Skip to Main Content

HUJI logo Hebrew
The Library Authority    רשות הספריות

Library Research Guides    מדריכים לפי תחומים


Hadassah Medical Center - Gene Therapy: Peled Amnon

researchers

Last updated September 2024 - Gene Therapy

List of Publications

1.            Mor, A. et al. Targeting CCL24 in Inflammatory and Fibrotic Diseases: Rationale and Results from Three CM-101 Phase 1 Studies. Drug Saf. 47, 869–881 (2024).

2.            Greenman, R. et al. The Role of CCL24 in Primary Sclerosing Cholangitis: Bridging Patient Serum Proteomics to Preclinical Data. Cells 13, (2024).

3.            Stern, E. et al. CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma. Biomedicines 11, (2023).

4.            Greenman, R. et al. CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis. JCI Insight 8, (2023).

5.            Rosenberg, N. et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. J. Hepatol. 77, 1631–1641 (2022).

6.            Beider, K. et al. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J. Hematol. Oncol. 15, (2022).

7.            Cendrowicz, E. et al. DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity. J. Exp. Clin. Cancer Res. 41, (2022).

8.            Paldor, M. et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol. Med. 14, (2022).

9.            Rodionov, G. et al. Short treatment of peripheral blood cells product with Fas ligand using closed automated cell processing system significantly reduces immune cell reactivity of the graft in vitro and in vivo. Bone Marrow Transplant. 57, 1250–1259 (2022).

10.          Bockorny, B. et al. Motixafortide and pembrolizumab combined to nanoliposomal irinotecan, fluorouracil, and folinic acid in metastatic pancreatic cancer: The COMBAT/ KEYNOTE-202 trial. Clin. Cancer Res. 27, 5020–5027 (2021).

11.          Shriki, A. et al. Multiple roles of il6 in hepatic injury, steatosis, and senescence aggregate to suppress tumorigenesis. Cancer Res. 81, 4766–4777 (2021).

12.          Borthakur, G. et al. BL-8040 CXCR4 antagonist is safe and demonstrates antileukemic activity in combination with cytarabine for the treatment of relapsed/refractory acute myelogenous leukemia: An open-label safety and efficacy phase 2a study. Cancer 127, 1246–1259 (2021).

13.          Becker-Herman, S. et al. CD74 is a regulator of hematopoietic stem cell maintenance. PLoS Biol. 19, (2021).

14.          Beider, K. et al. Blocking of Transient Receptor Potential Vanilloid 1 (TRPV1) promotes terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting ubiquitin pathway and bortezomib-induced unfolded protein response. J. Hematol. Oncol. 13, (2020).

15.          Levy-Barazany, H. et al. Brief ex vivo Fas-ligand incubation attenuates GvHD without compromising stem cell graft performance. Bone Marrow Transplant. 55, 1305–1316 (2020).

16.          Bockorny, B. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat. Med. 26, 878–885 (2020).

17.          Beider, K. et al. The mTOR inhibitor everolimus overcomes CXCR4-mediated resistance to histone deacetylase inhibitor panobinostat through inhibition of p21 and mitotic regulators. Biochem. Pharmacol. 168, 412–428 (2019).

18.          Hagbi-Levi, S. et al. Promiscuous Chemokine Antagonist (BKT130) Suppresses Laser-Induced Choroidal Neovascularization by Inhibition of Monocyte Recruitment. J. Immunol. Res. 2019, (2019).

19.          Peled, A., Klein, S., Beider, K., Burger, J. A. & Abraham, M. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine 109, 11–16 (2018).

20.          Ella, E. et al. Matrix metalloproteinase 12 promotes tumor propagation in the lung. J. Thorac. Cardiovasc. Surg. 155, 2164-2175.e1 (2018).

21.          Klein, S. et al. CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/ 16-1–mediated ERK and BCL2/Cyclin D1 pathways. Cancer Res. 78, 1471–1483 (2018).

22.          Peled, A. & Nagler, A. NK cell destiny after haploSCT with PT-Cy. Blood 131, 161–162 (2018).

23.          Abraham, M. et al. Development of novel promiscuous anti-chemokine peptibodies for treating autoimmunity and inflammation. Front. Immunol. 8, (2017).

