Skip to Main Content

Hadassah Medical Center - Gene Therapy: Rachmilewitz Jacob

researchers

Last updated September 2023 - Gene Therapy

List of Publications

1.

Ghantous L, Volman Y, Hefez R, Wald O, Stern E, Friehmann T, et al. The DNA damage response pathway regulates the expression of the immune checkpoint CD47. Communications Biology [Internet]. 2023;6(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149551312&doi=10.1038%252fs42003-023-04615-6&partnerID=40&md5=adc9548468d7eb49a7bd87cc56c13cc2

2.

Volman Y, Hefetz R, Galun E, Rachmilewitz J. DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Scientific Reports [Internet]. 2022;12(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127705264&doi=10.1038%252fs41598-022-09779-5&partnerID=40&md5=839cf4c74bf9ccd6e148a0ef28bb2b02

3.

Guedj A, Volman Y, Geiger-Maor A, Bolik J, Schumacher N, Künzel S, et al. Gut microbiota shape “inflamm-ageing” cytokines and account for age-dependent decline in DNA damage repair. Gut [Internet]. 2020;69(6):1064–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073156734&doi=10.1136%252fgutjnl-2019-318491&partnerID=40&md5=0ab4e751e575b94c30bd75bb88f9fc52

4.

Kirmayer D, Grin A, Gefter J, Friedman M, Rachmilewitz J, Mosheiff R, et al. Guided Bone Regeneration with Ammoniomethacrylate-Based Barrier Membranes in a Radial Defect Model. BioMed Research International [Internet]. 2020;2020. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095677791&doi=10.1155%252f2020%252f5905740&partnerID=40&md5=e08b5a785ba02301ca3a6a9539c92595

5.

Idelson M, Alper R, Obolensky A, Yachimovich-Cohen N, Rachmilewitz J, Ejzenberg A, et al. Immunological Properties of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Stem Cell Reports [Internet]. 2018;11(3):681–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053827168&doi=10.1016%252fj.stemcr.2018.07.009&partnerID=40&md5=7eed9749ee991e96a88989860cf7dd15

6.

Guedj A, Geiger-Maor A, Benyamini H, Nevo Y, Elgavish S, Galun E, et al. Correction: Early age decline in DNA repair capacity in the liver: In depth profile of differential gene expression [Aging (Albany NY), 8, 11, (2017) (3131-3141)] DOI: 10.18632/aging.101120. Aging [Internet]. 2017;9(6):1640. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021759866&doi=10.18632%252faging.101242&partnerID=40&md5=5c9d42399581d06fec5d7544f34d12c6

7.

Guedj A, Geiger-Maor A, Galun E, Amsalem H, Rachmilewitz J. Early age decline in DNA repair capacity in the liver: In depth profile of differential gene expression. Aging [Internet]. 2016;8(11):3131–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85002301230&doi=10.18632%252faging.101120&partnerID=40&md5=0818a2f4bdf00bb7f815e01e83e0cff3

8.

Geiger-Maor A, Guedj A, Even-Ram S, Smith Y, Galun E, Rachmilewitz J. Macrophages regulate the systemic response to DNA damage by a cell nonautonomous mechanism. Cancer Research [Internet]. 2015;75(13):2663–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942636275&doi=10.1158%252f0008-5472.CAN-14-3635&partnerID=40&md5=6c00adc91681db02e0d61d9038ff6e73

9.

Levi I, Amsalem H, Nissan A, Darash-Yahana M, Peretz T, Mandelboim O, et al. Characterization of tumor infiltrating Natural Killer cell subset. Oncotarget [Internet]. 2015;6(15):1–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84931067367&doi=10.18632%252foncotarget.3453&partnerID=40&md5=754828ca4b8fd5f05a73228441f313f2

10.

Aronin A, Amsili S, Prigozhina TB, Tzdaka K, Rachmilewitz J, Shani N, et al. Fn14•Trail Effectively Inhibits Hepatocellular Carcinoma Growth. PLoS ONE [Internet]. 2013;8(10). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885399010&doi=10.1371%252fjournal.pone.0077050&partnerID=40&md5=f905fd688d19ec29a445d79eb437a8cb

11.

