Skip to Main Content

Hadassah Medical Center - Gene Therapy: Peled Amnon

researchers

Last updated September 2023 - Gene Therapy

List of Publications

1.

Stern E, Pines G, Lazar LO, Vainer GW, Beltran N, Dodi O, et al. CDC25C Protein Expression Correlates with Tumor Differentiation and Clinical Outcomes in Lung Adenocarcinoma. Biomedicines [Internet]. 2023;11(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148893465&doi=10.3390%252fbiomedicines11020362&partnerID=40&md5=c90b68e94df8b840d786da82e1291eed

2.

Greenman R, Segal-Salto M, Barashi N, Hay O, Katav A, Levi O, et al. CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis. JCI Insight [Internet]. 2023;8(12). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163086075&doi=10.1172%252fjci.insight.162270&partnerID=40&md5=b1460825d97d4622fc1447db9a2385a3

3.

Rosenberg N, Van Haele M, Lanton T, Brashi N, Bromberg Z, Adler H, et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. Journal of Hepatology [Internet]. 2022;77(6):1631–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139606967&doi=10.1016%252fj.jhep.2022.07.029&partnerID=40&md5=f489c281205d830dc0f0f24b27016c75

4.

Beider K, Voevoda-Dimenshtein V, Zoabi A, Rosenberg E, Magen H, Ostrovsky O, et al. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. Journal of Hematology and Oncology [Internet]. 2022;15(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139501863&doi=10.1186%252fs13045-022-01366-5&partnerID=40&md5=824ac3778b6821d5c834aa8cd9af3a39

5.

Cendrowicz E, Jacob L, Greenwald S, Tamir A, Pecker I, Tabakman R, et al. DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity. Journal of Experimental and Clinical Cancer Research [Internet]. 2022;41(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126261053&doi=10.1186%252fs13046-022-02256-x&partnerID=40&md5=08f7188704da24532f6b2a158028e5a1

6.

Paldor M, Levkovitch-Siany O, Eidelshtein D, Adar R, Enk CD, Marmary Y, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Molecular Medicine [Internet]. 2022;14(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133390135&doi=10.15252%252femmm.202115653&partnerID=40&md5=c6919b2ced1cb3afb1537030fb5bffa5

7.

Rodionov G, Rosenzwaig M, Tzadok MS, Kvint M, Gevir E, Zorde-Khvalevsky E, et al. Short treatment of peripheral blood cells product with Fas ligand using closed automated cell processing system significantly reduces immune cell reactivity of the graft in vitro and in vivo. Bone Marrow Transplantation [Internet]. 2022;57(8):1250–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129771846&doi=10.1038%252fs41409-022-01698-3&partnerID=40&md5=29c48d298b3ef0d7e7300dc5af4e6fae

8.

Bockorny B, Macarulla T, Semenisty V, Borazanci E, Feliu J, Ponz-Sarvise M, et al. Motixafortide and pembrolizumab combined to nanoliposomal irinotecan, fluorouracil, and folinic acid in metastatic pancreatic cancer: The COMBAT/ KEYNOTE-202 trial. Clinical Cancer Research [Internet]. 2021;27(18):5020–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115023729&doi=10.1158%252f1078-0432.CCR-21-0929&partnerID=40&md5=661946c5db8522cd5d9899d8438bfa67

9.

Shriki A, Lanton T, Sonnenblick A, Levkovitch-Siany O, Eidelshtein D, Abramovitch R, et al. Multiple roles of il6 in hepatic injury, steatosis, and senescence aggregate to suppress tumorigenesis. Cancer Research [Internet]. 2021;81(18):4766–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114989627&doi=10.1158%252f0008-5472.CAN-21-0321&partnerID=40&md5=1c1a969991ac20520189327aea98bde2

10.

Borthakur G, Ofran Y, Tallman MS, Foran J, Uy GL, DiPersio JF, et al. BL-8040 CXCR4 antagonist is safe and demonstrates antileukemic activity in combination with cytarabine for the treatment of relapsed/refractory acute myelogenous leukemia: An open-label safety and efficacy phase 2a study. Cancer [Internet]. 2021;127(8):1246–59. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097020390&doi=10.1002%252fcncr.33338&partnerID=40&md5=cbadcea396f15cc972806d09ff5d5875

11.

Becker-Herman S, Rozenberg M, Hillel-Karniel C, Gil-Yarom N, Kramer M, Barak A, et al. CD74 is a regulator of hematopoietic stem cell maintenance. PLoS Biology [Internet]. 2021;19(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102651602&doi=10.1371%252fjournal.pbio.3001121&partnerID=40&md5=dd465c9bf43905b0c69c6b0d4ccabf7b

12.

Beider K, Rosenberg E, Dimenshtein-Voevoda V, Sirovsky Y, Vladimirsky J, Magen H, et al. Blocking of Transient Receptor Potential Vanilloid 1 (TRPV1) promotes terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting ubiquitin pathway and bortezomib-induced unfolded protein response. Journal of Hematology and Oncology [Internet]. 2020;13(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096527458&doi=10.1186%252fs13045-020-00993-0&partnerID=40&md5=cca67d7f7d00119d228c7d3ec5be78c7

13.

Levy-Barazany H, Shachnai-Pinkas L, Rodionov G, Saar A, Rosenzwaig M, Gez L, et al. Brief ex vivo Fas-ligand incubation attenuates GvHD without compromising stem cell graft performance. Bone Marrow Transplantation [Internet]. 2020;55(7):1305–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085042444&doi=10.1038%252fs41409-020-0941-2&partnerID=40&md5=404b6beee5ec0bba26d2f0bc7bfc92de

14.

Bockorny B, Semenisty V, Macarulla T, Borazanci E, Wolpin BM, Stemmer SM, et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nature Medicine [Internet]. 2020;26(6):878–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085302071&doi=10.1038%252fs41591-020-0880-x&partnerID=40&md5=52d3e1207641f72c3953eca8afa59ae9

15.

Beider K, Bitner H, Voevoda-Dimenshtein V, Rosenberg E, Sirovsky Y, Magen H, et al. The mTOR inhibitor everolimus overcomes CXCR4-mediated resistance to histone deacetylase inhibitor panobinostat through inhibition of p21 and mitotic regulators. Biochemical Pharmacology [Internet]. 2019;168:412–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070264709&doi=10.1016%252fj.bcp.2019.07.016&partnerID=40&md5=4d3b5a4d8c33ef53bfe55c20b0aed6fe

16.

Hagbi-Levi S, Abraham M, Tiosano L, Rinsky B, Grunin M, Eizenberg O, et al. Promiscuous Chemokine Antagonist (BKT130) Suppresses Laser-Induced Choroidal Neovascularization by Inhibition of Monocyte Recruitment. Journal of Immunology Research [Internet]. 2019;2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071758514&doi=10.1155%252f2019%252f8535273&partnerID=40&md5=796fc0a532c710e68949eb54e6a73896

17.

Peled A, Klein S, Beider K, Burger JA, Abraham M. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine [Internet]. 2018;109:11–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048623099&doi=10.1016%252fj.cyto.2018.02.020&partnerID=40&md5=525e4bb0daadf839a2f6f96b075f44d7

18.