24.          Abraham, M. et al. Single dose of the CXCR4 antagonist BL-8040 induces rapid mobilization for the collection of human CD34 + cells in healthy volunteers. Clin. Cancer Res. 23, 6790–6801 (2017).

25.          Abraham, M. et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia 31, 2336–2346 (2017).

26.          Abraham, M., Karni, A., Mausner-Fainberg, K., Weiss, I. D. & Peled, A. Natural and induced immunization against CCL20 ameliorate experimental autoimmune encephalitis and may confer protection against multiple sclerosis. Clin. Immunol. 183, 316–324 (2017).

27.          Lanton, T. et al. Interleukin 6–dependent genomic instability heralds accelerated carcinogenesis following liver regeneration on a background of chronic hepatitis. Hepatology 65, 1600–1611 (2017).

28.          Beider, K. et al. The sphingosine-1-phosphate modulator FTY720 targets multiple myeloma via the CXCR4/CXCL12 pathway. Clin. Cancer Res. 23, 1733–1747 (2017).

29.          Hagbi-Levi, S. et al. Proangiogenic characteristics of activated macrophages from patients with age-related macular degeneration. Neurobiol. Aging 51, 71–82 (2017).

30.          Randhawa, S. et al. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 174, 425–436 (2016).

31.          Matza, D. et al. T cell receptor mediated calcium entry requires alternatively spliced Cav1.1 channels. PLoS One 11, (2016).

32.          Weiss, I. D. et al. In the hunt for therapeutic targets: Mimicking the growth, metastasis, and stromal associations of early-stage lung cancer using a novel orthotopic animal model. J. Thorac. Oncol. 10, 46–58 (2015).

33.          Horwitz, M. E. et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J. Clin. Invest. 124, 3121–3128 (2014).

34.          Peled, A. et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clin. Cancer Res. 20, 469–479 (2014).

35.          Beider, K. et al. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 5, 11283–11296 (2014).

36.          Beider, K. et al. Combination of imatinib with CXCR4 Antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol. Cancer Ther. 13, 1155–1169 (2014).

37.          Abraham, M. et al. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production. Br. J. Haematol. 163, 248–259 (2013).

38.          Peled, A. & Tavor, S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 3, 34–39 (2013).

39.          Barashi, N. et al. Inflammation-induced hepatocellular carcinoma is dependent on CCR5 in mice. Hepatology 58, 1021–1030 (2013).

40.          Beider, K. et al. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin. Cancer Res. 19, 3495–3507 (2013).

41.          Potikha, T. et al. Interstrain differences in chronic hepatitis and tumor development in a murine model of inflammation-mediated hepatocarcinogenesis. Hepatology 58, 192–204 (2013).

42.          Eldor, R. et al. Inhibition of Nuclear Factor-κB Activation in Pancreatic β-Cells Has a Protective Effect on Allogeneic Pancreatic Islet Graft Survival. PLoS One 8, (2013).

43.          Peled, A. Microenvironmental mediators as therapeutic targets in malignancy. in The Inflammatory Milieu of Tumors: Cytokines and Chemokines that Affect Tumor Growth and Metastasis 155–167 (Bentham Science Publishers Ltd., 2012). doi:10.2174/978160805256111201010155.

44.          Fahham, D. et al. In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 144, 1167-1175.e1 (2012).

45.          Grunin, M., Burstyn-Cohen, T., Hagbi-Levi, S., Peled, A. & Chowers, I. Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 53, 5292–5300 (2012).

46.          Peled, A., Wald, O. & Burger, J. Development of novel CXCR4-based therapeutics. Expert Opin. Investig. Drugs 21, 341–353 (2012).

47.          Jacobson, O. et al. Improvement of CXCR4 tracer specificity for PET imaging. J. Control. Release 157, 216–223 (2012).

48.          Peled, A. & Nagler, A. Role of the CXCR4/CXCL12 axis in hematopoietic stem cell trafficking. in Novel Developments in Stem Cell Mobilization: Focus on CXCR4 71–85 (Springer US, 2012). doi:10.1007/978-1-4614-1960-0_5.

49.          Josefsberg Ben-Yehoshua, L. et al. Characterization of cyclin E expression in multiple myeloma and its functional role in seliciclib-induced apoptotic cell death. PLoS One 7, (2012).

