Last updated May 2025- Gene Therapy
1. Mor, A. et al. Targeting CCL24 in Inflammatory and Fibrotic Diseases: Rationale and Results from Three CM-101 Phase 1 Studies. Drug Saf. 47, 869–881 (2024).
2. Greenman, R. et al. The Role of CCL24 in Primary Sclerosing Cholangitis: Bridging Patient Serum Proteomics to Preclinical Data. Cells 13, (2024).
3. Stern, E. et al. CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma. Biomedicines 11, (2023).
4. Greenman, R. et al. CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis. JCI Insight 8, (2023).
5. Rosenberg, N. et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. J. Hepatol. 77, 1631–1641 (2022).
6. Beider, K. et al. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J. Hematol. Oncol. 15, (2022).
7. Cendrowicz, E. et al. DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity. J. Exp. Clin. Cancer Res. 41, (2022).
8. Paldor, M. et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol. Med. 14, (2022).
9. Rodionov, G. et al. Short treatment of peripheral blood cells product with Fas ligand using closed automated cell processing system significantly reduces immune cell reactivity of the graft in vitro and in vivo. Bone Marrow Transplant. 57, 1250–1259 (2022).
10. Bockorny, B. et al. Motixafortide and pembrolizumab combined to nanoliposomal irinotecan, fluorouracil, and folinic acid in metastatic pancreatic cancer: The COMBAT/ KEYNOTE-202 trial. Clin. Cancer Res. 27, 5020–5027 (2021).
11. Shriki, A. et al. Multiple roles of il6 in hepatic injury, steatosis, and senescence aggregate to suppress tumorigenesis. Cancer Res. 81, 4766–4777 (2021).
12. Borthakur, G. et al. BL-8040 CXCR4 antagonist is safe and demonstrates antileukemic activity in combination with cytarabine for the treatment of relapsed/refractory acute myelogenous leukemia: An open-label safety and efficacy phase 2a study. Cancer 127, 1246–1259 (2021).
13. Becker-Herman, S. et al. CD74 is a regulator of hematopoietic stem cell maintenance. PLoS Biol. 19, (2021).
14. Beider, K. et al. Blocking of Transient Receptor Potential Vanilloid 1 (TRPV1) promotes terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting ubiquitin pathway and bortezomib-induced unfolded protein response. J. Hematol. Oncol. 13, (2020).
15. Levy-Barazany, H. et al. Brief ex vivo Fas-ligand incubation attenuates GvHD without compromising stem cell graft performance. Bone Marrow Transplant. 55, 1305–1316 (2020).
16. Bockorny, B. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat. Med. 26, 878–885 (2020).
17. Beider, K. et al. The mTOR inhibitor everolimus overcomes CXCR4-mediated resistance to histone deacetylase inhibitor panobinostat through inhibition of p21 and mitotic regulators. Biochem. Pharmacol. 168, 412–428 (2019).
18. Hagbi-Levi, S. et al. Promiscuous Chemokine Antagonist (BKT130) Suppresses Laser-Induced Choroidal Neovascularization by Inhibition of Monocyte Recruitment. J. Immunol. Res. 2019, (2019).
19. Peled, A., Klein, S., Beider, K., Burger, J. A. & Abraham, M. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine 109, 11–16 (2018).
20. Ella, E. et al. Matrix metalloproteinase 12 promotes tumor propagation in the lung. J. Thorac. Cardiovasc. Surg. 155, 2164-2175.e1 (2018).
21. Klein, S. et al. CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/ 16-1–mediated ERK and BCL2/Cyclin D1 pathways. Cancer Res. 78, 1471–1483 (2018).
22. Peled, A. & Nagler, A. NK cell destiny after haploSCT with PT-Cy. Blood 131, 161–162 (2018).
23. Abraham, M. et al. Development of novel promiscuous anti-chemokine peptibodies for treating autoimmunity and inflammation. Front. Immunol. 8, (2017).
24. Abraham, M. et al. Single dose of the CXCR4 antagonist BL-8040 induces rapid mobilization for the collection of human CD34 + cells in healthy volunteers. Clin. Cancer Res. 23, 6790–6801 (2017).
25. Abraham, M. et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia 31, 2336–2346 (2017).
26. Abraham, M., Karni, A., Mausner-Fainberg, K., Weiss, I. D. & Peled, A. Natural and induced immunization against CCL20 ameliorate experimental autoimmune encephalitis and may confer protection against multiple sclerosis. Clin. Immunol. 183, 316–324 (2017).
27. Lanton, T. et al. Interleukin 6–dependent genomic instability heralds accelerated carcinogenesis following liver regeneration on a background of chronic hepatitis. Hepatology 65, 1600–1611 (2017).
28. Beider, K. et al. The sphingosine-1-phosphate modulator FTY720 targets multiple myeloma via the CXCR4/CXCL12 pathway. Clin. Cancer Res. 23, 1733–1747 (2017).
29. Hagbi-Levi, S. et al. Proangiogenic characteristics of activated macrophages from patients with age-related macular degeneration. Neurobiol. Aging 51, 71–82 (2017).
30. Randhawa, S. et al. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 174, 425–436 (2016).
31. Matza, D. et al. T cell receptor mediated calcium entry requires alternatively spliced Cav1.1 channels. PLoS One 11, (2016).
32. Weiss, I. D. et al. In the hunt for therapeutic targets: Mimicking the growth, metastasis, and stromal associations of early-stage lung cancer using a novel orthotopic animal model. J. Thorac. Oncol. 10, 46–58 (2015).
33. Horwitz, M. E. et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J. Clin. Invest. 124, 3121–3128 (2014).
34. Peled, A. et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clin. Cancer Res. 20, 469–479 (2014).
35. Beider, K. et al. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 5, 11283–11296 (2014).
36. Beider, K. et al. Combination of imatinib with CXCR4 Antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol. Cancer Ther. 13, 1155–1169 (2014).
37. Abraham, M. et al. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production. Br. J. Haematol. 163, 248–259 (2013).
38. Peled, A. & Tavor, S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 3, 34–39 (2013).
39. Barashi, N. et al. Inflammation-induced hepatocellular carcinoma is dependent on CCR5 in mice. Hepatology 58, 1021–1030 (2013).
40. Beider, K. et al. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin. Cancer Res. 19, 3495–3507 (2013).
41. Potikha, T. et al. Interstrain differences in chronic hepatitis and tumor development in a murine model of inflammation-mediated hepatocarcinogenesis. Hepatology 58, 192–204 (2013).
42. Eldor, R. et al. Inhibition of Nuclear Factor-κB Activation in Pancreatic β-Cells Has a Protective Effect on Allogeneic Pancreatic Islet Graft Survival. PLoS One 8, (2013).
