Delayed Type Hypersensitivity (DTH) Induced in Mice by Syngeneic Lymphoblasts. Immunobiology [Internet]. 1985;169(1):45–59. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021949080&doi=10.1016%2fS0171-2985%2885%2980053-X&partnerID=40&md5=e6c48f9b7aea5cbd5452030b9932dcbf

82.

Klein BY, Frenkel S, Naor D. Isolated soluble fractions from the murine B16 melanoma induce primary in vitro syngeneic antitumor responses. Cancer Immunology Immunotherapy [Internet]. 1984;18(3):195–202. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021748802&doi=10.1007%252fBF00205511&partnerID=40&md5=21f01ed512486efbd6308cc1032a6367

83.

Sharon R, Naor D. The isolation of immunogenic molecular entities from immunogenic and nonimmunogenic tumor homogenates by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Cancer Immunology Immunotherapy [Internet]. 1984;18(3):203–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021715201&doi=10.1007%252fBF00205512&partnerID=40&md5=cf083dfbfbe0e7e31bdd45313ff830cd

84.

TARCIC N, BALER R, NAOR D. Auto‐Delayed‐Type Hypersensitivity Induced in Immunodeficient Mice withModified Self‐Antigens: III. Suppressive T‐Cell Factor Controls the Autoreactivity against Self‐Antigens. Scandinavian Journal of Immunology [Internet]. 1984;20(5):389–401. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021752597&doi=10.1111%252fj.1365-3083.1984.tb01018.x&partnerID=40&md5=76f316720685d008b542332160a531fd

85.

TARCIC N, KLEIN BY, NAOR D. Auto‐Delayed‐Type Hypersensitivity Induced in Immunodeficient Mice with Modified Self‐Antigens: IV. Characterization of the Suppressive T‐Cell Factor that Controls the Autoreactivity against Self‐Antigens. Scandinavian Journal of Immunology [Internet]. 1984;20(5):403–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021750868&doi=10.1111%252fj.1365-3083.1984.tb01019.x&partnerID=40&md5=16c7c657f7d2baf447c28d05bb6b6392

86.

Adler A, Stein JA, Kedar E, Naor D, Weiss DW. Intralesional injection of interleukin-2 — Expanded autologous lymphocytes in melanoma and breast cancer patients: A pilot study. Journal of Biological Response Modifiers [Internet]. 1984;3(5):491–500. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021635361&partnerID=40&md5=e878d7ac51dda782df7f1d4424c4f42a

87.

TARCIC N, SHARON R, ROSENMANN E, NAOR D. Auto‐Delayed‐Type Hypersensitivity Induced in Immunodeficient Mice with Syngeneic Modified Self‐Antigens: II. Suppressor T Cells Control the Autoimmune Response. Scandinavian Journal of Immunology [Internet]. 1984;19(2):111–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021333164&doi=10.1111%252fj.1365-3083.1984.tb00906.x&partnerID=40&md5=b0efa7c7fa0b20f3f768554de1e74ff7

88.

Klein BY, Frenkel S, Naor D. Isolation of murine melanoma antigens crossreactive with human melanoma antigens, detected by cell mediated cytotoxicity. Federation Proceedings [Internet]. 1984;43(6):no. 1194. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021240295&partnerID=40&md5=50e67d7bd3e20835a5e60ba3d8dedbbe

89.

Naor D. Coexistence of immunogenic and suppressogenic epitopes in tumor cells and various types of macromolecules. Cancer Immunology Immunotherapy [Internet]. 1983;16(1):1–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021066362&doi=10.1007%252fBF00199898&partnerID=40&md5=9a570c6b5651b82c0a80b4c935e181bb

90.

Ahituv A, Naor D, Sharon R, Tarcic N, Klein BY. Immunogenicity of subcellular fractions and molecular species of MuLV-induced tumors - III. Stimulation of syngeneic antitumor responses by subcellular fractions and molecular species of moloney virus-induced tumors in CBA and a mice. Cancer Immunology Immunotherapy [Internet]. 1982;14(1):16–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020470144&doi=10.1007%252fBF00199427&partnerID=40&md5=93b250db793bf4c2a5227d07de2dd7e6

91.