50.          Peled, T. et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp. Hematol. 40, 342-355.e1 (2012).

51.          Mishalian, I. et al. Recruited macrophages control dissemination of group A Streptococcus from infected soft tissues. J. Immunol. 187, 6022–6031 (2011).

52.          Kirshberg, S. et al. Involvement of CCR6/CCL20/IL-17 axis in NSCLC disease progression. PLoS One 6, (2011).

53.          Wald, O. et al. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: Role in non-small cell lung cancer tumor proliferation. J. Thorac. Cardiovasc. Surg. 141, 1503–1512 (2011).

54.          Weiss, I. D. et al. Ccr5 deficiency regulates the proliferation and trafficking of natural killer cells under physiological conditions. Cytokine 54, 249–257 (2011).

55.          Burger, J. A., Stewart, D. J., Wald, O. & Peled, A. Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Rev. Anticancer Ther. 11, 621–630 (2011).

56.          Beider, K. et al. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp. Hematol. 39, 282–292 (2011).

57.          Weiss, I. D. et al. IFN-γ treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner. J. Interf. Cytokine Res. 30, 439–449 (2010).

58.          Rudich, N. et al. Focal liver necrosis appears early after partial hepatectomy and is dependent on T cells and antigen delivery from the gut. Liver Int. 29, 1273–1284 (2009).

59.          Darash-Yahana, M. et al. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS One 4, (2009).

60.          Hayun, M. et al. Induction therapy in a multiple myeloma mouse model using a combination of AS101 and melphalan, and the activity of AS101 in a tumor microenvironment model. Exp. Hematol. 37, 593–603 (2009).

61.          Beider, K. et al. Interaction between CXCR4 and CCL20 pathways regulates tumor growth. PLoS One 4, (2009).

62.          Abraham, M. et al. The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia 23, 1378–1388 (2009).

63.          Burger, J. A. & Peled, A. CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia 23, 43–52 (2009).

64.          Lapidot, A. et al. NeoR6 inhibits HIV-1-CXCR4 interaction without affecting CXCL12 chemotaxis activity. Biochim. Biophys. Acta - Gen. Subj. 1780, 914–920 (2008).

65.          Beider, K., Abraham, M. & Peled, A. Chemokines and chemokine receptors in stem cell circulation. Front. Biosci. 13, 6820–6833 (2008).

66.          Abraham, M. et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4f-benzoyl-TN14003. Stem Cells 25, 2158–2166 (2007).

67.          Wald, O., Weiss, I. D., Galun, E. & Peled, A. Chemokines in hepatitis C virus infection: Pathogenesis, prognosis and therapeutics. Cytokine 39, 50–62 (2007).

68.          Gavish, M., Peled, A. & Chor, B. Genetic code symmetry and efficient design of GC-constrained coding sequences. Bioinformatics 23, e57–e63 (2007).

69.          Hayun, M. et al. The immunomodulator AS101 induces growth arrest and apoptosis in Multiple Myeloma: Association with the Akt/Survivin pathway. Biochem. Pharmacol. 72, 1423–1431 (2006).

70.          Wald, O. et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J. Immunol. 177, 6983–6990 (2006).

71.          Hidalgo-Grass, C. et al. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J. 25, 4628–4637 (2006).

72.          Dagan-Berger, M. et al. Role of CXCR3 carboxyl terminus and third intracellular loop in receptor-mediated migration, adhesion and internalization in response to CXCL11. Blood 107, 3821–3831 (2006).

73.          Wald, O. et al. IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. J. Immunol. 176, 4716–4729 (2006).

74.          Eldor, R. et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc. Natl. Acad. Sci. U. S. A. 103, 5072–5077 (2006).

75.          Avniel, S. et al. Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J. Invest. Dermatol. 126, 468–476 (2006).

76.          Ahlenstiel, G. et al. Distribution and effects of polymorphic RANTES gene alleles in HIV/HCV coinfection - A prospective cross-sectional study. World J. Gastroenterol. 11, 7631–7638 (2005).

77.          Byk, T. et al. Cycling G1 CD34+/CD38+ cells potentiate the motility and engraftment of quiescent G0 CD34+/CD38-/low severe combined immunodeficiency repopulating cells. Stem Cells 23, 561–574 (2005).