Ella E, Harel Y, Abraham M, Wald H, Benny O, Karsch-Bluman A, et al. Matrix metalloproteinase 12 promotes tumor propagation in the lung. Journal of Thoracic and Cardiovascular Surgery [Internet]. 2018;155(5):2164-2175.e1. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041663296&doi=10.1016%252fj.jtcvs.2017.11.110&partnerID=40&md5=582624804e3dc5dd1c2ce9d2e5634d95

19.

Klein S, Abraham M, Bulvik B, Dery E, Weiss ID, Barashi N, et al. CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/ 16-1–mediated ERK and BCL2/Cyclin D1 pathways. Cancer Research [Internet]. 2018;78(6):1471–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047788945&doi=10.1158%252f0008-5472.CAN-17-0454&partnerID=40&md5=6a1551064fa585c38a0a2b5db2c2e362

20.

Peled A, Nagler A. NK cell destiny after haploSCT with PT-Cy. Blood [Internet]. 2018;131(2):161–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040461355&doi=10.1182%252fblood-2017-10-811117&partnerID=40&md5=b7c4eef1a6ed38b8e7c647044dcb934b

21.

Abraham M, Wald H, Vaizel-Ohayon D, Grabovsky V, Oren Z, Karni A, et al. Development of novel promiscuous anti-chemokine peptibodies for treating autoimmunity and inflammation. Frontiers in Immunology [Internet]. 2017;8(NOV). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034998798&doi=10.3389%252ffimmu.2017.01432&partnerID=40&md5=016626de6304580dddb5b58ecdcc2143

22.

Abraham M, Pereg Y, Bulvik B, Klein S, Mishalian I, Wald H, et al. Single dose of the CXCR4 antagonist BL-8040 induces rapid mobilization for the collection of human CD34 + cells in healthy volunteers. Clinical Cancer Research [Internet]. 2017;23(22):6790–801. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034865244&doi=10.1158%252f1078-0432.CCR-16-2919&partnerID=40&md5=59542dff557d74c81580fbad495e1987

23.

Abraham M, Klein S, Bulvik B, Wald H, Weiss ID, Olam D, et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia [Internet]. 2017;31(11):2336–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017116567&doi=10.1038%252fleu.2017.82&partnerID=40&md5=287bd5fbfb15f03339bf48e928cb3601

24.

Abraham M, Karni A, Mausner-Fainberg K, Weiss ID, Peled A. Natural and induced immunization against CCL20 ameliorate experimental autoimmune encephalitis and may confer protection against multiple sclerosis. Clinical Immunology [Internet]. 2017;183:316–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030659221&doi=10.1016%252fj.clim.2017.09.018&partnerID=40&md5=c53f54125e7ad3884c9f7e7d9fe97a7d

25.

Lanton T, Shriki A, Nechemia-Arbely Y, Abramovitch R, Levkovitch O, Adar R, et al. Interleukin 6–dependent genomic instability heralds accelerated carcinogenesis following liver regeneration on a background of chronic hepatitis. Hepatology [Internet]. 2017;65(5):1600–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016405625&doi=10.1002%252fhep.29004&partnerID=40&md5=a649f901e6d6357da10b4b921aa41934

26.

Beider K, Rosenberg E, Bitner H, Shimoni A, Leiba M, Koren-Michowitz M, et al. The sphingosine-1-phosphate modulator FTY720 targets multiple myeloma via the CXCR4/CXCL12 pathway. Clinical Cancer Research [Internet]. 2017;23(7):1733–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016937211&doi=10.1158%252f1078-0432.CCR-15-2618&partnerID=40&md5=6d6a43aff25d6114a891b809df4be529

27.

Hagbi-Levi S, Grunin M, Jaouni T, Tiosano L, Rinsky B, Elbaz-Hayoun S, et al. Proangiogenic characteristics of activated macrophages from patients with age-related macular degeneration. Neurobiology of Aging [Internet]. 2017;51:71–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007299200&doi=10.1016%252fj.neurobiolaging.2016.11.018&partnerID=40&md5=5e18e12bbe6c583dfba7b245eeed198b

28.

Randhawa S, Cho BS, Ghosh D, Sivina M, Koehrer S, Müschen M, et al. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia. British Journal of Haematology [Internet]. 2016;174(3):425–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963642497&doi=10.1111%252fbjh.14075&partnerID=40&md5=b0f45c1f366a4d0cfe7b5d21b3118685

29.

Matza D, Badou A, Klemic KG, Stein J, Govindarajulu U, Nadler MJ, et al. T cell receptor mediated calcium entry requires alternatively spliced Cav1.1 channels. PLoS ONE [Internet]. 2016;11(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958231394&doi=10.1371%252fjournal.pone.0147379&partnerID=40&md5=c19cfb81a155315c42d706c3854e49a1

30.

Weiss ID, Ella E, Dominsky O, Smith Y, Abraham M, Wald H, et al. In the hunt for therapeutic targets: Mimicking the growth, metastasis, and stromal associations of early-stage lung cancer using a novel orthotopic animal model. Journal of Thoracic Oncology [Internet]. 2015;10(1):46–58. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926336572&doi=10.1097%252fJTO.0000000000000367&partnerID=40&md5=077795b6081039290fff7aadd505dd81

31.

Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. Journal of Clinical Investigation [Internet]. 2014;124(7):3121–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903794165&doi=10.1172%252fJCI74556&partnerID=40&md5=4b06194d20e42189e60a1dd3878ef337

32.

Peled A, Abraham M, Avivi I, Rowe JM, Beider K, Wald H, et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clinical Cancer Research [Internet]. 2014;20(2):469–79. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84892747374&doi=10.1158%252f1078-0432.CCR-13-1302&partnerID=40&md5=fab1e808e86ee09e7be9d5f74e2a9176

33.

Beider K, Bitner H, Leiba M, Gutwein O, Koren-Michowitz M, Ostrovsky O, et al. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget [Internet]. 2014;5(22):11283–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84917744452&doi=10.18632%252foncotarget.2207&partnerID=40&md5=b6505967eadda1d227710e0c1cb16133

34.

Beider K, Darash-Yahana M, Blaier O, Koren-Michowitz M, Abraham M, Wald H, et al. Combination of imatinib with CXCR4 Antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Molecular Cancer Therapeutics [Internet]. 2014;13(5):1155–69. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899794191&doi=10.1158%252f1535-7163.MCT-13-0410&partnerID=40&md5=7658aaecf6f761281fe33ca0715d32fb

35.

Abraham M, Weiss ID, Wald H, Wald O, Nagler A, Beider K, et al. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production. British Journal of Haematology [Internet]. 2013;163(2):248–59. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884982900&doi=10.1111%252fbjh.12501&partnerID=40&md5=60d10ff11526bda20ed291772bff9643

36.

Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics [Internet]. 2013;3(1):34–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883194655&doi=10.7150%252fthno.5150&partnerID=40&md5=566253a287467c30477b47e20142bb23

37.

Barashi N, Weiss ID, Wald O, Wald H, Beider K, Abraham M, et al. Inflammation-induced hepatocellular carcinoma is dependent on CCR5 in mice. Hepatology [Internet]. 2013;58(3):1021–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883238925&doi=10.1002%252fhep.26403&partnerID=40&md5=a8b94726dcd37d8387f2e9e14aed4c67

38.