43. Peled, A. Microenvironmental mediators as therapeutic targets in malignancy. in The Inflammatory Milieu of Tumors: Cytokines and Chemokines that Affect Tumor Growth and Metastasis 155–167 (Bentham Science Publishers Ltd., 2012). doi:10.2174/978160805256111201010155.
44. Fahham, D. et al. In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 144, 1167-1175.e1 (2012).
45. Grunin, M., Burstyn-Cohen, T., Hagbi-Levi, S., Peled, A. & Chowers, I. Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 53, 5292–5300 (2012).
46. Peled, A., Wald, O. & Burger, J. Development of novel CXCR4-based therapeutics. Expert Opin. Investig. Drugs 21, 341–353 (2012).
47. Jacobson, O. et al. Improvement of CXCR4 tracer specificity for PET imaging. J. Control. Release 157, 216–223 (2012).
48. Peled, A. & Nagler, A. Role of the CXCR4/CXCL12 axis in hematopoietic stem cell trafficking. in Novel Developments in Stem Cell Mobilization: Focus on CXCR4 71–85 (Springer US, 2012). doi:10.1007/978-1-4614-1960-0_5.
49. Josefsberg Ben-Yehoshua, L. et al. Characterization of cyclin E expression in multiple myeloma and its functional role in seliciclib-induced apoptotic cell death. PLoS One 7, (2012).
50. Peled, T. et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp. Hematol. 40, 342-355.e1 (2012).
51. Mishalian, I. et al. Recruited macrophages control dissemination of group A Streptococcus from infected soft tissues. J. Immunol. 187, 6022–6031 (2011).
52. Kirshberg, S. et al. Involvement of CCR6/CCL20/IL-17 axis in NSCLC disease progression. PLoS One 6, (2011).
53. Wald, O. et al. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: Role in non-small cell lung cancer tumor proliferation. J. Thorac. Cardiovasc. Surg. 141, 1503–1512 (2011).
54. Weiss, I. D. et al. Ccr5 deficiency regulates the proliferation and trafficking of natural killer cells under physiological conditions. Cytokine 54, 249–257 (2011).
55. Burger, J. A., Stewart, D. J., Wald, O. & Peled, A. Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Rev. Anticancer Ther. 11, 621–630 (2011).
56. Beider, K. et al. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp. Hematol. 39, 282–292 (2011).
57. Weiss, I. D. et al. IFN-γ treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner. J. Interf. Cytokine Res. 30, 439–449 (2010).
58. Rudich, N. et al. Focal liver necrosis appears early after partial hepatectomy and is dependent on T cells and antigen delivery from the gut. Liver Int. 29, 1273–1284 (2009).
59. Darash-Yahana, M. et al. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS One 4, (2009).
60. Hayun, M. et al. Induction therapy in a multiple myeloma mouse model using a combination of AS101 and melphalan, and the activity of AS101 in a tumor microenvironment model. Exp. Hematol. 37, 593–603 (2009).
61. Beider, K. et al. Interaction between CXCR4 and CCL20 pathways regulates tumor growth. PLoS One 4, (2009).
62. Abraham, M. et al. The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia 23, 1378–1388 (2009).
63. Burger, J. A. & Peled, A. CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia 23, 43–52 (2009).
64. Lapidot, A. et al. NeoR6 inhibits HIV-1-CXCR4 interaction without affecting CXCL12 chemotaxis activity. Biochim. Biophys. Acta - Gen. Subj. 1780, 914–920 (2008).
65. Beider, K., Abraham, M. & Peled, A. Chemokines and chemokine receptors in stem cell circulation. Front. Biosci. 13, 6820–6833 (2008).
66. Abraham, M. et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4f-benzoyl-TN14003. Stem Cells 25, 2158–2166 (2007).
67. Wald, O., Weiss, I. D., Galun, E. & Peled, A. Chemokines in hepatitis C virus infection: Pathogenesis, prognosis and therapeutics. Cytokine 39, 50–62 (2007).
68. Gavish, M., Peled, A. & Chor, B. Genetic code symmetry and efficient design of GC-constrained coding sequences. Bioinformatics 23, e57–e63 (2007).
69. Hayun, M. et al. The immunomodulator AS101 induces growth arrest and apoptosis in Multiple Myeloma: Association with the Akt/Survivin pathway. Biochem. Pharmacol. 72, 1423–1431 (2006).
70. Wald, O. et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J. Immunol. 177, 6983–6990 (2006).
71. Hidalgo-Grass, C. et al. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J. 25, 4628–4637 (2006).
72. Dagan-Berger, M. et al. Role of CXCR3 carboxyl terminus and third intracellular loop in receptor-mediated migration, adhesion and internalization in response to CXCL11. Blood 107, 3821–3831 (2006).
73. Wald, O. et al. IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. J. Immunol. 176, 4716–4729 (2006).
74. Eldor, R. et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc. Natl. Acad. Sci. U. S. A. 103, 5072–5077 (2006).
75. Avniel, S. et al. Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J. Invest. Dermatol. 126, 468–476 (2006).
76. Ahlenstiel, G. et al. Distribution and effects of polymorphic RANTES gene alleles in HIV/HCV coinfection - A prospective cross-sectional study. World J. Gastroenterol. 11, 7631–7638 (2005).
77. Byk, T. et al. Cycling G1 CD34+/CD38+ cells potentiate the motility and engraftment of quiescent G0 CD34+/CD38-/low severe combined immunodeficiency repopulating cells. Stem Cells 23, 561–574 (2005).
78. Petit, I. et al. Atypical PKC-ζ regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J. Clin. Invest. 115, 168–176 (2005).
79. Wald, O. et al. The CCR5Δ32 allele is associated with reduced liver inflammation in hepatitis C virus infection. Eur. J. Immunogenet. 31, 249–252 (2004).
80. Darash-Yahana, M. et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 18, 1240–1242 (2004).
81. Franitza, S. et al. Differential usage of VLA-4 and CXCR4 by CD3+CD56+ NKT cells and CD56+CD16+ NK cells regulates their interaction with endothelial cells. Eur. J. Immunol. 34, 1333–1341 (2004).
82. Spiegel, A. et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103, 2900–2907 (2004).
83. Wald, O. et al. Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. Eur. J. Immunol. 34, 1164–1174 (2004).
84. Samira, S. et al. Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice. Stem Cells 22, 1085–1100 (2004).
85. Beider, K. et al. Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood 102, 1951–1958 (2003).
86. Hanna, J. et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 102, 1569–1577 (2003).
87. Kollet, O. et al. Human CD34+CXCR4- sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood 100, 2778–2786 (2002).
88. Peled, A. et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 20, 259–266 (2002).
89. Yam, D., Peled, A. & Shinitzky, M. Suppression of tumor growth and metastasis by dietary fish oil combined with vitamins E and C and cisplatin. Cancer Chemother. Pharmacol. 47, 34–40 (2001).