78.          Petit, I. et al. Atypical PKC-ζ regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J. Clin. Invest. 115, 168–176 (2005).

79.          Wald, O. et al. The CCR5Δ32 allele is associated with reduced liver inflammation in hepatitis C virus infection. Eur. J. Immunogenet. 31, 249–252 (2004).

80.          Darash-Yahana, M. et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 18, 1240–1242 (2004).

81.          Franitza, S. et al. Differential usage of VLA-4 and CXCR4 by CD3+CD56+ NKT cells and CD56+CD16+ NK cells regulates their interaction with endothelial cells. Eur. J. Immunol. 34, 1333–1341 (2004).

82.          Spiegel, A. et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103, 2900–2907 (2004).

83.          Wald, O. et al. Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. Eur. J. Immunol. 34, 1164–1174 (2004).

84.          Samira, S. et al. Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice. Stem Cells 22, 1085–1100 (2004).

85.          Beider, K. et al. Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood 102, 1951–1958 (2003).

86.          Hanna, J. et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 102, 1569–1577 (2003).

87.          Kollet, O. et al. Human CD34+CXCR4- sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood 100, 2778–2786 (2002).

88.          Peled, A. et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 20, 259–266 (2002).

89.          Yam, D., Peled, A. & Shinitzky, M. Suppression of tumor growth and metastasis by dietary fish oil combined with vitamins E and C and cisplatin. Cancer Chemother. Pharmacol. 47, 34–40 (2001).

90.          Kollet, O. et al. Rapid and efficient homing of human CD34+CD38-/lowCXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood 97, 3283–3291 (2001).

91.          Mittelman, M., Neumann, D., Peled, A., Kanter, P. & Haran-Ghera, N. Erythropoietin induces tumor regression and antitumor immune responses in murine myeloma models. Proc. Natl. Acad. Sci. U. S. A. 98, 5181–5186 (2001).

92.          Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med. 192, 495–505 (2000).

93.          Gonzalo, J.-A. et al. Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1α in the inflammatory component of allergic airway disease. J. Immunol. 165, 499–508 (2000).

94.          Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: Role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289–3296 (2000).

95.          Kollet, O. et al. β2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 95, 3102–3105 (2000).

96.          Goldman, Y., Peled, A. & Shinitzky, M. Effective elimination of lung metastases induced by tumor cells treated with hydrostatic pressure and N-acetyl-L-cysteine. Cancer Res. 60, 350–358 (2000).

97.          Ponomaryov, T. et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Invest. 106, 1331–1339 (2000).

98.          Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (80-. ). 283, 845–848 (1999).

99.          Peled, A., Leykin, I., Deckmann, M. & Shinitzky, M. Evaluation of immune memory of human lymphocytes engrafted in SCID mice. Immunobiology 201, 145–150 (1999).

100.        Peled, A. et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J. Clin. Invest. 104, 1199–1211 (1999).

101.        Peled, A., Gonzalo, J. A., Lloyd, C. & Gutierrez-Ramos, J.-C. The chemotactic cytokine Eotaxin acts as a granulocyte-macrophage colony-stimulating factor during lung inflammation. Blood 91, 1909–1916 (1998).

102.        Carramolino, L. et al. Erratum: SA-1, a nuclear protein encoded by one member of a novel gene family: Molecular cloning and detection in hemopoietic organs (Gene (1997) 195 (151-159)). Gene 206, 283–285 (1998).

103.        Wolkowicz, R., Peled, A., Elkind, N. B. & Rotter, V. DNA-binding activity of wild-type p53 protein is mediated by the central part of the molecule and controlled by its C terminus. Cancer Detect. Prev. 22, 1–13 (1998).

104.        Daniel, Y., Peled, A., Huszar, M. & Shinitzky, M. Dietary fish oil suppresses tumor growth and metastasis of Lewis lung carcinoma in mice. J. Nutr. Biochem. 8, 619–622 (1997).

105.        Carramolino, L. et al. SA-1, a nuclear protein encoded by one member of a novel gene family: Molecular cloning and detection in hemopoietic organs. Gene 195, 151–159 (1997).