Beider K, Ribakovsky E, Abraham M, Wald H, Weiss L, Rosenberg E, et al. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clinical Cancer Research [Internet]. 2013;19(13):3495–507. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879852840&doi=10.1158%252f1078-0432.CCR-12-3015&partnerID=40&md5=d71cee3e206425f375c0ad256c2cabca

39.

Potikha T, Stoyanov E, Pappo O, Frolov A, Mizrahi L, Olam D, et al. Interstrain differences in chronic hepatitis and tumor development in a murine model of inflammation-mediated hepatocarcinogenesis. Hepatology [Internet]. 2013;58(1):192–204. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879606008&doi=10.1002%252fhep.26335&partnerID=40&md5=7ff13a6dca38a51ce3c64f3406ed2885

40.

Eldor R, Abel R, Sever D, Sadoun G, Peled A, Sionov R, et al. Inhibition of Nuclear Factor-κB Activation in Pancreatic β-Cells Has a Protective Effect on Allogeneic Pancreatic Islet Graft Survival. PLoS ONE [Internet]. 2013;8(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874338134&doi=10.1371%252fjournal.pone.0056924&partnerID=40&md5=6fd749c55e43c23c6e0fe089faa6b8e6

41.

Peled A. Microenvironmental mediators as therapeutic targets in malignancy [Internet]. The Inflammatory Milieu of Tumors: Cytokines and Chemokines that Affect Tumor Growth and Metastasis. 2012. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84882583601&doi=10.2174%252f978160805256111201010155&partnerID=40&md5=34e89bc99c41e010d48e0e2b8182e9b3

42.

Fahham D, Weiss ID, Abraham M, Beider K, Hanna W, Shlomai Z, et al. In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non–small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery [Internet]. 2012;144(5):1167-1175.e1. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027918527&doi=10.1016%252fj.jtcvs.2012.07.031&partnerID=40&md5=418c602b15ec46a7c03cdcc378e1b7d0

43.

Grunin M, Burstyn-Cohen T, Hagbi-Levi S, Peled A, Chowers I. Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Investigative Ophthalmology and Visual Science [Internet]. 2012;53(9):5292–300. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867863206&doi=10.1167%252fiovs.11-9165&partnerID=40&md5=d4ce1d75a0fef0ec3b458117589ecefd

44.

Peled A, Wald O, Burger J. Development of novel CXCR4-based therapeutics. Expert Opinion on Investigational Drugs [Internet]. 2012;21(3):341–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856868390&doi=10.1517%252f13543784.2012.656197&partnerID=40&md5=d1158879383b9cb397436cabbc45d884

45.

Jacobson O, Weiss ID, Szajek LP, Niu G, Ma Y, Kiesewetter DO, et al. Improvement of CXCR4 tracer specificity for PET imaging. Journal of Controlled Release [Internet]. 2012;157(2):216–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855766631&doi=10.1016%252fj.jconrel.2011.09.076&partnerID=40&md5=2586c061355c98e9ed7c2c5cf6b5320d

46.

Peled A, Nagler A. Role of the CXCR4/CXCL12 axis in hematopoietic stem cell trafficking [Internet]. Novel Developments in Stem Cell Mobilization: Focus on CXCR4. 2012. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955347021&doi=10.1007%252f978-1-4614-1960-0_5&partnerID=40&md5=eff7197f6c8b9e8da0b7e764b3bec39b

47.

Josefsberg Ben-Yehoshua L, Beider K, Shimoni A, Ostrovsky O, Samookh M, Peled A, et al. Characterization of cyclin E expression in multiple myeloma and its functional role in seliciclib-induced apoptotic cell death. PloS one [Internet]. 2012;7(4). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865845887&doi=10.1371%252fjournal.pone.0033856&partnerID=40&md5=a4bdac8eb9454b17755802f1f63ea05d

48.

Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer G N, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Experimental Hematology [Internet]. 2012;40(4):342-355.e1. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858339102&doi=10.1016%252fj.exphem.2011.12.005&partnerID=40&md5=bdd38ea7403e9cbcae76ba95ee413cf4

49.

Mishalian I, Ordan M, Peled A, Maly A, Eichenbaum MB, Ravins M, et al. Recruited macrophages control dissemination of group A Streptococcus from infected soft tissues. Journal of Immunology [Internet]. 2011;187(11):6022–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-82755189237&doi=10.4049%252fjimmunol.1101385&partnerID=40&md5=4c5ac292a091d69398dab206031ab8ac

50.

Kirshberg S, Izhar U, Amir G, Demma J, Vernea F, Beider K, et al. Involvement of CCR6/CCL20/IL-17 axis in NSCLC disease progression. PLoS ONE [Internet]. 2011;6(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052855773&doi=10.1371%252fjournal.pone.0024856&partnerID=40&md5=568420f303e9f07f003a2fb9a3a7e6c5

51.

Wald O, Izhar U, Amir G, Kirshberg S, Shlomai Z, Zamir G, et al. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: Role in non-small cell lung cancer tumor proliferation. Journal of Thoracic and Cardiovascular Surgery [Internet]. 2011;141(6):1503–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79956093785&doi=10.1016%252fj.jtcvs.2010.11.056&partnerID=40&md5=edc125b2182587b87aa6f82f3767a480

52.

Weiss ID, Shoham H, Wald O, Wald H, Beider K, Abraham M, et al. Ccr5 deficiency regulates the proliferation and trafficking of natural killer cells under physiological conditions. Cytokine [Internet]. 2011;54(3):249–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955162843&doi=10.1016%252fj.cyto.2011.01.011&partnerID=40&md5=a18e6145f0b85c077f63500548d8aa30

53.

Burger JA, Stewart DJ, Wald O, Peled A. Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Review of Anticancer Therapy [Internet]. 2011;11(4):621–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955101754&doi=10.1586%252fera.11.11&partnerID=40&md5=d34b103cf3954d644c1e87eb502648df

54.

Beider K, Begin M, Abraham M, Wald H, Weiss ID, Wald O, et al. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Experimental Hematology [Internet]. 2011;39(3):282–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79951875085&doi=10.1016%252fj.exphem.2010.11.010&partnerID=40&md5=ede8951b09403a1a256bd8c88fdcccd8

55.

Weiss ID, Wald O, Wald H, Beider K, Abraham M, Galun E, et al. IFN-γ treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner. Journal of Interferon and Cytokine Research [Internet]. 2010;30(6):439–49. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953546692&doi=10.1089%252fjir.2009.0084&partnerID=40&md5=973e207212307c77297b6fde397e5ac6

56.

Rudich N, Zamir G, Pappo O, Shlomai Z, Faroja M, Weiss ID, et al. Focal liver necrosis appears early after partial hepatectomy and is dependent on T cells and antigen delivery from the gut. Liver International [Internet]. 2009;29(8):1273–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350070538&doi=10.1111%252fj.1478-3231.2009.02048.x&partnerID=40&md5=b9d8337b4aa4b229331ad1f83db98ce7

57.

Darash-Yahana M, Gillespie JW, Hewitt SM, Chen YYK, Maeda S, Stein I, et al. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS ONE [Internet]. 2009;4(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-68949215694&doi=10.1371%252fjournal.pone.0006695&partnerID=40&md5=8c6d193ec27146a83647de45a2710875

58.