90. Kollet, O. et al. Rapid and efficient homing of human CD34+CD38-/lowCXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood 97, 3283–3291 (2001).
91. Mittelman, M., Neumann, D., Peled, A., Kanter, P. & Haran-Ghera, N. Erythropoietin induces tumor regression and antitumor immune responses in murine myeloma models. Proc. Natl. Acad. Sci. U. S. A. 98, 5181–5186 (2001).
92. Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med. 192, 495–505 (2000).
1. Hagbi-Levi S, Abraham M, Gamaev L, et al. Identification of Dinaciclib and Ganetespib as anti-inflammatory drugs using a novel HTP screening assay that targets IFNγ-dependent PD-L1. Front Immunol. 2025;16. doi:10.3389/fimmu.2025.1502094
2. Greenman R, Snir T, Katav A, et al. The Role of CCL24 in Primary Sclerosing Cholangitis: Bridging Patient Serum Proteomics to Preclinical Data. Cells. 2024;13(3). doi:10.3390/cells13030209
3. Mor A, Friedman S, Hashmueli S, et al. Targeting CCL24 in Inflammatory and Fibrotic Diseases: Rationale and Results from Three CM-101 Phase 1 Studies. Drug Saf. 2024;47(9):869-881. doi:10.1007/s40264-024-01436-2
4. Greenman R, Segal-Salto M, Barashi N, et al. CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis. JCI Insight. 2023;8(12). doi:10.1172/jci.insight.162270
5. Stern E, Pines G, Lazar LO, et al. CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma. Biomedicines. 2023;11(2). doi:10.3390/biomedicines11020362
6. Cendrowicz E, Jacob L, Greenwald S, et al. DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity. J Exp Clin Cancer Res. 2022;41(1). doi:10.1186/s13046-022-02256-x
7. Rosenberg N, Van Haele M, Lanton T, et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. J Hepatol. 2022;77(6):1631-1641. doi:10.1016/j.jhep.2022.07.029
8. Beider K, Voevoda-Dimenshtein V, Zoabi A, et al. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J Hematol Oncol. 2022;15(1). doi:10.1186/s13045-022-01366-5
9. Rodionov G, Rosenzwaig M, Tzadok MS, et al. Short treatment of peripheral blood cells product with Fas ligand using closed automated cell processing system significantly reduces immune cell reactivity of the graft in vitro and in vivo. Bone Marrow Transplant. 2022;57(8):1250-1259. doi:10.1038/s41409-022-01698-3
10. Paldor M, Levkovitch-Siany O, Eidelshtein D, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med. 2022;14(8). doi:10.15252/emmm.202115653
11. Becker-Herman S, Rozenberg M, Hillel-Karniel C, et al. CD74 is a regulator of hematopoietic stem cell maintenance. PLoS Biol. 2021;19(3). doi:10.1371/journal.pbio.3001121
12. Bockorny B, Macarulla T, Semenisty V, et al. Motixafortide and pembrolizumab combined to nanoliposomal irinotecan, fluorouracil, and folinic acid in metastatic pancreatic cancer: The COMBAT/ KEYNOTE-202 trial. Clin Cancer Res. 2021;27(18):5020-5027. doi:10.1158/1078-0432.CCR-21-0929
13. Borthakur G, Ofran Y, Tallman MS, et al. BL-8040 CXCR4 antagonist is safe and demonstrates antileukemic activity in combination with cytarabine for the treatment of relapsed/refractory acute myelogenous leukemia: An open-label safety and efficacy phase 2a study. Cancer. 2021;127(8):1246-1259. doi:10.1002/cncr.33338
14. Shriki A, Lanton T, Sonnenblick A, et al. Multiple roles of il6 in hepatic injury, steatosis, and senescence aggregate to suppress tumorigenesis. Cancer Res. 2021;81(18):4766-4777. doi:10.1158/0008-5472.CAN-21-0321
15. Bockorny B, Semenisty V, Macarulla T, et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med. 2020;26(6):878-885. doi:10.1038/s41591-020-0880-x
16. Beider K, Rosenberg E, Dimenshtein-Voevoda V, et al. Blocking of Transient Receptor Potential Vanilloid 1 (TRPV1) promotes terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting ubiquitin pathway and bortezomib-induced unfolded protein response. J Hematol Oncol. 2020;13(1). doi:10.1186/s13045-020-00993-0
17. Levy-Barazany H, Shachnai-Pinkas L, Rodionov G, et al. Brief ex vivo Fas-ligand incubation attenuates GvHD without compromising stem cell graft performance. Bone Marrow Transplant. 2020;55(7):1305-1316. doi:10.1038/s41409-020-0941-2
18. Hagbi-Levi S, Abraham M, Tiosano L, et al. Promiscuous Chemokine Antagonist (BKT130) Suppresses Laser-Induced Choroidal Neovascularization by Inhibition of Monocyte Recruitment. J Immunol Res. 2019;2019. doi:10.1155/2019/8535273
19. Beider K, Bitner H, Voevoda-Dimenshtein V, et al. The mTOR inhibitor everolimus overcomes CXCR4-mediated resistance to histone deacetylase inhibitor panobinostat through inhibition of p21 and mitotic regulators. Biochem Pharmacol. 2019;168:412-428. doi:10.1016/j.bcp.2019.07.016
20. Peled A, Klein S, Beider K, Burger JA, Abraham M. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine. 2018;109:11-16. doi:10.1016/j.cyto.2018.02.020
21. Peled A, Nagler A. NK cell destiny after haploSCT with PT-Cy. Blood. 2018;131(2):161-162. doi:10.1182/blood-2017-10-811117
22. Ella E, Harel Y, Abraham M, et al. Matrix metalloproteinase 12 promotes tumor propagation in the lung. J Thorac Cardiovasc Surg. 2018;155(5):2164-2175.e1. doi:10.1016/j.jtcvs.2017.11.110
23. Klein S, Abraham M, Bulvik B, et al. CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/ 16-1–mediated ERK and BCL2/Cyclin D1 pathways. Cancer Res. 2018;78(6):1471-1483. doi:10.1158/0008-5472.CAN-17-0454
24. Abraham M, Wald H, Vaizel-Ohayon D, et al. Development of novel promiscuous anti-chemokine peptibodies for treating autoimmunity and inflammation. Front Immunol. 2017;8(NOV). doi:10.3389/fimmu.2017.01432
25. Beider K, Rosenberg E, Bitner H, et al. The sphingosine-1-phosphate modulator FTY720 targets multiple myeloma via the CXCR4/CXCL12 pathway. Clin Cancer Res. 2017;23(7):1733-1747. doi:10.1158/1078-0432.CCR-15-2618
26. Abraham M, Pereg Y, Bulvik B, et al. Single dose of the CXCR4 antagonist BL-8040 induces rapid mobilization for the collection of human CD34 + cells in healthy volunteers . Clin Cancer Res. 2017;23(22):6790-6801. doi:10.1158/1078-0432.CCR-16-2919