Klein BY, Sharon R, Tarcic N, Naor D. Induction of Antitumor Reactive Cells or Suppressor Cells by Different Molecular Species Isolated from the Same Nonimmunogenic Tumor. Immunobiology [Internet]. 1982;163(1):7–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020468409&doi=10.1016%2fS0171-2985%2882%2980101-0&partnerID=40&md5=8abab789e02bff05e97dffc24b580e46

92.

Tarcic N, Naor D. Delayed‐type hypersensitivity induced in immunodeficient mice with syngeneic modified self antigens: a suggestive model of autoimmune response. European Journal of Immunology [Internet]. 1982;12(11):961–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020460588&doi=10.1002%252feji.1830121112&partnerID=40&md5=6c8ab5de90327b6cbd8b5fd0ceed83b8

93.

Naor D, Tarcic N. CONTROL OF AUTOIMMUNE RESPONSES INDUCED WITH MODIFIED SELF ANTIGENS. Annals of the New York Academy of Sciences [Internet]. 1982;392(1):178–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020011745&doi=10.1111%252fj.1749-6632.1982.tb36107.x&partnerID=40&md5=c4b6d05c444bec1d97c934b0ac353818

94.

Klein BY, Devens B, Deutsch O, Ahituv A, Frenkel S, Kobrin BJ, et al. Isolation of immunogenic and suppressogenic determinants of the nonimmunogenic YAC tumor and the change in its immunogenic repertoire after in vitro cultivation. Transplantation Proceedings [Internet]. 1981;13(1):790–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019459609&partnerID=40&md5=dab8a361d2330315e815f96d75fc6289

95.

Kobrin BJ, Naor D, Klein BY. Immunogenicity of subcellular fractions and molecular species of MuLV-induced tumors. II. Stimulation of syngeneic anti-tumor cell-mediated immune responses by subcellular fractions and molecular species of the Rauscher-virus-induced RBL5 tumor. Journal of Immunology [Internet]. 1981;126(5):1874–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019462889&partnerID=40&md5=6747819244962e4b70d867eefeaee8c4

96.

Devens B, Deutsch O, Avraham Y, Naor D. Immune Response to Weakly Immunogenic Virally Induced Tumors. IX. Mice Injected with the in vitro Variant of YAC Tumor (YAC-1) Resist Lethal Doses of the Tumorgenic YAC Cells. Immunobiology [Internet]. 1981;159(4–5):432–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019413584&doi=10.1016%2fS0171-2985%2881%2980098-8&partnerID=40&md5=7a48bbaad3ac4b6940926b4274e115c9

97.

Naor D. Unresponsiveness to Modified Self Antigens ‐ A Censorship Mechanism Controlling Autoimmunity? Immunological Reviews [Internet]. 1980;50(1):187–226. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019227128&doi=10.1111%252fj.1600-065X.1980.tb00312.x&partnerID=40&md5=0b95ff063fad8b16403d56a50870be2e

98.

Klein BY, Frenkel S, Ahituv A, Naor D. Immunogenicity of subcellular fractions and molecular species of MuLV-induced tumors. I. screening of immunogenic components by isopycnic ultracentrifugation and polyacrylamide electrophoresis of a tumor homogenate. Journal of Immunological Methods [Internet]. 1980;38(3–4):325–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019146241&doi=10.1016%2f0022-1759%2880%2990281-1&partnerID=40&md5=149f0dd11267e7a3efafbbe3084e35f5

99.

Leshem B, Naor D. Studies on the immune response to fixed antigens. IV. Recall of immunologic memory with fixed antigens. Israel Journal of Medical Sciences [Internet]. 1980;16(1):25–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018888537&partnerID=40&md5=d068dfd9578ffc972dd470505a703c44

100.

Deutsch O, Devens B, Naor D. Immune responses to weakly immunogenic murine-leukemia-virus-induced tumors. VII. Kinetic studies on various parameters of effects induced with suppressor cells. Israel Journal of Medical Sciences [Internet]. 1980;16(7):530–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018879808&partnerID=40&md5=394cdc271d4a51f7b01dbcb4a601d9aa

101.

Deutsch O, Devens B, Naor D. Immune responses to weakly immunogenic murine-leukemia-virus-induced tumors. VIII. Characterization of suppressor cells. Israel Journal of Medical Sciences [Internet]. 1980;16(7):538–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018870038&partnerID=40&md5=9f846bf274431a6596f3ebce44a94e43

102.