Hayun M, Saida H, Albeck M, Peled A, Haran-Ghera N, Sredni B. Induction therapy in a multiple myeloma mouse model using a combination of AS101 and melphalan, and the activity of AS101 in a tumor microenvironment model. Experimental Hematology [Internet]. 2009;37(5):593–603. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-64249108542&doi=10.1016%252fj.exphem.2009.01.006&partnerID=40&md5=750f654fc610097672f93ff3ecc7c3b9

59.

Beider K, Abraham M, Begin M, Wald H, Weiss ID, Wald O, et al. Interaction between CXCR4 and CCL20 pathways regulates tumor growth. PLoS ONE [Internet]. 2009;4(4). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-64549094665&doi=10.1371%252fjournal.pone.0005125&partnerID=40&md5=7b4d3ba1208435bd1059df834a46d828

60.

Abraham M, Beider K, Wald H, Weiss ID, Zipori D, Galun E, et al. The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia [Internet]. 2009;23(8):1378–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-68749088365&doi=10.1038%252fleu.2009.56&partnerID=40&md5=5119605d720c230850142aab8d21a09a

61.

Burger JA, Peled A. CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia [Internet]. 2009;23(1):43–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58249100053&doi=10.1038%252fleu.2008.299&partnerID=40&md5=6d52a7a521605e1750e89d858cc25581

62.

Lapidot A, Peled A, Berchanski A, Pal B, Kollet O, Lapidot T, et al. NeoR6 inhibits HIV-1-CXCR4 interaction without affecting CXCL12 chemotaxis activity. Biochimica et Biophysica Acta - General Subjects [Internet]. 2008;1780(6):914–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-43049153232&doi=10.1016%252fj.bbagen.2008.03.011&partnerID=40&md5=670b6619ae4dc749d9c78843273b05b3

63.

Beider K, Abraham M, Peled A. Chemokines and chemokine receptors in stem cell circulation. Frontiers in Bioscience [Internet]. 2008;13(17):6820–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-52049104887&partnerID=40&md5=1a92b663a90b925d708192d639545000

64.

Abraham M, Biyder K, Begin M, Wald H, Weiss ID, Galun E, et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4f-benzoyl-TN14003. Stem Cells [Internet]. 2007;25(9):2158–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34748870155&doi=10.1634%252fstemcells.2007-0161&partnerID=40&md5=cf328c63f2adb2fa28a6bc2235087041

65.

Wald O, Weiss ID, Galun E, Peled A. Chemokines in hepatitis C virus infection: Pathogenesis, prognosis and therapeutics. Cytokine [Internet]. 2007;39(1):50–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34548850886&doi=10.1016%252fj.cyto.2007.05.013&partnerID=40&md5=80c6148ab76d78784b8449091eca5f38

66.

Gavish M, Peled A, Chor B. Genetic code symmetry and efficient design of GC-constrained coding sequences. Bioinformatics [Internet]. 2007;23(2):e57–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846685012&doi=10.1093%252fbioinformatics%252fbtl317&partnerID=40&md5=67f8a9230dbeb8478f0f32e71a201535

67.

Hayun M, Naor Y, Weil M, Albeck M, Peled A, Don J, et al. The immunomodulator AS101 induces growth arrest and apoptosis in Multiple Myeloma: Association with the Akt/Survivin pathway. Biochemical Pharmacology [Internet]. 2006;72(11):1423–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750510701&doi=10.1016%252fj.bcp.2006.06.015&partnerID=40&md5=3591706eaec0af3c1b9248c9268661d8

68.

Wald O, Izhar U, Amir G, Avniel S, Bar-Shavit Y, Wald H, et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. Journal of immunology (Baltimore, Md : 1950) [Internet]. 2006;177(10):6983–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750795581&partnerID=40&md5=bb31c78ae9f7d28e6293dd40de612813

69.

Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I, Eran Y, Nizet V, et al. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO Journal [Internet]. 2006;25(19):4628–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749362962&doi=10.1038%252fsj.emboj.7601327&partnerID=40&md5=cf9e8a349ebd9fc6bb20b1bbc012f77f

70.

Dagan-Berger M, Feniger-Barish R, Avniel S, Wald H, Galun E, Grabovsky V, et al. Role of CXCR3 carboxyl terminus and third intracellular loop in receptor-mediated migration, adhesion and internalization in response to CXCL11. Blood [Internet]. 2006;107(10):3821–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646561249&doi=10.1182%252fblood-2004-01-0214&partnerID=40&md5=207c9e3cefdaeb7c4339b345e5e5eb14

71.

Wald O, Weiss ID, Wald H, Shoham H, Bar-Shavit Y, Beider K, et al. IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. Journal of Immunology [Internet]. 2006;176(8):4716–29. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645765996&doi=10.4049%252fjimmunol.176.8.4716&partnerID=40&md5=70e67564b1bd7f19319286faa8a12ab7

72.

Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2006;103(13):5072–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645518035&doi=10.1073%252fpnas.0508166103&partnerID=40&md5=01e2bb2a3e17b5968ee9cb96b6a0bee4

73.

Avniel S, Arik Z, Maly A, Sagie A, Basst HB, Yahana MD, et al. Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. Journal of Investigative Dermatology [Internet]. 2006;126(2):468–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33644640532&doi=10.1038%252fsj.jid.5700069&partnerID=40&md5=2ef1dfca6929a7c20e6cb864f3b6a061

74.

Ahlenstiel G, Iwan A, Nattermann J, Bueren K, Rockstroh JK, Brackman HH, et al. Distribution and effects of polymorphic RANTES gene alleles in HIV/HCV coinfection - A prospective cross-sectional study. World Journal of Gastroenterology [Internet]. 2005;11(48):7631–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-31644445646&doi=10.3748%252fwjg.v11.i48.7631&partnerID=40&md5=b4f1942fc1eec8001f90a6b997543481

75.

Byk T, Kahn J, Kollet O, Petit I, Samira S, Shivtiel S, et al. Cycling G1 CD34+/CD38+ cells potentiate the motility and engraftment of quiescent G0 CD34+/CD38-/low severe combined immunodeficiency repopulating cells. Stem Cells [Internet]. 2005;23(4):561–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-20144388369&doi=10.1634%252fstemcells.2004-0060&partnerID=40&md5=4617037048b07feb281636e9cf44ecc8

76.

Petit I, Goichberg P, Spiegel A, Peled A, Brodie C, Seger R, et al. Atypical PKC-ζ regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation [Internet]. 2005;115(1):168–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-13744262002&doi=10.1172%252fJCI200521773&partnerID=40&md5=0570a5893c834bedfbaa1d8609c748e3

77.

Wald O, Pappo O, Ari ZB, Azzaria E, Wiess ID, Gafnovitch I, et al. The CCR5Δ32 allele is associated with reduced liver inflammation in hepatitis C virus infection. European Journal of Immunogenetics [Internet]. 2004;31(6):249–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-9644267011&doi=10.1111%252fj.1365-2370.2004.00482.x&partnerID=40&md5=6e170555ea58c54f7fb075571cb5c79c

78.

Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB Journal [Internet]. 2004;18(11):1240–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-9444239192&doi=10.1096%252ffj.03-0935fje&partnerID=40&md5=14414b4f6ee310272f3cc336c9cc29b2

79.

Franitza S, Grabovsky V, Wald O, Weiss I, Beider K, Dagan M, et al. Differential usage of VLA-4 and CXCR4 by CD3+CD56+ NKT cells and CD56+CD16+ NK cells regulates their interaction with endothelial cells. European Journal of Immunology [Internet]. 2004;34(5):1333–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-4544385301&doi=10.1002%252feji.200324718&partnerID=40&md5=1249221cc56bbcb709bad3dd59c360fd

80.

Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B, et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood [Internet]. 2004;103(8):2900–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1842579596&doi=10.1182%252fblood-2003-06-1891&partnerID=40&md5=52e1df9cccf48d4db168fed6cf332146

81.

Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood [Internet]. 2004;103(8):2981–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-11144358161&doi=10.1182%252fblood-2003-10-3611&partnerID=40&md5=9a26e417554946395a266123942aa5e6

82.

Wald O, Pappo O, Safadi R, Dagan-Berger M, Beider K, Wald H, et al. Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. European Journal of Immunology [Internet]. 2004;34(4):1164–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-3843098420&doi=10.1002%252feji.200324441&partnerID=40&md5=0c3cc2b6ab65f08777a9ad1c33910531

83.

Samira S, Ferrand C, Peled A, Nagler A, Tovbin Y, Ben-Hur H, et al. Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice. Stem Cells [Internet]. 2004;22(6):1085–100. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-8644290208&doi=10.1634%252fstemcells.22-6-1085&partnerID=40&md5=735c190564afe517212c3d52a6197b55

84.

Beider K, Nagler A, Wald O, Franitza S, Dagan-Berger M, Wald H, et al. Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood [Internet]. 2003;102(6):1951–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0141567699&doi=10.1182%252fblood-2002-10-3293&partnerID=40&md5=1f5aeefa70f3a5e5a86337e2229ae5ca

85.

Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood [Internet]. 2003;102(5):1569–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0042442412&doi=10.1182%252fblood-2003-02-0517&partnerID=40&md5=0bb2e50c8ec7ed01ea082fd0c5559a15

86.

Kollet O, Petit I, Kahn J, Samira S, Dar A, Peled A, et al. Human CD34+CXCR4- sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood [Internet]. 2002;100(8):2778–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037108293&doi=10.1182%252fblood-2002-02-0564&partnerID=40&md5=36fc8930a5b229cef3168f2b12cef63a

87.

Peled A, Hardan I, Trakhtenbrot L, Gur E, Magid M, Darash-Yahana M, et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells [Internet]. 2002;20(3):259–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-18344389548&doi=10.1634%252fstemcells.20-3-259&partnerID=40&md5=83632175f709f74e6e463c302417b380

88.

Yam D, Peled A, Shinitzky M. Suppression of tumor growth and metastasis by dietary fish oil combined with vitamins E and C and cisplatin. Cancer Chemotherapy and Pharmacology [Internet]. 2001;47(1):34–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034924035&doi=10.1007%252fs002800000205&partnerID=40&md5=982365555655a72aa2ef00687b3e4c66

89.

Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, et al. Rapid and efficient homing of human CD34+CD38-/lowCXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood [Internet]. 2001;97(10):3283–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035874501&doi=10.1182%252fblood.V97.10.3283&partnerID=40&md5=4ac5386f5836c3a492d5a22256502b87

90.

Mittelman M, Neumann D, Peled A, Kanter P, Haran-Ghera N. Erythropoietin induces tumor regression and antitumor immune responses in murine myeloma models. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2001;98(9):5181–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035942272&doi=10.1073%252fpnas.081275298&partnerID=40&md5=501e30be17891590d5c01d05f99ac919

91.

Grabovsky V, Feigelson S, Chen C, Bleijs DA, Peled A, Cinamon G, et al. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. Journal of Experimental Medicine [Internet]. 2000;192(4):495–505. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034698511&doi=10.1084%252fjem.192.4.495&partnerID=40&md5=0828c23593de6a17234296bc92a2860c

92.

Gonzalo JA, Lloyd CM, Peled A, Delaney T, Coyle AJ, Gutierrez-Ramos JC. Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1α in the inflammatory component of allergic airway disease. Journal of Immunology [Internet]. 2000;165(1):499–508. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034235930&doi=10.4049%252fjimmunol.165.1.499&partnerID=40&md5=3b8cd16e557dbc0fb5ccb5ef8621b9e8

93.

Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: Role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood [Internet]. 2000;95(11):3289–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034210221&doi=10.1182%252fblood.v95.11.3289.011k33_3289_3296&partnerID=40&md5=43e720b869521c7467ff7907acbce0c3

94.

Kollet O, Peled A, Byk T, Ben-Hur H, Greiner D, Shultz L, et al. β2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood [Internet]. 2000;95(10):3102–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034656421&doi=10.1182%252fblood.v95.10.3102&partnerID=40&md5=a89305cc01dfc0801b754541d3124d74

95.

Goldman Y, Peled A, Shinitzky M. Effective elimination of lung metastases induced by tumor cells treated with hydrostatic pressure and N-acetyl-L-cysteine. Cancer Research [Internet]. 2000;60(2):350–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034650884&partnerID=40&md5=8df8eef070d61598e157f0de52b1e1fd

96.

Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation [Internet]. 2000;106(11):1331–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033647496&doi=10.1172%252fJCI10329&partnerID=40&md5=31ece3c0b67ce61d462fee2ad5eaa29d

97.

Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science [Internet]. 1999;283(5403):845–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033524834&doi=10.1126%252fscience.283.5403.845&partnerID=40&md5=6016bffd37715dd525af2d3d37b992b5

98.

Peled A, Leykin I, Deckmann M, Shinitzky M. Evaluation of immune memory of human lymphocytes engrafted in SCID mice. Immunobiology [Internet]. 1999;201(1):145–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032834308&doi=10.1016%2fS0171-2985%2899%2980053-9&partnerID=40&md5=941094ccf9c7745d4d0a94a86b7b78ab

99.

Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. Journal of Clinical Investigation [Internet]. 1999;104(9):1199–211. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032698747&doi=10.1172%252fJCI7615&partnerID=40&md5=31c11f9aad96a114362fb79af8f21718

100.

Peled A, Gonzalo JA, Lloyd C, Gutierrez-Ramos JC. The chemotactic cytokine Eotaxin acts as a granulocyte-macrophage colony-stimulating factor during lung inflammation. Blood [Internet]. 1998;91(6):1909–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032521477&doi=10.1182%252fblood.v91.6.1909.1909_1909_1916&partnerID=40&md5=175ebbc3876954e451ce8a306fb53c36

101.

Carramolino L, Lee BC, Zaballos A, Peled A, Barthelemy I, Shav-Tal Y, et al. Erratum: SA-1, a nuclear protein encoded by one member of a novel gene family: Molecular cloning and detection in hemopoietic organs (Gene (1997) 195 (151-159)). Gene [Internet]. 1998;206(2):283–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031943503&doi=10.1016%2fS0378-1119%2897%2900556-8&partnerID=40&md5=776f13bc82b9303ded5f70335783265b

102.