27. Hagbi-Levi S, Grunin M, Jaouni T, et al. Proangiogenic characteristics of activated macrophages from patients with age-related macular degeneration. Neurobiol Aging. 2017;51:71-82. doi:10.1016/j.neurobiolaging.2016.11.018
28. Abraham M, Klein S, Bulvik B, et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia. 2017;31(11):2336-2346. doi:10.1038/leu.2017.82
29. Abraham M, Karni A, Mausner-Fainberg K, Weiss ID, Peled A. Natural and induced immunization against CCL20 ameliorate experimental autoimmune encephalitis and may confer protection against multiple sclerosis. Clin Immunol. 2017;183:316-324. doi:10.1016/j.clim.2017.09.018
30. Lanton T, Shriki A, Nechemia-Arbely Y, et al. Interleukin 6–dependent genomic instability heralds accelerated carcinogenesis following liver regeneration on a background of chronic hepatitis. Hepatology. 2017;65(5):1600-1611. doi:10.1002/hep.29004
31. Randhawa S, Cho BS, Ghosh D, et al. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia. Br J Haematol. 2016;174(3):425-436. doi:10.1111/bjh.14075
32. Matza D, Badou A, Klemic KG, et al. T cell receptor mediated calcium entry requires alternatively spliced Cav1.1 channels. PLoS One. 2016;11(1). doi:10.1371/journal.pone.0147379
33. Weiss ID, Ella E, Dominsky O, et al. In the hunt for therapeutic targets: Mimicking the growth, metastasis, and stromal associations of early-stage lung cancer using a novel orthotopic animal model. J Thorac Oncol. 2015;10(1):46-58. doi:10.1097/JTO.0000000000000367
34. Horwitz ME, Chao NJ, Rizzieri DA, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 2014;124(7):3121-3128. doi:10.1172/JCI74556
35. Beider K, Darash-Yahana M, Blaier O, et al. Combination of imatinib with CXCR4 Antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol Cancer Ther. 2014;13(5):1155-1169. doi:10.1158/1535-7163.MCT-13-0410
36. Beider K, Bitner H, Leiba M, et al. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget. 2014;5(22):11283-11296. doi:10.18632/oncotarget.2207
37. Peled A, Abraham M, Avivi I, et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clin Cancer Res. 2014;20(2):469-479. doi:10.1158/1078-0432.CCR-13-1302
38. Potikha T, Stoyanov E, Pappo O, et al. Interstrain differences in chronic hepatitis and tumor development in a murine model of inflammation-mediated hepatocarcinogenesis. Hepatology. 2013;58(1):192-204. doi:10.1002/hep.26335
39. Eldor R, Abel R, Sever D, et al. Inhibition of Nuclear Factor-κB Activation in Pancreatic β-Cells Has a Protective Effect on Allogeneic Pancreatic Islet Graft Survival. PLoS One. 2013;8(2). doi:10.1371/journal.pone.0056924
40. Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics. 2013;3(1):34-39. doi:10.7150/thno.5150
41. Abraham M, Weiss ID, Wald H, et al. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production. Br J Haematol. 2013;163(2):248-259. doi:10.1111/bjh.12501
42. Beider K, Ribakovsky E, Abraham M, et al. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin Cancer Res. 2013;19(13):3495-3507. doi:10.1158/1078-0432.CCR-12-3015
43. Barashi N, Weiss ID, Wald O, et al. Inflammation-induced hepatocellular carcinoma is dependent on CCR5 in mice. Hepatology. 2013;58(3):1021-1030. doi:10.1002/hep.26403
44. Grunin M, Burstyn-Cohen T, Hagbi-Levi S, Peled A, Chowers I. Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci. 2012;53(9):5292-5300. doi:10.1167/iovs.11-9165
45. Peled T, Shoham H, Aschengrau D, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol. 2012;40(4):342-355.e1. doi:10.1016/j.exphem.2011.12.005
46. Josefsberg Ben-Yehoshua L, Beider K, Shimoni A, et al. Characterization of cyclin E expression in multiple myeloma and its functional role in seliciclib-induced apoptotic cell death. PLoS One. 2012;7(4):e33856. doi:10.1371/journal.pone.0033856
47. Peled A, Wald O, Burger J. Development of novel CXCR4-based therapeutics. Expert Opin Investig Drugs. 2012;21(3):341-353. doi:10.1517/13543784.2012.656197
48. Peled A, Nagler A. Role of the CXCR4/CXCL12 axis in hematopoietic stem cell trafficking. In: Novel Developments in Stem Cell Mobilization: Focus on CXCR4. Springer US; 2012:71-85. doi:10.1007/978-1-4614-1960-0_5
49. Peled A. Microenvironmental mediators as therapeutic targets in malignancy. In: The Inflammatory Milieu of Tumors: Cytokines and Chemokines That Affect Tumor Growth and Metastasis. Bentham Science Publishers Ltd.; 2012:155-167. doi:10.2174/978160805256111201010155
50. Jacobson O, Weiss ID, Szajek LP, et al. Improvement of CXCR4 tracer specificity for PET imaging. J Control Release. 2012;157(2):216-223. doi:10.1016/j.jconrel.2011.09.076
51. Fahham D, Weiss ID, Abraham M, et al. In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non–small cell lung cancer. J Thorac Cardiovasc Surg. 2012;144(5):1167-1175.e1. doi:10.1016/j.jtcvs.2012.07.031
52. Burger JA, Stewart DJ, Wald O, Peled A. Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Rev Anticancer Ther. 2011;11(4):621-630. doi:10.1586/era.11.11
53. Mishalian I, Ordan M, Peled A, et al. Recruited macrophages control dissemination of group A Streptococcus from infected soft tissues. J Immunol. 2011;187(11):6022-6031. doi:10.4049/jimmunol.1101385
54. Kirshberg S, Izhar U, Amir G, et al. Involvement of CCR6/CCL20/IL-17 axis in NSCLC disease progression. PLoS One. 2011;6(9). doi:10.1371/journal.pone.0024856
55. Beider K, Begin M, Abraham M, et al. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp Hematol. 2011;39(3):282-292. doi:10.1016/j.exphem.2010.11.010
56. Wald O, Izhar U, Amir G, et al. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: Role in non-small cell lung cancer tumor proliferation. J Thorac Cardiovasc Surg. 2011;141(6):1503-1512. doi:10.1016/j.jtcvs.2010.11.056
57. Weiss ID, Shoham H, Wald O, et al. Ccr5 deficiency regulates the proliferation and trafficking of natural killer cells under physiological conditions. Cytokine. 2011;54(3):249-257. doi:10.1016/j.cyto.2011.01.011
58. Weiss ID, Wald O, Wald H, et al. IFN-γ treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner. J Interf Cytokine Res. 2010;30(6):439-449. doi:10.1089/jir.2009.0084