Devens B, Naor D. Immune responses to weakly immunogenic virally induced tumors. VI. Comparison of the immune response of the hybrid to the immune responses of the parents reveals “hybrid responsiveness” effect. Journal of Immunology [Internet]. 1980;125(3):988–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018868708&partnerID=40&md5=89b9360234c5bfdfb66166aeb6fa544a

103.

Devens B, Naor D, Kedar E. Immune response to weakly immunogenic virally induced tumors iv dissociated recognition of H-2 and tumor associated antigens: IV dissociated recognition of h 2 and tumor associated antig4ens. Transplantation [Internet]. 1979;28(5):389–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018572869&doi=10.1097%252f00007890-197911000-00009&partnerID=40&md5=deb9476c5b1e2877d72c336915b70b82

104.

Devens B, Schochot L, Naor D. Immune responses to weakly immunogenic virally induced tumors. V. Short in vitro cultivation of YAC changes its antigenic properties. Cellular Immunology [Internet]. 1979;44(2):442–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018406251&doi=10.1016%2f0008-8749%2879%2990019-4&partnerID=40&md5=a7afa6f34367987b5c092f99ead509ed

105.

Naor D. Suppressor cells: Permitters and promoters of malignancy? Advances in Cancer Research [Internet]. 1979;29(C):45–125. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018369946&doi=10.1016%2fS0065-230X%2808%2960846-5&partnerID=40&md5=686995703d49a21d318b1d88da2ef85b

106.

Devens B, Naor D. Immune responses to weakly immunogenic virally induced tumors. III. Genetically unrestricted cytolysis of allogeneic tumor target cells. Journal of Immunology [Internet]. 1979;122(4):1397–401. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018362980&partnerID=40&md5=bc396030d0b3e751e2fdc06f16be76c2

107.

Ashman RF, Naor D. Membrane defects of the tolerant B cell. I. Failure of antigen-induced capping. Cellular Immunology [Internet]. 1979;44(2):314–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018357604&doi=10.1016%2f0008-8749%2879%2990008-X&partnerID=40&md5=a382938776aa7529b49f29e8121b8e8d

108.

Leshem B, Naor D. Studies on the immune response to fixed antigens. III. Induction of helper function for antibody-dependent cellular cytotoxicity responses. Journal of Immunology [Internet]. 1978;121(2):401–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018191094&partnerID=40&md5=089646b6a06b571472bb7db00c6e1bc0

109.

Devens B, Galili N, Deutsch O, Naor D, Klein E. Immune responses to weakly immunogenic virally induced tumors II. Suppressive effects of the in vivo carried tumor YAC. European Journal of Immunology [Internet]. 1978;8(8):573–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018126307&doi=10.1002%252feji.1830080807&partnerID=40&md5=e7ff35cedcc5e5920ccbce470e7c845f

110.

Leshem B, Naor D. Cellular assay for measuring anti-erythrocyte antibody responses. Journal of Immunological Methods [Internet]. 1978;20(C):263–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017904385&doi=10.1016%2f0022-1759%2878%2990261-2&partnerID=40&md5=6554b86aae3cdb71cae0fc7ca8312c7f

111.

Galili N, Devens B, Naor D, Becker S, Klein E. Immune responses to weakly immunogenic virally induced tumors I. Overcoming low responsiveness by priming mice with a syngeneic in vitro tumor line or allogeneic cross‐reactive tumor. European Journal of Immunology [Internet]. 1978;8(1):17–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017874780&doi=10.1002%252feji.1830080105&partnerID=40&md5=27ec6dbc2dc14fafd8065041a2a52760

112.

Naor D, O’Toole C. Cryopreservation of immunological memory and other lymphoid cell functions. Journal of Immunological Methods [Internet]. 1977;16(4):361–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017649384&doi=10.1016%2fS0022-1759%2897%2990006-5&partnerID=40&md5=6e0522bd34b49fd184e2c99ec2fccdc4

113.

Naor D, Kahan M. Studies on the immune response to fixed antigens. II. Optimal conditions for inducing and eliciting helper function by fixed antigens and the mechanism responsible for this effect. Israel Journal of Medical Sciences [Internet]. 1977;13(6):561–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017385701&partnerID=40&md5=a17089785e7a75aad2fd3dadc2747e27

114.