Wolkowicz R, Peled A, Elkind NB, Rotter V. DNA-binding activity of wild-type p53 protein is mediated by the central part of the molecule and controlled by its C terminus. Cancer Detection and Prevention [Internet]. 1998;22(1):1–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031907841&doi=10.1046%252fj.1525-1500.1998.00003.x&partnerID=40&md5=fee5350bb7a824935408af4b735938aa

103.

Daniel Y, Peled A, Huszar M, Shinitzky M. Dietary fish oil suppresses tumor growth and metastasis of Lewis lung carcinoma in mice. Journal of Nutritional Biochemistry [Internet]. 1997;8(11):619–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0342711189&doi=10.1016%2fS0955-2863%2897%2900089-2&partnerID=40&md5=242ed5c54a340f301d40701432697301

104.

Carramolino L, Lee BC, Zaballos A, Peled A, Barthelemy I, Shav-Tal Y, et al. SA-1, a nuclear protein encoded by one member of a novel gene family: Molecular cloning and detection in hemopoietic organs. Gene [Internet]. 1997;195(2):151–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030748778&doi=10.1016%2fS0378-1119%2897%2900121-2&partnerID=40&md5=afaa5042ad8b8b8a33cfaf843eae1201

105.

Haran-Ghera N, Krautghamer R, Lapidot T, Peled A, Dominguez MG, Stanley ER. Increased circulating colony-stimulating factor-1 (CSF-1) in SJL/J mice with radiation-induced acute myeloid leukemia (AML) is associated with autocrine regulation of AML cells by CSF-1. Blood [Internet]. 1997;89(7):2537–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030945269&doi=10.1182%252fblood.v89.7.2537&partnerID=40&md5=e712498f099f9d73a258b877cfa6c3ef

106.

Almog N, Li R, Peled A, Schwartz D, Wolkowicz R, Goldfinger N, et al. The murine C’-terminally alternatively spliced form of p53 induces attenuated apoptosis in myeloid cells. Molecular and Cellular Biology [Internet]. 1997;17(2):713–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031056054&doi=10.1128%252fMCB.17.2.713&partnerID=40&md5=c1fd9bf117a46d2acd625619d9924e1e

107.

Peled A, Shezen E, Schwartz D, Shav-Tal Y, Kushtai G, Lee BC, et al. Nuclear antigen expressed by proliferating cells. Hybridoma [Internet]. 1997;16(4):325–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030843353&doi=10.1089%252fhyb.1997.16.325&partnerID=40&md5=7273228bf7862f3eab8800f928dd5885

108.

Schwartz D, Almog N, Peled A, Goldfinger N, Rotter V. Role of wild type p53 in the G2 phase: Regulation of the γ-irradiation-induced delay and DNA repair. Oncogene [Internet]. 1997;15(21):2597–607. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030700333&doi=10.1038%252fsj.onc.1201436&partnerID=40&md5=8531d71162baad314e679ec52bb0a6b1

109.

Aparicio J, Bilbao D, Aracil M, Peled A, Zipori D, Jochems G. The murine stromal cell line 14F1.1 secretes A putative novel growth factor for progenitor cells. Experimental Hematology [Internet]. 1996;24(9):1118. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748605058&partnerID=40&md5=53c253e6ec438a5273ccabc3ab829f81

110.

Peled A, Schwartz D, Elkind NB, Wolkowicz R, Li R, Rotter V. The role of p53 in the induction of polyploidity of myelomonocytic leukemic M1/2 cells. Oncogene [Internet]. 1996;13(8):1677–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029985112&partnerID=40&md5=dc1e01bccfd2756db9fbe9f08d54a9e6

111.

Peled A, Zipori D, Rotter V. Cooperation between p53-dependent and p53-independent apoptotic pathways in myeloid cells. Cancer Research [Internet]. 1996;56(9):2148–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029935573&partnerID=40&md5=42641c1086013010fb81ede5dd151732

112.

Sternberg D, Peled A, Shezen E, Abramsky O, Jiang W, Bertolero F, et al. Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: Stromal phenotypic plasticity and modified myelopoietic functions. Cytokines and Molecular Therapy [Internet]. 1996;2(1):29–38. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029917931&partnerID=40&md5=250a88b122faf81a83d25bb34ae6722c

113.

Lee BC, Shav-Tal Y, Peled A, Gothelf Y, Jiang W, Toledo J, et al. A hematopoietic organ-specific 49-kD nuclear antigen: Predominance in immature normal and tumor granulocytes and detection in hematopoietic precursor cells. Blood [Internet]. 1996;87(6):2283–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029931825&doi=10.1182%252fblood.v87.6.2283.bloodjournal8762283&partnerID=40&md5=c4b56a8592bc4db15a0c50109c5d18b3

114.

Peled A, Lee BC, Sternberg D, Toledo J, Aracil M, Zipori D. Interaction between leukemia cells and bone marrow stromal cellss: Stroma-supported growth vs. serum dependence and the roles of TGF-β and M-CSF. Experimental Hematology [Internet]. 1996;24(6):728–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029664580&partnerID=40&md5=d2c5c40a7cc7d1f65e9cd7e387f7b02c

115.

Wolkowicz R, Peled A, Elkind NB, Rotter V. Augmented DNA-binding activity of p53 protein encoded by a carboxyl-terminal alternatively spliced mRNA is blocked by p53 protein encoded by the regularly spliced form. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1995;92(15):6842–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029087477&doi=10.1073%252fpnas.92.15.6842&partnerID=40&md5=262a2819bfa7e71f517bec2aa3780a4b

116.

Haran-Ghera N, Peled A, Wu L, Shortman K, Brightman BK, Fan H. The effects of passive antiviral immunotherapy in AKR mice: I. The susceptibility of AKR mice to spontaneous and induced t cell lymphomagenesis. Leukemia [Internet]. 1995;9(7):1199–206. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029154759&partnerID=40&md5=54c26457c51acde8dc23166fc003266a

117.

Peled A, Tzehoval E, Haran-Ghera N. Role of cytokines in termination of the B cell lymphoma dormant state in AKR mice. Leukemia [Internet]. 1995;9(6):1095–101. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029024829&partnerID=40&md5=de493ddd59e42a57fcca923144ccd0de

118.

Haran-Ghera N, Peled A, Canaani E, Caspi Y, Haimovich J, Shaft D, et al. The effects of passive anti-viral immunotherapy in AKR mice: II susceptibility to B cell lymphomagenesis. Leukemia [Internet]. 1995;9(11):1940–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028866811&partnerID=40&md5=bce8115b234964d90181afaddf3703fd

119.

Benayahu D, Peled A, Zipori D. Myeloblastic cell line expresses osteoclastic properties following coculture with marrow stromal adipocytes. Journal of Cellular Biochemistry [Internet]. 1994;56(3):374–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028054029&doi=10.1002%252fjcb.240560314&partnerID=40&md5=c9856c744ee32d941da1944efa5c1e88

120.

Rosner A, Peled A, Haran-Ghera N, Canaani E. Analysis of Ly-1+ B-Cell Populations and IgH Rearrangements in “Normal” Spleens and in Lymphomas of AKR/J and AKR Fv-1b Mice. Cancer Research [Internet]. 1993;53(9):2147–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027278572&partnerID=40&md5=49a2d4196b3b5203684a33dfe69d4f49

121.