106.        Haran-Ghera, N. et al. Increased circulating colony-stimulating factor-1 (CSF-1) in SJL/J mice with radiation-induced acute myeloid leukemia (AML) is associated with autocrine regulation of AML cells by CSF-1. Blood 89, 2537–2545 (1997).

107.        Almog, N. et al. The murine C’-terminally alternatively spliced form of p53 induces attenuated apoptosis in myeloid cells. Mol. Cell. Biol. 17, 713–722 (1997).

108.        Peled, A. et al. Nuclear antigen expressed by proliferating cells. Hybridoma 16, 325–334 (1997).

109.        Schwartz, D., Almog, N., Peled, A., Goldfinger, N. & Rotter, V. Role of wild type p53 in the G2 phase: Regulation of the γ-irradiation-induced delay and DNA repair. Oncogene 15, 2597–2607 (1997).

110.        Aparicio, J. et al. The murine stromal cell line 14F1.1 secretes A putative novel growth factor for progenitor cells. Exp. Hematol. 24, 1118 (1996).

111.        Peled, A. et al. The role of p53 in the induction of polyploidity of myelomonocytic leukemic M1/2 cells. Oncogene 13, 1677–1685 (1996).

112.        Peled, A., Zipori, D. & Rotter, V. Cooperation between p53-dependent and p53-independent apoptotic pathways in myeloid cells. Cancer Res. 56, 2148–2156 (1996).

113.        Sternberg, D. et al. Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: Stromal phenotypic plasticity and modified myelopoietic functions. Cytokines Mol. Ther. 2, 29–38 (1996).

114.        Lee, B.-C. et al. A hematopoietic organ-specific 49-kD nuclear antigen: Predominance in immature normal and tumor granulocytes and detection in hematopoietic precursor cells. Blood 87, 2283–2291 (1996).

115.        Peled, A. et al. Interaction between leukemia cells and bone marrow stromal cellss: Stroma-supported growth vs. serum dependence and the roles of TGF-β and M-CSF. Exp. Hematol. 24, 728–737 (1996).

116.        Wolkowicz, R., Peled, A., Elkind, N. B. & Rotter, V. Augmented DNA-binding activity of p53 protein encoded by a carboxyl-terminal alternatively spliced mRNA is blocked by p53 protein encoded by the regularly spliced form. Proc. Natl. Acad. Sci. U. S. A. 92, 6842–6846 (1995).

117.        Haran-Ghera, N. et al. The effects of passive antiviral immunotherapy in AKR mice: I. The susceptibility of AKR mice to spontaneous and induced t cell lymphomagenesis. Leukemia 9, 1199–1206 (1995).

118.        Peled, A., Tzehoval, E. & Haran-Ghera, N. Role of cytokines in termination of the B cell lymphoma dormant state in AKR mice. Leukemia 9, 1095–1101 (1995).

119.        Haran-Ghera, N. et al. The effects of passive anti-viral immunotherapy in AKR mice: II susceptibility to B cell lymphomagenesis. Leukemia 9, 1940–1947 (1995).

120.        Benayahu, D., Peled, A. & Zipori, D. Myeloblastic cell line expresses osteoclastic properties following coculture with marrow stromal adipocytes. J. Cell. Biochem. 56, 374–384 (1994).

121.        Rosner, A., Peled, A., Haran-Ghera, N. & Canaani, E. Analysis of Ly-1+ B-Cell Populations and IgH Rearrangements in “Normal” Spleens and in Lymphomas of AKR/J and AKR Fv-1b Mice. Cancer Res. 53, 2147–2153 (1993).

122.        Haran-Ghera, N., Peled, A., Kay Brightman, B. & Fan, H. Lymphomagenesis in AKRJ?v-lb Congenic Mice. Cancer Res. 53, 3433–3438 (1993).

123.        Defresne, M.-P. et al. Mixed phenotype murine leukemias. Leukemia 7, 1253–1260 (1993).

124.        Haran-Ghera, N., Peled, A., Brightman, B. K. & Fan, H. Termination of the B cell lymphoma dormant state in thymectomized AKR mice. J. Immunol. 148, 2947–2952 (1992).

125.        Resnitzky, P. et al. Absence of negative growth regulation in three new murine radiation-induced myeloid leukemia cell lines with deletion of chromosome 2. Leukemia 6, 1288–1295 (1992).