Naor D, Galili N. Immune response to chemically modified antigens. Progress in Allergy [Internet]. 1977;Vol. 22:107–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017367777&partnerID=40&md5=104a784ae4316280ad896b61c6dbcb25

115.

Kedar E, Unger E, Galili N, Klein G, Asjo B, Bonavida B, et al. Immunogenicity of tumor cells modified by trinitrobenzene suflonic acid (TNBS). Progress in clinical and biological research [Internet]. 1976;9:109–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017250564&partnerID=40&md5=a79842c5719da6f4da9fb2ff7d143797

116.

Kahan M, Berman Goldman R, Salton R, Naor D. Studies on the immune response to fixed antigens. Preferential induction of helper function with heavily trinitrophenylated sheep erythrocytes, and glutaraldehyde treated sheep erythrocytes. Journal of Immunology [Internet]. 1976;117(1):16–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017197255&partnerID=40&md5=d80aa5137ef6b4451ebafb53ba8b1dea

117.

Naor D, Bonavida B, Walford RL. Autoimmunity and aging: the age related response of mice of a long lived strain to trinitrophenylated syngeneic mouse red blood cells. Journal of Immunology [Internet]. 1976;117(6):2204–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017059372&partnerID=40&md5=8b6ff22b42260341b3cf951de83481dd

118.

Galili N, Naor D, Åsjö B, Klein G. Induction of immune responsiveness in a genetically low‐responsive tumor‐host combination by chemical modification of the immunogen. European Journal of Immunology [Internet]. 1976;6(7):473–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017142968&doi=10.1002%252feji.1830060705&partnerID=40&md5=71f94ac931fa62f1ea34d773918eace6

119.

Naor D, Bonavida B, Robinson RA, Shibata IN, Percy DE, Chia D, et al. Immune response of New Zealand mice to trinitrophenylated syngeneic mouse red cells. European Journal of Immunology [Internet]. 1976;6(11):783–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017041353&doi=10.1002%252feji.1830061106&partnerID=40&md5=10c92cebc9e165574d0cb9bb4bf52c47

120.

Naor D, Berman-Goldman R, Kahan M, Goldfisher H, Laskov R, Simon E, et al. Induction of hapten recognizing helper function by heavily trinitrophenylated sheep erythrocytes. Advances in experimental medicine and biology [Internet]. 1976;66:253–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016883346&doi=10.1007%252f978-1-4613-4355-4_38&partnerID=40&md5=ee3393b1150183815280aca19ebb505c

121.

Naor D, Falkenberg F, Saltoun R. Proceedings: Mouse immune response to trinitrophenylated red cells. Israel Journal of Medical Sciences [Internet]. 1975;11(12):1377–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016661703&partnerID=40&md5=cbbb681cd2a3c47e0f9f0b2e2daec49c

122.

Naor D, Saltoun R, Falkenberg F. Lack of requirement for thymocytes for efficient antibody formation to trinitrophenylated mouse red cells in mice: Role for thymocytes in suppression of the immune response. European Journal of Immunology [Internet]. 1975;5(3):220–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016808129&doi=10.1002%252feji.1830050315&partnerID=40&md5=b9ee03f98498feb868ee913065afb116

123.

Zolla S, Naor D, Tanapatchaiyapong P. Cellular basis of immunodepression in mice with plasmacytomas. Journal of Immunology [Internet]. 1974;112(6):2068–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016150509&partnerID=40&md5=c38a267056808f78e094ab4c098f8a1d

124.

Zolla S, Naor D. Restoration of immune competence in tolerant mice by parabiosis to normal mice. Journal of Experimental Medicine [Internet]. 1974;140(5):1421–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016208913&doi=10.1084%252fjem.140.5.1421&partnerID=40&md5=bf1a7714ff4fd39cd9a213b68f7ac247

125.

Sulitzeanu D, Morecki S, Naor D. Specific interactions of antigen with cells studied by means of rosette formation. Israel Journal of Medical Sciences [Internet]. 1974;10(11):1397–404. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016126741&partnerID=40&md5=5ea97996afdd5886ffafb31eaa0da2b4

126.

Naor D, Morecki S, Mitchell GF. Differential induction of anti‐trinitrophenyl plaque‐forming cell responses to lightly and heavily conjugated trinitrophenylated heterologous and autologous erythrocytes in mice. European Journal of Immunology [Internet]. 1974;4(4):311–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016208564&doi=10.1002%252feji.1830040415&partnerID=40&md5=7f0472a4d3c9dd905f837d3cb618089c

127.