59. Burger JA, Peled A. CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23(1):43-52. doi:10.1038/leu.2008.299
60. Hayun M, Saida H, Albeck M, Peled A, Haran-Ghera N, Sredni B. Induction therapy in a multiple myeloma mouse model using a combination of AS101 and melphalan, and the activity of AS101 in a tumor microenvironment model. Exp Hematol. 2009;37(5):593-603. doi:10.1016/j.exphem.2009.01.006
61. Darash-Yahana M, Gillespie JW, Hewitt SM, et al. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS One. 2009;4(8). doi:10.1371/journal.pone.0006695
62. Abraham M, Beider K, Wald H, et al. The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia. 2009;23(8):1378-1388. doi:10.1038/leu.2009.56
63. Rudich N, Zamir G, Pappo O, et al. Focal liver necrosis appears early after partial hepatectomy and is dependent on T cells and antigen delivery from the gut. Liver Int. 2009;29(8):1273-1284. doi:10.1111/j.1478-3231.2009.02048.x
64. Beider K, Abraham M, Begin M, et al. Interaction between CXCR4 and CCL20 pathways regulates tumor growth. PLoS One. 2009;4(4). doi:10.1371/journal.pone.0005125
65. Beider K, Abraham M, Peled A. Chemokines and chemokine receptors in stem cell circulation. Front Biosci. 2008;13(17):6820-6833. https://www.scopus.com/inward/record.uri?eid=2-s2.0-52049104887&partnerID=40&md5=1a92b663a90b925d708192d639545000
66. Lapidot A, Peled A, Berchanski A, et al. NeoR6 inhibits HIV-1-CXCR4 interaction without affecting CXCL12 chemotaxis activity. Biochim Biophys Acta - Gen Subj. 2008;1780(6):914-920. doi:10.1016/j.bbagen.2008.03.011
67. Gavish M, Peled A, Chor B. Genetic code symmetry and efficient design of GC-constrained coding sequences. In: Bioinformatics. Vol 23. Oxford University Press; 2007:e57-e63. doi:10.1093/bioinformatics/btl317
68. Wald O, Weiss ID, Galun E, Peled A. Chemokines in hepatitis C virus infection: Pathogenesis, prognosis and therapeutics. Cytokine. 2007;39(1):50-62. doi:10.1016/j.cyto.2007.05.013
69. Abraham M, Biyder K, Begin M, et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4f-benzoyl-TN14003. Stem Cells. 2007;25(9):2158-2166. doi:10.1634/stemcells.2007-0161
70. Hidalgo-Grass C, Mishalian I, Dan-Goor M, et al. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J. 2006;25(19):4628-4637. doi:10.1038/sj.emboj.7601327
71. Wald O, Weiss ID, Wald H, et al. IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. J Immunol. 2006;176(8):4716-4729. doi:10.4049/jimmunol.176.8.4716
72. Wald O, Izhar U, Amir G, et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J Immunol. 2006;177(10):6983-6990. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750795581&partnerID=40&md5=bb31c78ae9f7d28e6293dd40de612813
73. Dagan-Berger M, Feniger-Barish R, Avniel S, et al. Role of CXCR3 carboxyl terminus and third intracellular loop in receptor-mediated migration, adhesion and internalization in response to CXCL11. Blood. 2006;107(10):3821-3831. doi:10.1182/blood-2004-01-0214
74. Avniel S, Arik Z, Maly A, et al. Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J Invest Dermatol. 2006;126(2):468-476. doi:10.1038/sj.jid.5700069
75. Eldor R, Yeffet A, Baum K, et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A. 2006;103(13):5072-5077. doi:10.1073/pnas.0508166103
76. Hayun M, Naor Y, Weil M, et al. The immunomodulator AS101 induces growth arrest and apoptosis in Multiple Myeloma: Association with the Akt/Survivin pathway. Biochem Pharmacol. 2006;72(11):1423-1431. doi:10.1016/j.bcp.2006.06.015
77. Byk T, Kahn J, Kollet O, et al. Cycling G1 CD34+/CD38+ cells potentiate the motility and engraftment of quiescent G0 CD34+/CD38-/low severe combined immunodeficiency repopulating cells. Stem Cells. 2005;23(4):561-574. doi:10.1634/stemcells.2004-0060
78. Petit I, Goichberg P, Spiegel A, et al. Atypical PKC-ζ regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest. 2005;115(1):168-176. doi:10.1172/JCI200521773
79. Ahlenstiel G, Iwan A, Nattermann J, et al. Distribution and effects of polymorphic RANTES gene alleles in HIV/HCV coinfection - A prospective cross-sectional study. World J Gastroenterol. 2005;11(48):7631-7638. doi:10.3748/wjg.v11.i48.7631
80. Franitza S, Grabovsky V, Wald O, et al. Differential usage of VLA-4 and CXCR4 by CD3+CD56+ NKT cells and CD56+CD16+ NK cells regulates their interaction with endothelial cells. Eur J Immunol. 2004;34(5):1333-1341. doi:10.1002/eji.200324718
81. Avigdor A, Goichberg P, Shivtiel S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103(8):2981-2989. doi:10.1182/blood-2003-10-3611
82. Samira S, Ferrand C, Peled A, et al. Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice. Stem Cells. 2004;22(6):1085-1100. doi:10.1634/stemcells.22-6-1085
83. Wald O, Pappo O, Ari ZB, et al. The CCR5Δ32 allele is associated with reduced liver inflammation in hepatitis C virus infection. Eur J Immunogenet. 2004;31(6):249-252. doi:10.1111/j.1365-2370.2004.00482.x
84. Spiegel A, Kollet O, Peled A, et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood. 2004;103(8):2900-2907. doi:10.1182/blood-2003-06-1891
85. Wald O, Pappo O, Safadi R, et al. Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. Eur J Immunol. 2004;34(4):1164-1174. doi:10.1002/eji.200324441
86. Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 2004;18(11):1240-1242. doi:10.1096/fj.03-0935fje
87. Hanna J, Wald O, Goldman-Wohl D, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood. 2003;102(5):1569-1577. doi:10.1182/blood-2003-02-0517
88. Beider K, Nagler A, Wald O, et al. Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood. 2003;102(6):1951-1958. doi:10.1182/blood-2002-10-3293
89. Peled A, Hardan I, Trakhtenbrot L, et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells. 2002;20(3):259-266. doi:10.1634/stemcells.20-3-259
90. Kollet O, Petit I, Kahn J, et al. Human CD34+CXCR4- sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood. 2002;100(8):2778-2786. doi:10.1182/blood-2002-02-0564