126.        Haran-Ghera, N., Peled, A., Krautghamer, R. & Resnitzky, P. Initiation and promotion in radiation-induced myeloid leukemia. Leukemia 6, 689–695 (1992).

127.        Irlin, Y. & Peled, A. Thy-1 antigen-mediated adhesion of mouse lymphoid cells to stromal cells of haemopoetic origin. Immunol. Lett. 33, 233–237 (1992).

128.        Shaulsky, G., Goldfinger, N., Peled, A. & Rotter, V. Involvement of wild-type p53 in pre-B-cell differentiation in vitro. Proc. Natl. Acad. Sci. U. S. A. 88, 8982–8986 (1991).

129.        Peled, A., Zipori, D., Abramsky, O., Ovadia, H. & Shezen, E. Expression of α-smooth muscle actin in murine bone marrow stromal cells. Blood 78, 304–309 (1991).

130.        Peled, A., Kalai, M., Toledo, J. & Zipori, D. Stroma-cell dependent hematopoiesis. Semin. Hematol. 28, 132–137 (1991).

131.        Shaulsky, G., Goldfinger, N., Peled, A. & Rotter, V. Involvement of wild-type p53 protein in the cell cycle requires nuclear localization. Cell Growth Differ. 2, 661–667 (1991).

132.        Haran-Ghera, N. & Peled, A. II. Prevention of spontaneous AKR T cell lymphomagenesis by elimination of potential lymphoma cells with antibody to specific gp 71 determinants. Virology 181, 536–540 (1991).

133.        Peled, A. & Haran-Ghera, N. I. Prevention of spontaneous AKR T cell lymphomagenesis by 24-666, a virus isolated from an AKR B cell lymphoma. Virology 181, 528–535 (1991).

134.        Haran-Ghera, N. & Peled, A. Validity of the in vitro system as a correlate of the in vivo model of RadLV lymphomagenesis. Leukemia 5, 500–503 (1991).

135.        Halevy, O., Rodel, J., Peled, A. & Oren, M. Frequent p53 mutations in chemically induced murine fibrosarcoma. Oncogene 6, 1593–1600 (1991).

136.        Gokhman, I., Peled, A. & Haran-Ghera, N. Characteristics of Potential Lymphoma-inducing Cells in Mice Sensitive or Resistant to Lymphomagenesis by Radiation Leukemia Virus Variants. Cancer Res. 50, 2554–2561 (1990).

137.        Haran-Ghera, N., Trakhtenbrot, L., Resnitzky, P. & Peled, A. Preleukemia in experimental leukemogenesis. Haematol. Blood Transfus. 32, 243–249 (1989).

138.        Peled, A. & Haran-Ghera, N. Intervention in potential leukemic cell migration pathway affects leukemogenesis. Haematol. Blood Transfus. 32, 237–242 (1989).

139.        Peled, A. & Haran-Ghera, N. Prevention of T-cell lymphoma in AKR/J mcie. Leukemia 2, 125s-131s (1988).

140.        Resnitzky, P., Bustan, A., Peled, A. & Marikovsky, Y. Variations in surface charge distribution of leukemic and non-leukemic transformed cells. Leuk. Res. 12, 315–320 (1988).

141.        Haran-Ghera, N., Peled, A., Leef, F., Hoffman, A. D. & Levy, J. A. Enhanced AKR leukemogenesis by the dual tropic viruses. I. The time and site of origin of potential leukemic cells. Leukemia 1, 442–449 (1987).

142.        Peled, A., Hoffman, A. D., Levy, J. A. & Haran-Ghera, N. Enhanced AKR leukemogenesis by the dual tropic viruses. II. Effect on cell-mediated immune responses. Leukemia 1, 450–456 (1987).

143.        Trakhtenbrot, L., Peled, A. & Haran‐Ghera, N. Cytogenetic studies on B‐cell leukemias of akr origin. Int. J. Cancer 39, 380–384 (1987).

144.        Peled, A. & Haran-Ghera, N. High incidence of b cell lymphomas derived from thymectomized akr mice expressing TL.4 antigen. J. Exp. Med. 162, 1081–1086 (1985).