Naor D, Morecki S, Kedar E. Differential induction and suppression of direct and indirect PFC responses to TNP conjugated to heterologous erythrocytes. Advances in experimental medicine and biology [Internet]. 1973;29:225–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015832605&doi=10.1007%252f978-1-4615-9017-0_33&partnerID=40&md5=8b1d6754d1d48d9b0b03a76933959c42

128.

Naor D, Mishell R. In vitro immunity to TNP and penicillin: specific inhibition with hapten-conjugated isologous red cells. Journal of Immunology [Internet]. 1972;108(1):246–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015265503&partnerID=40&md5=98ca56b743ae14d1fa5499437b6557db

129.

Naor D, Henry C, Fudenberg HH. An in vitro immune response to penicillin. Journal of Immunology [Internet]. 1971;107(1):302–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015096080&partnerID=40&md5=66a1c759bea90a8b232af2c5b6c06071

130.

Wofsy L, Truffa‐Bachi P, Naor D. CHEMICAL APPROACHES TO THE CELL RECEPTOR PROBLEM. Annals of the New York Academy of Sciences [Internet]. 1971;190(1):432–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015247385&doi=10.1111%252fj.1749-6632.1971.tb13553.x&partnerID=40&md5=1aa293fee9ffe38ed9a1d6a50d11c1e2

131.

Naor D, Mishell RI, Wofsy L. Specific inhibition of an anti-hapten immune response by chemical modifications of cells. Journal of Immunology [Internet]. 1970;105(6):1322–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014904541&partnerID=40&md5=7279d4ab5627e65a200a2a5ae8f59bdf

132.

Naor D, Sulitzeanu D. Affinity of radioiodinated bovine serum albumin for lymphoid cells. 3. Further experiments with cells of normal animals. Israel Journal of Medical Sciences [Internet]. 1970;6(4):519–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014818358&partnerID=40&md5=3306d7ceb535fb70c65d392827a17f3a

133.

Naor D. The structure of immunoglobulins. Harefuah [Internet]. 1969;77(11):528. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014615130&partnerID=40&md5=562972eb8db616a2b36959c8172e8245

134.

Naor D, Sulitzeanu D. Affinity of radioiodinated bovine serum albumin for lymphoid cells. Binding of I-125-BSA to lymphoid cells of immune mice. Israel Journal of Medical Sciences [Internet]. 1969;5(2):217–29. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014486652&partnerID=40&md5=704725ebf18372b6815bb6b49be2571c

135.

Naor D, Bentwich Z, Cividalli G. Inability of peripheral lymphoid cells of agammaglobulinaemic patients to bind radioiodinated albumins. The Australian journal of experimental biology and medical science [Internet]. 1969;47(6):759–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014643612&doi=10.1038%252ficb.1969.173&partnerID=40&md5=a3748f95daaf540ee8075b21beba24c4

136.

Naor D, Sulitzeanu D. Binding of 125I-BSA to lymphoid cells of tolerant mice. International Archives of Allergy and Applied Immunology [Internet]. 1969;36(1):112–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014452856&partnerID=40&md5=f02568c6a4495eaf4cfd40ba4ee68cd4

137.

Sulitzeanu D, Naor D. The affinity of radioiodinated BSA for lymphoid cells. II. Binding of 125I-BSA to lymphoid cells of normal mice. International Archives of Allergy and Applied Immunology [Internet]. 1969;35(6):564–78. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014450652&partnerID=40&md5=0015e438b42cc7b7e70ac4e1d01b19f0

138.

Naor D, Sulitzeanu D. Binding of radioiodinated bovine serum albumin to lymphoid cells of specifically primed or immunized mice in vitro. Life Sciences [Internet]. 1968;7(8 PART 2):377–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014416214&doi=10.1016%2f0024-3205%2868%2990036-2&partnerID=40&md5=cef38d8803034497aaf545fe1c13debc

139.

Naor D, Sulitzneau D. Binding of radioiodinated bovine serum albumin to mouse spleen cells. Nature [Internet]. 1967;214(5089):687–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014201660&doi=10.1038%252f214687a0&partnerID=40&md5=1809a25126a34ddaa2de081e91f3ef80