91. Mittelman M, Neumann D, Peled A, Kanter P, Haran-Ghera N. Erythropoietin induces tumor regression and antitumor immune responses in murine myeloma models. Proc Natl Acad Sci U S A. 2001;98(9):5181-5186. doi:10.1073/pnas.081275298
92. Kollet O, Spiegel A, Peled A, et al. Rapid and efficient homing of human CD34+CD38-/lowCXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood. 2001;97(10):3283-3291. doi:10.1182/blood.V97.10.3283
93. Yam D, Peled A, Shinitzky M. Suppression of tumor growth and metastasis by dietary fish oil combined with vitamins E and C and cisplatin. Cancer Chemother Pharmacol. 2001;47(1):34-40. doi:10.1007/s002800000205
94. Grabovsky V, Feigelson S, Chen C, et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J Exp Med. 2000;192(4):495-505. doi:10.1084/jem.192.4.495
95. Goldman Y, Peled A, Shinitzky M. Effective elimination of lung metastases induced by tumor cells treated with hydrostatic pressure and N-acetyl-L-cysteine. Cancer Res. 2000;60(2):350-358. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034650884&partnerID=40&md5=8df8eef070d61598e157f0de52b1e1fd
96. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest. 2000;106(11):1331-1339. doi:10.1172/JCI10329
97. Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: Role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95(11):3289-3296. doi:10.1182/blood.v95.11.3289.011k33_3289_3296
98. Gonzalo J-A, Lloyd CM, Peled A, Delaney T, Coyle AJ, Gutierrez-Ramos J-C. Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1α in the inflammatory component of allergic airway disease. J Immunol. 2000;165(1):499-508. doi:10.4049/jimmunol.165.1.499
99. Kollet O, Peled A, Byk T, et al. β2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood. 2000;95(10):3102-3105. doi:10.1182/blood.v95.10.3102
100. Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (80- ). 1999;283(5403):845-848. doi:10.1126/science.283.5403.845
101. Peled A, Grabovsky V, Habler L, et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest. 1999;104(9):1199-1211. doi:10.1172/JCI7615
102. Peled A, Leykin I, Deckmann M, Shinitzky M. Evaluation of immune memory of human lymphocytes engrafted in SCID mice. Immunobiology. 1999;201(1):145-150. doi:10.1016/S0171-2985(99)80053-9
103. Peled A, Gonzalo JA, Lloyd C, Gutierrez-Ramos J-C. The chemotactic cytokine Eotaxin acts as a granulocyte-macrophage colony-stimulating factor during lung inflammation. Blood. 1998;91(6):1909-1916. doi:10.1182/blood.v91.6.1909.1909_1909_1916
104. Carramolino L, Lee BC, Zaballos A, et al. Erratum: SA-1, a nuclear protein encoded by one member of a novel gene family: Molecular cloning and detection in hemopoietic organs (Gene (1997) 195 (151-159)). Gene. 1998;206(2):283-285. doi:10.1016/S0378-1119(97)00556-8
105. Wolkowicz R, Peled A, Elkind NB, Rotter V. DNA-binding activity of wild-type p53 protein is mediated by the central part of the molecule and controlled by its C terminus. Cancer Detect Prev. 1998;22(1):1-13. doi:10.1046/j.1525-1500.1998.00003.x
106. Daniel Y, Peled A, Huszar M, Shinitzky M. Dietary fish oil suppresses tumor growth and metastasis of Lewis lung carcinoma in mice. J Nutr Biochem. 1997;8(11):619-622. doi:10.1016/S0955-2863(97)00089-2
107. Carramolino L, Lee BC, Zaballos A, et al. SA-1, a nuclear protein encoded by one member of a novel gene family: Molecular cloning and detection in hemopoietic organs. Gene. 1997;195(2):151-159. doi:10.1016/S0378-1119(97)00121-2
108. Peled A, Shezen E, Schwartz D, et al. Nuclear antigen expressed by proliferating cells. Hybridoma. 1997;16(4):325-334. doi:10.1089/hyb.1997.16.325
109. Schwartz D, Almog N, Peled A, Goldfinger N, Rotter V. Role of wild type p53 in the G2 phase: Regulation of the γ-irradiation-induced delay and DNA repair. Oncogene. 1997;15(21):2597-2607. doi:10.1038/sj.onc.1201436
110. Haran-Ghera N, Krautghamer R, Lapidot T, Peled A, Dominguez MG, Stanley ER. Increased circulating colony-stimulating factor-1 (CSF-1) in SJL/J mice with radiation-induced acute myeloid leukemia (AML) is associated with autocrine regulation of AML cells by CSF-1. Blood. 1997;89(7):2537-2545. doi:10.1182/blood.v89.7.2537
111. Almog N, Li R, Peled A, et al. The murine C’-terminally alternatively spliced form of p53 induces attenuated apoptosis in myeloid cells. Mol Cell Biol. 1997;17(2):713-722. doi:10.1128/MCB.17.2.713
112. Lee B-C, Shav-Tal Y, Peled A, et al. A hematopoietic organ-specific 49-kD nuclear antigen: Predominance in immature normal and tumor granulocytes and detection in hematopoietic precursor cells. Blood. 1996;87(6):2283-2291. doi:10.1182/blood.v87.6.2283.bloodjournal8762283
113. Peled A, Lee B-C, Sternberg D, Toledo J, Aracil M, Zipori D. Interaction between leukemia cells and bone marrow stromal cellss: Stroma-supported growth vs. serum dependence and the roles of TGF-β and M-CSF. Exp Hematol. 1996;24(6):728-737. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029664580&partnerID=40&md5=d2c5c40a7cc7d1f65e9cd7e387f7b02c
114. Sternberg D, Peled A, Shezen E, et al. Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: Stromal phenotypic plasticity and modified myelopoietic functions. Cytokines Mol Ther. 1996;2(1):29-38. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029917931&partnerID=40&md5=250a88b122faf81a83d25bb34ae6722c
115. Aparicio J, Bilbao D, Aracil M, Peled A, Zipori D, Jochems G. The murine stromal cell line 14F1.1 secretes A putative novel growth factor for progenitor cells. Exp Hematol. 1996;24(9):1118. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748605058&partnerID=40&md5=53c253e6ec438a5273ccabc3ab829f81
116. Peled A, Zipori D, Rotter V. Cooperation between p53-dependent and p53-independent apoptotic pathways in myeloid cells. Cancer Res. 1996;56(9):2148-2156. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029935573&partnerID=40&md5=42641c1086013010fb81ede5dd151732
117. Peled A, Schwartz D, Elkind NB, Wolkowicz R, Li R, Rotter V. The role of p53 in the induction of polyploidity of myelomonocytic leukemic M1/2 cells. Oncogene. 1996;13(8):1677-1685. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029985112&partnerID=40&md5=dc1e01bccfd2756db9fbe9f08d54a9e6