Haran-Ghera N, Peled A, Kay Brightman B, Fan H. Lymphomagenesis in AKRJ?v-lb Congenic Mice. Cancer Research [Internet]. 1993;53(14):3433–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027258838&partnerID=40&md5=c6717a3df716165f89c9ede4f96f395f

122.

Defresne MP, Borremans B, Verhofstede C, Peled A, Thiry A, Greimers R, et al. Mixed phenotype murine leukemias. Leukemia [Internet]. 1993;7(8):1253–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027184426&partnerID=40&md5=299bc1601c76325979d5d23641a48718

123.

Resnitzky P, Goren T, Shaft D, Trakhtenbrot L, Peled A, Resnitzky D, et al. Absence of negative growth regulation in three new murine radiation-induced myeloid leukemia cell lines with deletion of chromosome 2. Leukemia [Internet]. 1992;6(12):1288–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027066872&partnerID=40&md5=6a93f396da99946b9dbed3e07f92f69a

124.

Haran-Ghera N, Peled A, Krautghamer R, Resnitzky P. Initiation and promotion in radiation-induced myeloid leukemia. Leukemia [Internet]. 1992;6(7):689–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026720259&partnerID=40&md5=fba092db8faa2495add885b6a973e575

125.

Irlin Y, Peled A. Thy-1 antigen-mediated adhesion of mouse lymphoid cells to stromal cells of haemopoetic origin. Immunology Letters [Internet]. 1992;33(3):233–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026644251&doi=10.1016%2f0165-2478%2892%2990067-X&partnerID=40&md5=901b8932085d0a1b50c5b2c06b1f951b

126.

Haran-Ghera N, Peled A, Brightman BK, Fan H. Termination of the B cell lymphoma dormant state in thymectomized AKR mice. Journal of Immunology [Internet]. 1992;148(9):2947–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026511828&partnerID=40&md5=cf98aac863474c9879859995ecbef789

127.

Halevy O, Rodel J, Peled A, Oren M. Frequent p53 mutations in chemically induced murine fibrosarcoma. Oncogene [Internet]. 1991;6(9):1593–600. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025812651&partnerID=40&md5=160b72c69cfb6eaf76d5d5e196b06555

128.

Peled A, Kalai M, Toledo J, Zipori D. Stroma-cell dependent hematopoiesis. Seminars in Hematology [Internet]. 1991;28(2):132–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025853586&partnerID=40&md5=bbf112213bd3a05bcd0e569fe3e44f52

129.

Shaulsky G, Goldfinger N, Peled A, Rotter V. Involvement of wild-type p53 protein in the cell cycle requires nuclear localization. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research [Internet]. 1991;2(12):661–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026309246&partnerID=40&md5=d438e02a3fc2942ec73cf22947d8f18b

130.

Shaulsky G, Goldfinger N, Peled A, Rotter V. Involvement of wild-type p53 in pre-B-cell differentiation in vitro. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1991;88(20):8982–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026001187&doi=10.1073%252fpnas.88.20.8982&partnerID=40&md5=407e7e29fc97bd7e0dd00e147a46a452

131.

Haran-Ghera N, Peled A. II. Prevention of spontaneous AKR T cell lymphomagenesis by elimination of potential lymphoma cells with antibody to specific gp 71 determinants. Virology [Internet]. 1991;181(2):536–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025921520&doi=10.1016%2f0042-6822%2891%2990886-G&partnerID=40&md5=dc2e0678fa4c95b8ebbcbe8898e8d389

132.

Peled A, Haran-Ghera N. I. Prevention of spontaneous AKR T cell lymphomagenesis by 24-666, a virus isolated from an AKR B cell lymphoma. Virology [Internet]. 1991;181(2):528–35. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025921517&doi=10.1016%2f0042-6822%2891%2990885-F&partnerID=40&md5=56663d8e6533b57d55c1df46c73a25b2

133.

Haran-Ghera N, Peled A. Validity of the in vitro system as a correlate of the in vivo model of RadLV lymphomagenesis. Leukemia [Internet]. 1991;5(6):500–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025853881&partnerID=40&md5=7d57898292063be7fd4267edee7c6088

134.

Peled A, Zipori D, Abramsky O, Ovadia H, Shezen E. Expression of α-smooth muscle actin in murine bone marrow stromal cells. Blood [Internet]. 1991;78(2):304–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025787026&doi=10.1182%252fblood.v78.2.304.304&partnerID=40&md5=378635882717cd1becc806dc7491c5ce

135.

Gokhman I, Peled A, Haran-Ghera N. Characteristics of Potential Lymphoma-inducing Cells in Mice Sensitive or Resistant to Lymphomagenesis by Radiation Leukemia Virus Variants. Cancer Research [Internet]. 1990;50(9):2554–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025274814&partnerID=40&md5=4e7be0716f1304b287060d1eb2f1b986

136.

Haran-Ghera N, Trakhtenbrot L, Resnitzky P, Peled A. Preleukemia in experimental leukemogenesis. Haematology and blood transfusion [Internet]. 1989;32:243–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024821499&doi=10.1007%252f978-3-642-74621-5_42&partnerID=40&md5=82745908c1416a100dfef8a6d7955019

137.

Peled A, Haran-Ghera N. Intervention in potential leukemic cell migration pathway affects leukemogenesis. Haematology and blood transfusion [Internet]. 1989;32:237–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024790683&doi=10.1007%252f978-3-642-74621-5_41&partnerID=40&md5=89f6a0a007d07a35fb3b8737c0b90df4

138.

Peled A, Haran-Ghera N. Prevention of T-cell lymphoma in AKR/J mcie. Leukemia [Internet]. 1988;2(12 SUPPL.):125s–31s. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024212078&partnerID=40&md5=3c60f6f36b0fb1d3f8f025be87e0c685

139.

Resnitzky P, Bustan A, Peled A, Marikovsky Y. Variations in surface charge distribution of leukemic and non-leukemic transformed cells. Leukemia Research [Internet]. 1988;12(4):315–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023943012&doi=10.1016%2f0145-2126%2888%2990046-X&partnerID=40&md5=2a8b5317eca5b244d44f46a99fb17734

140.

Haran-Ghera N, Peled A, Leef F, Hoffman AD, Levy JA. Enhanced AKR leukemogenesis by the dual tropic viruses. I. The time and site of origin of potential leukemic cells. Leukemia [Internet]. 1987;1(5):442–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023618933&partnerID=40&md5=7532b06bfb8542074fa4ed37a258ad12

141.

Peled A, Hoffman AD, Levy JA, Haran-Ghera N. Enhanced AKR leukemogenesis by the dual tropic viruses. II. Effect on cell-mediated immune responses. Leukemia [Internet]. 1987;1(5):450–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023618326&partnerID=40&md5=0e2884f74b14fc0cb7297db91f329128

142.

Trakhtenbrot L, Peled A, Haran‐Ghera N. Cytogenetic studies on B‐cell leukemias of akr origin. International Journal of Cancer [Internet]. 1987;39(3):380–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023149026&doi=10.1002%252fijc.2910390318&partnerID=40&md5=5ba712adf81c3ab4abe0cf1d6debe286

143.