145.        Katz, E., Peled, A. & Haran-Ghera, N. Changes of H-2 antigen expression on thymocytes during leukemia development by radiation leukemia virus. Leuk. Res. 9, 1219–1225 (1985).

146.        Peled, A. & Haran‐Ghera, N. Age‐related expression of TL antigen in AKR/J mice. Int. J. Cancer 34, 121–126 (1984).

147.        Weinberger, A. et al. Infiltration of leukemic cells into muscles adjacent to joints of mice with leukemia. Isr. J. Med. Sci. 18, 1057–1059 (1982).

148.        Peled, A., Perk, K., Haran-Ghera, N. & Chirigos, M. A. The oncostatic effect of methyl-CCNU on various experimental lymphoreticular neoplasms. Leuk. Res. 6, 89–95 (1982).

149.        Lonai, P., Katz, E., Peled, A. & Haran-Ghera, N. H-2I-linked control of immunological resistance to viral leukemogenesis as a response to preleukemic cells. Immunogenetics 12, 423–432 (1981).

150.        Haran-Ghera, N., Krauthgamer, R. & Peled, A. Malignant cell arrest in thymus and spleen of mice bearing transplanted tumors. J. Immunol. 126, 1241–1244 (1981).

151.        Geltner, D. & Peled, A. Absorption of serum antinuclear antibodies. Clin. Immunol. Immunopathol. 13, 237–245 (1979).

152.        Haran-Ghera, N. & Peled, A. Induction of leukemia in mice by irradiation and radiation leukemia virus variants. Advances in Cancer Research vol. 30 45–87 (1979).

153.        Peled, A., Ben-Yaakov, M. & Brami, S. The effect of lymphoreticular neoplasms on the age dependent increase of antinuclear antibodies. J. Clin. Lab. Immunol. 2, 255–260 (1979).

154.        Peled, A. & Haran-ghera, N. Lack of transformation of murine thymocytes by thymic epithelium [24]. Nature 274, 266–269 (1978).

155.        Peled, A. Cellular immune response induced by the radiation leukemia virus (RadLV). Leuk. Res. 1, 333–343 (1977).

156.        Haran Ghera, N., Ben Yaakov, M. & Peled, A. Immunologic characteristics in relation to high and low leukemogenic activity of radiation leukemia virus variants. I. Cellular analysis of immunosuppression. J. Immunol. 118, 600–606 (1977).

157.        Haran Ghera, N., Ben Yaakov, M., Chazan, R. & Peled, A. Pathways in thymus and bone marrow derived lymphatic leukemia in mice. Bibl. Haematol. no.40, 133–141 (1975).

158.        Peled, A. & Berke, G. Proceedings: Cell-mediated anti-leukemic cell immunity in C57BL/6 mice injected with the radiation leukemic virus. Isr. J. Med. Sci. 11, 1396 (1975).

159.        Peled, A. & Haran Ghera, N. The cellular basis of immunosuppression caused by the radiation leukaemia virus. Immunology 26, 323–329 (1974).

160.        Haran-Ghera, N. & Peled, A. Thymus and bone marrow derived lymphatic leukaemia in mice [7]. Nature 241, 396–398 (1973).

161.        Haran-Ghera, N., Ben-Yaakov, M., Peled, A. & Bentwich, Z. Immune status of sjl/j mice in relation to age and spontaneous tumor development. J. Natl. Cancer Inst. 50, 1227–1235 (1973).

162.        Peled, A. & Haran-Ghera, N. Immunological studies on the radiation leukaemia virus in C57BL mice. Nat. New Biol. 232, 244–245 (1971).

163.        Peled, A. & Haran‐Ghera, N. Immunosuppression by the radiation leukemia virus and its relation to lymphatic leukemia development. Int. J. Cancer 8, 97–106 (1971).

164.        Haran-Ghera, N. & Peled, A. The mechanism of radiation action in leukemogenesis. IV. Immune impairment as a coleukemogenic factor. Isr. J. Med. Sci. 4, 1181–1187 (1968).

165.        Haran-Ghera, N. & Peled, A. The mechanism of radiation action in leukaemogenesis. Isolation of a leukaemogenic filtrable agent from tissues of irradiated and normal c57bl mice. Br. J. Cancer 21, 730 (1967).

166.        Avigdor, A. et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103, 2981–2989 (2004).