118. Haran-Ghera N, Peled A, Wu L, Shortman K, Brightman BK, Fan H. The effects of passive antiviral immunotherapy in AKR mice: I. The susceptibility of AKR mice to spontaneous and induced t cell lymphomagenesis. Leukemia. 1995;9(7):1199-1206. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029154759&partnerID=40&md5=54c26457c51acde8dc23166fc003266a
119. Wolkowicz R, Peled A, Elkind NB, Rotter V. Augmented DNA-binding activity of p53 protein encoded by a carboxyl-terminal alternatively spliced mRNA is blocked by p53 protein encoded by the regularly spliced form. Proc Natl Acad Sci U S A. 1995;92(15):6842-6846. doi:10.1073/pnas.92.15.6842
120. Peled A, Tzehoval E, Haran-Ghera N. Role of cytokines in termination of the B cell lymphoma dormant state in AKR mice. Leukemia. 1995;9(6):1095-1101. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029024829&partnerID=40&md5=de493ddd59e42a57fcca923144ccd0de
121. Haran-Ghera N, Peled A, Canaani E, et al. The effects of passive anti-viral immunotherapy in AKR mice: II susceptibility to B cell lymphomagenesis. Leukemia. 1995;9(11):1940-1947. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028866811&partnerID=40&md5=bce8115b234964d90181afaddf3703fd
122. Benayahu D, Peled A, Zipori D. Myeloblastic cell line expresses osteoclastic properties following coculture with marrow stromal adipocytes. J Cell Biochem. 1994;56(3):374-384. doi:10.1002/jcb.240560314
123. Defresne M-P, Borremans B, Verhofstede C, et al. Mixed phenotype murine leukemias. Leukemia. 1993;7(8):1253-1260. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027184426&partnerID=40&md5=299bc1601c76325979d5d23641a48718
124. Haran-Ghera N, Peled A, Kay Brightman B, Fan H. Lymphomagenesis in AKRJ?v-lb Congenic Mice. Cancer Res. 1993;53(14):3433-3438. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027258838&partnerID=40&md5=c6717a3df716165f89c9ede4f96f395f
125. Rosner A, Peled A, Haran-Ghera N, Canaani E. Analysis of Ly-1+ B-Cell Populations and IgH Rearrangements in “Normal” Spleens and in Lymphomas of AKR/J and AKR Fv-1b Mice. Cancer Res. 1993;53(9):2147-2153. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027278572&partnerID=40&md5=49a2d4196b3b5203684a33dfe69d4f49
126. Irlin Y, Peled A. Thy-1 antigen-mediated adhesion of mouse lymphoid cells to stromal cells of haemopoetic origin. Immunol Lett. 1992;33(3):233-237. doi:10.1016/0165-2478(92)90067-X
127. Haran-Ghera N, Peled A, Brightman BK, Fan H. Termination of the B cell lymphoma dormant state in thymectomized AKR mice. J Immunol. 1992;148(9):2947-2952. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026511828&partnerID=40&md5=cf98aac863474c9879859995ecbef789
128. Haran-Ghera N, Peled A, Krautghamer R, Resnitzky P. Initiation and promotion in radiation-induced myeloid leukemia. Leukemia. 1992;6(7):689-695. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026720259&partnerID=40&md5=fba092db8faa2495add885b6a973e575
129. Resnitzky P, Goren T, Shaft D, et al. Absence of negative growth regulation in three new murine radiation-induced myeloid leukemia cell lines with deletion of chromosome 2. Leukemia. 1992;6(12):1288-1295. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027066872&partnerID=40&md5=6a93f396da99946b9dbed3e07f92f69a
130. Haran-Ghera N, Peled A. II. Prevention of spontaneous AKR T cell lymphomagenesis by elimination of potential lymphoma cells with antibody to specific gp 71 determinants. Virology. 1991;181(2):536-540. doi:10.1016/0042-6822(91)90886-G
131. Shaulsky G, Goldfinger N, Peled A, Rotter V. Involvement of wild-type p53 protein in the cell cycle requires nuclear localization. Cell Growth Differ. 1991;2(12):661-667. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026309246&partnerID=40&md5=d438e02a3fc2942ec73cf22947d8f18b
132. Halevy O, Rodel J, Peled A, Oren M. Frequent p53 mutations in chemically induced murine fibrosarcoma. Oncogene. 1991;6(9):1593-1600. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025812651&partnerID=40&md5=160b72c69cfb6eaf76d5d5e196b06555
133. Haran-Ghera N, Peled A. Validity of the in vitro system as a correlate of the in vivo model of RadLV lymphomagenesis. Leukemia. 1991;5(6):500-503. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025853881&partnerID=40&md5=7d57898292063be7fd4267edee7c6088
134. Peled A, Zipori D, Abramsky O, Ovadia H, Shezen E. Expression of α-smooth muscle actin in murine bone marrow stromal cells. Blood. 1991;78(2):304-309. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025787026&partnerID=40&md5=d6cf11fdd550bf503725fa87911a66ae
135. Peled A, Kalai M, Toledo J, Zipori D. Stroma-cell dependent hematopoiesis. Semin Hematol. 1991;28(2):132-137. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025853586&partnerID=40&md5=bbf112213bd3a05bcd0e569fe3e44f52
136. Peled A, Haran-Ghera N. I. Prevention of spontaneous AKR T cell lymphomagenesis by 24-666, a virus isolated from an AKR B cell lymphoma. Virology. 1991;181(2):528-535. doi:10.1016/0042-6822(91)90885-F
137. Shaulsky G, Goldfinger N, Peled A, Rotter V. Involvement of wild-type p53 in pre-B-cell differentiation in vitro. Proc Natl Acad Sci U S A. 1991;88(20):8982-8986. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026001187&partnerID=40&md5=7d06c7715ecd3db8a7f9fac5dd87b3ef
138. Gokhman I, Peled A, Haran-Ghera N. Characteristics of Potential Lymphoma-inducing Cells in Mice Sensitive or Resistant to Lymphomagenesis by Radiation Leukemia Virus Variants. Cancer Res. 1990;50(9):2554-2561. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025274814&partnerID=40&md5=4e7be0716f1304b287060d1eb2f1b986
139. Peled A, Haran-Ghera N. Intervention in potential leukemic cell migration pathway affects leukemogenesis. Haematol Blood Transfus. 1989;32:237-242. doi:10.1007/978-3-642-74621-5_41
140. Haran-Ghera N, Trakhtenbrot L, Resnitzky P, Peled A. Preleukemia in experimental leukemogenesis. Haematol Blood Transfus. 1989;32:243-249. doi:10.1007/978-3-642-74621-5_42