Peled A, Haran-Ghera N. High incidence of b cell lymphomas derived from thymectomized akr mice expressing TL.4 antigen. Journal of Experimental Medicine [Internet]. 1985;162(3):1081–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022360034&doi=10.1084%252fjem.162.3.1081&partnerID=40&md5=e8b6c9022e30ecaac1a59b5b57a62654

144.

Katz E, Peled A, Haran-Ghera N. Changes of H-2 antigen expression on thymocytes during leukemia development by radiation leukemia virus. Leukemia Research [Internet]. 1985;9(10):1219–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022389634&doi=10.1016%2f0145-2126%2885%2990148-1&partnerID=40&md5=948261768e3e7639249ec7ead1828b8c

145.

Peled A, Haran‐Ghera N. Age‐related expression of TL antigen in AKR/J mice. International Journal of Cancer [Internet]. 1984;34(1):121–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021253737&doi=10.1002%252fijc.2910340121&partnerID=40&md5=1b65761c476c88490a92fbbc7c33951f

146.

Weinberger A, Peled A, Haran-Ghera N, Hazaz B, Joshua H, Pinkhas J. Infiltration of leukemic cells into muscles adjacent to joints of mice with leukemia. Israel Journal of Medical Sciences [Internet]. 1982;18(10):1057–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020448838&partnerID=40&md5=69f39c484ad6c7d324da69e622a83f2d

147.

Peled A, Perk K, Haran-Ghera N, Chirigos MA. The oncostatic effect of methyl-CCNU on various experimental lymphoreticular neoplasms. Leukemia Research [Internet]. 1982;6(1):89–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020067630&doi=10.1016%2f0145-2126%2882%2990047-9&partnerID=40&md5=e131a56542c279c953d5e930528b4522

148.

Lonai P, Katz E, Peled A, Haran-Ghera N. H-2I-linked control of immunological resistance to viral leukemogenesis as a response to preleukemic cells. Immunogenetics [Internet]. 1981;12(1):423–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34250243256&doi=10.1007%252fBF01561685&partnerID=40&md5=1d25978554955feae2357cc091762db2

149.

Haran-Ghera N, Krauthgamer R, Peled A. Malignant cell arrest in thymus and spleen of mice bearing transplanted tumors. Journal of Immunology [Internet]. 1981;126(4):1241–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019459614&partnerID=40&md5=3ac01fdfbb15c2522bbc241aca8333ba

150.

Geltner D, Peled A. Absorption of serum antinuclear antibodies. Clinical Immunology and Immunopathology [Internet]. 1979;13(3):237–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018748160&doi=10.1016%2f0090-1229%2879%2990068-0&partnerID=40&md5=774e5410235492133abea197bfe50749

151.

Haran-Ghera N, Peled A. Induction of leukemia in mice by irradiation and radiation leukemia virus variants. Advances in Cancer Research [Internet]. 1979;30(C):45–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018738421&doi=10.1016%2fS0065-230X%2808%2960894-5&partnerID=40&md5=688920894cde046d0170cb10d24dddff

152.

Peled A, Ben-Yaakov M, Brami S. The effect of lymphoreticular neoplasms on the age dependent increase of antinuclear antibodies. Journal of Clinical and Laboratory Immunology [Internet]. 1979;2(3):255–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018628615&partnerID=40&md5=51eb4c0d1240749a87e73fd3779c1d8b

153.

Peled A, Haran-ghera N. Lack of transformation of murine thymocytes by thymic epithelium [24]. Nature [Internet]. 1978;274(5668):266–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018150906&doi=10.1038%252f274266a0&partnerID=40&md5=2e6df3ca541f42015e1eba31b01b8f42

154.

Peled A. Cellular immune response induced by the radiation leukemia virus (RadLV). Leukemia Research [Internet]. 1977;1(4):333–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-49349135885&doi=10.1016%2f0145-2126%2877%2990053-4&partnerID=40&md5=881bd7e5ffa632f7e81fd3a26375225c

155.

Haran Ghera N, Ben Yaakov M, Peled A. Immunologic characteristics in relation to high and low leukemogenic activity of radiation leukemia virus variants. I. Cellular analysis of immunosuppression. Journal of Immunology [Internet]. 1977;118(2):600–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017346818&partnerID=40&md5=93c94533fa0c0a310f4ae58eaa64a5d3

156.

Haran Ghera N, Ben Yaakov M, Chazan R, Peled A. Pathways in thymus and bone marrow derived lymphatic leukemia in mice. Bibliotheca Haematologica [Internet]. 1975;no.40:133–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016792714&partnerID=40&md5=7b5699d62c3a4dc6c3b27a8cb87cc48e

157.

Peled A, Berke G. Proceedings: Cell-mediated anti-leukemic cell immunity in C57BL/6 mice injected with the radiation leukemic virus. Israel Journal of Medical Sciences [Internet]. 1975;11(12):1396. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016660422&partnerID=40&md5=ec89b1ca8471912d97763a59a68a861b

158.

Peled A, Haran Ghera N. The cellular basis of immunosuppression caused by the radiation leukaemia virus. Immunology [Internet]. 1974;26(2):323–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016308323&partnerID=40&md5=af7cabf953a5461a12a7ad627a02f26e

159.

Haran-Ghera N, Peled A. Thymus and bone marrow derived lymphatic leukaemia in mice [7]. Nature [Internet]. 1973;241(5389):396–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015918155&doi=10.1038%252f241396a0&partnerID=40&md5=4e2682eca56f08e8d3a4cf2b2c710ee6

160.

Haran-Ghera N, Ben-Yaakov M, Peled A, Bentwich Z. Immune status of sjl/j mice in relation to age and spontaneous tumor development. Journal of the National Cancer Institute [Internet]. 1973;50(5):1227–35. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015876125&doi=10.1093%252fjnci%252f50.5.1227&partnerID=40&md5=baf7c3b4059c616c199ac6811e91b68e

161.

Peled A, Haran-Ghera N. Immunological studies on the radiation leukaemia virus in C57BL mice. Nature New Biology [Internet]. 1971;232(34):244–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015239899&doi=10.1038%252fnewbio232244a0&partnerID=40&md5=ecc1e0f6311cb937d7ff95b74544dfbf

162.

Peled A, Haran‐Ghera N. Immunosuppression by the radiation leukemia virus and its relation to lymphatic leukemia development. International Journal of Cancer [Internet]. 1971;8(1):97–106. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015226188&doi=10.1002%252fijc.2910080113&partnerID=40&md5=75f400b1d4f87d7ee238332564d41670

163.

Haran-Ghera N, Peled A. The mechanism of radiation action in leukemogenesis. IV. Immune impairment as a coleukemogenic factor. Israel Journal of Medical Sciences [Internet]. 1968;4(6):1181–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014357460&partnerID=40&md5=f5de41f5c67b7a88556c8c07c491b62c

164.

Haran-Ghera N, Peled A. The mechanism of radiation action in leukaemogenesis. Isolation of a leukaemogenic filtrable agent from tissues of irradiated and normal c57bl mice. British Journal of Cancer [Internet]. 1967;21(4):730. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014170263&doi=10.1038%252fbjc.1967.85&partnerID=40&md5=5eed7dfbb0e138ab4209af6fc6db4ffa