141. Peled A, Haran-Ghera N. Prevention of T-cell lymphoma in AKR/J mcie. Leukemia. 1988;2(12 SUPPL.):125s-131s. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024212078&partnerID=40&md5=3c60f6f36b0fb1d3f8f025be87e0c685
142. Resnitzky P, Bustan A, Peled A, Marikovsky Y. Variations in surface charge distribution of leukemic and non-leukemic transformed cells. Leuk Res. 1988;12(4):315-320. doi:10.1016/0145-2126(88)90046-X
143. Trakhtenbrot L, Peled A, Haran‐Ghera N. Cytogenetic studies on B‐cell leukemias of akr origin. Int J Cancer. 1987;39(3):380-384. doi:10.1002/ijc.2910390318
144. Haran-Ghera N, Peled A, Leef F, Hoffman AD, Levy JA. Enhanced AKR leukemogenesis by the dual tropic viruses. I. The time and site of origin of potential leukemic cells. Leukemia. 1987;1(5):442-449. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023618933&partnerID=40&md5=7532b06bfb8542074fa4ed37a258ad12
145. Peled A, Hoffman AD, Levy JA, Haran-Ghera N. Enhanced AKR leukemogenesis by the dual tropic viruses. II. Effect on cell-mediated immune responses. Leukemia. 1987;1(5):450-456. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023618326&partnerID=40&md5=0e2884f74b14fc0cb7297db91f329128
146. Katz E, Peled A, Haran-Ghera N. Changes of H-2 antigen expression on thymocytes during leukemia development by radiation leukemia virus. Leuk Res. 1985;9(10):1219-1225. doi:10.1016/0145-2126(85)90148-1
147. Peled A, Haran-Ghera N. High incidence of b cell lymphomas derived from thymectomized akr mice expressing TL.4 antigen. J Exp Med. 1985;162(3):1081-1086. doi:10.1084/jem.162.3.1081
148. Peled A, Haran‐Ghera N. Age‐related expression of TL antigen in AKR/J mice. Int J Cancer. 1984;34(1):121-126. doi:10.1002/ijc.2910340121
149. Weinberger A, Peled A, Haran-Ghera N, Hazaz B, Joshua H, Pinkhas J. Infiltration of leukemic cells into muscles adjacent to joints of mice with leukemia. Isr J Med Sci. 1982;18(10):1057-1059. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020448838&partnerID=40&md5=69f39c484ad6c7d324da69e622a83f2d
150. Peled A, Perk K, Haran-Ghera N, Chirigos MA. The oncostatic effect of methyl-CCNU on various experimental lymphoreticular neoplasms. Leuk Res. 1982;6(1):89-95. doi:10.1016/0145-2126(82)90047-9
151. Lonai P, Katz E, Peled A, Haran-Ghera N. H-2I-linked control of immunological resistance to viral leukemogenesis as a response to preleukemic cells. Immunogenetics. 1981;12(1):423-432. doi:10.1007/BF01561685
152. Haran-Ghera N, Krauthgamer R, Peled A. Malignant cell arrest in thymus and spleen of mice bearing transplanted tumors. J Immunol. 1981;126(4):1241-1244. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019459614&partnerID=40&md5=3ac01fdfbb15c2522bbc241aca8333ba
153. Peled A, Ben-Yaakov M, Brami S. The effect of lymphoreticular neoplasms on the age dependent increase of antinuclear antibodies. J Clin Lab Immunol. 1979;2(3):255-260. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018628615&partnerID=40&md5=51eb4c0d1240749a87e73fd3779c1d8b
154. Haran-Ghera N, Peled A. Induction of leukemia in mice by irradiation and radiation leukemia virus variants. Adv Cancer Res. 1979;30(C):45-87. doi:10.1016/S0065-230X(08)60894-5
155. Geltner D, Peled A. Absorption of serum antinuclear antibodies. Clin Immunol Immunopathol. 1979;13(3):237-245. doi:10.1016/0090-1229(79)90068-0
156. Peled A, Haran-ghera N. Lack of transformation of murine thymocytes by thymic epithelium [24]. Nature. 1978;274(5668):266-269. doi:10.1038/274266a0
157. Haran Ghera N, Ben Yaakov M, Peled A. Immunologic characteristics in relation to high and low leukemogenic activity of radiation leukemia virus variants. I. Cellular analysis of immunosuppression. J Immunol. 1977;118(2):600-606. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017346818&partnerID=40&md5=93c94533fa0c0a310f4ae58eaa64a5d3
158. Peled A. Cellular immune response induced by the radiation leukemia virus (RadLV). Leuk Res. 1977;1(4):333-343. doi:10.1016/0145-2126(77)90053-4
159. Haran Ghera N, Ben Yaakov M, Chazan R, Peled A. Pathways in thymus and bone marrow derived lymphatic leukemia in mice. Bibl Haematol. 1975;no.40:133-141. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016792714&partnerID=40&md5=7b5699d62c3a4dc6c3b27a8cb87cc48e
160. Peled A, Berke G. Proceedings: Cell-mediated anti-leukemic cell immunity in C57BL/6 mice injected with the radiation leukemic virus. Isr J Med Sci. 1975;11(12):1396. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016660422&partnerID=40&md5=ec89b1ca8471912d97763a59a68a861b
161. Peled A, Haran Ghera N. The cellular basis of immunosuppression caused by the radiation leukaemia virus. Immunology. 1974;26(2):323-329. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016308323&partnerID=40&md5=af7cabf953a5461a12a7ad627a02f26e
162. Haran-Ghera N, Peled A. Thymus and bone marrow derived lymphatic leukaemia in mice [7]. Nature. 1973;241(5389):396-398. doi:10.1038/241396a0
163. Haran-Ghera N, Ben-Yaakov M, Peled A, Bentwich Z. Immune status of sjl/j mice in relation to age and spontaneous tumor development. J Natl Cancer Inst. 1973;50(5):1227-1235. doi:10.1093/jnci/50.5.1227
164. Peled A, Haran-Ghera N. Immunological studies on the radiation leukaemia virus in C57BL mice. Nat New Biol. 1971;232(34):244-245. doi:10.1038/newbio232244a0
165. Peled A, Haran‐Ghera N. Immunosuppression by the radiation leukemia virus and its relation to lymphatic leukemia development. Int J Cancer. 1971;8(1):97-106. doi:10.1002/ijc.2910080113
166. Haran-Ghera N, Peled A. The mechanism of radiation action in leukemogenesis. IV. Immune impairment as a coleukemogenic factor. Isr J Med Sci. 1968;4(6):1181-1187. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014357460&partnerID=40&md5=f5de41f5c67b7a88556c8c07c491b62c
167. Haran-Ghera N, Peled A. The mechanism of radiation action in leukaemogenesis. Isolation of a leukaemogenic filtrable agent from tissues of irradiated and normal c57bl mice. Br J Cancer. 1967;21(4):730. doi:10.1038/bjc.1967.85