Toledano N, Gur-Wahnon D, Ben-Yehuda A, Rachmilewitz J. Novel CD47: SIRPα Dependent Mechanism for the Activation of STAT3 in Antigen-Presenting Cell. PLoS ONE [Internet]. 2013;8(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884468892&doi=10.1371%252fjournal.pone.0075595&partnerID=40&md5=555de47a9d1aa55dd592e2cad6460218

12.

Geiger-Maor A, Levi I, Even-Ram S, Smith Y, Bowdish DM, Nussbaum G, et al. Cells exposed to sublethal oxidative stress selectively attract monocytes/macrophages via scavenger receptors and MyD88-mediated signaling. Journal of Immunology [Internet]. 2012;188(3):1234–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856585193&doi=10.4049%252fjimmunol.1101740&partnerID=40&md5=e015ad5ed6122b6695d7141cb854a275

13.

Ochanuna Z, Geiger-Maor A, Dembinsky-Vaknin A, Karussis D, Tykocinski ML, Rachmilewitz J. Inhibition of effector function but not T cell activation and increase in FoxP3 expression in T cells differentiated in the presence of PP14. PLoS ONE [Internet]. 2010;5(9):1–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958540006&doi=10.1371%252fjournal.pone.0012868&partnerID=40&md5=5ad151da41e6cef8e9da659bcc2bb16a

14.

Rachmilewitz J. Glycosylation: An intrinsic sign of “danger.” Self/Nonself - Immune Recognition and Signaling [Internet]. 2010;1(3):250–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049299173&doi=10.4161%252fself.1.3.12330&partnerID=40&md5=688259ea03fd32cd3e3951316b60a837

15.

Yachimovich-Cohen N, Even-Ram S, Shufaro Y, Rachmilewitz J, Reubinoff B. Human embryonic stem cells suppress T cell responses via arginase I-dependent mechanism. Journal of Immunology [Internet]. 2010;184(3):1300–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77949331434&doi=10.4049%252fjimmunol.0804261&partnerID=40&md5=1201f7698c7ee88c83e9d8bd8dba19ec

16.

Orbach A, Rachmilewitz J, Shani N, Isenberg Y, Parnas M, Huang JH, et al. CD40·FasL and CTLA-4·FasL fusion proteins induce apoptosis in malignant cell lines by dual signaling. American Journal of Pathology [Internet]. 2010;177(6):3159–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650214751&doi=10.2353%252fajpath.2010.100301&partnerID=40&md5=814becf7e46c3ea22ff741142b3bbb72

17.

Zorde-Khvalevsky E, Abramovitch R, Barash H, Spivak-Pohis I, Rivkin L, Rachmilewitz J, et al. Toll-like receptor 3 signaling attenuates liver regeneration. Hepatology [Internet]. 2009;50(1):198–206. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67651160923&doi=10.1002%252fhep.22973&partnerID=40&md5=7a4ef79ed421d9eacd2a6cfb82457cff

18.

Gur-Wahnon D, Borovsky Z, Liebergall M, Rachmilewitz J. The induction of APC with a distinct tolerogenic phenotype via contact-dependent STAT3 activation. PLoS ONE [Internet]. 2009;4(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70049107574&doi=10.1371%252fjournal.pone.0006846&partnerID=40&md5=665ca98621ed9647c9c59b15f16b3543

19.

Grin A, Sasson Y, Beyth S, Mosheiff R, Rachmilewitz J, Friedman M. In vitro study of a novel polymeric mesenchymal stem-cell coated membrane. Journal of Drug Delivery Science and Technology [Internet]. 2009;19(4):241–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-69249124619&doi=10.1016%2fS1773-2247%2809%2950047-0&partnerID=40&md5=effc469ff2dfcb1dfbe5c22115a3f42c

20.

Rachmilewitz J. Serial triggering model. Advances in Experimental Medicine and Biology [Internet]. 2008;640:95–102. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149355459&doi=10.1007%252f978-0-387-09789-3_9&partnerID=40&md5=316931f3c101c8b1d816462eaf199fda

21.

Amsalem H, Gaiger A, Mizrahi S, Yagel S, Rachmilewitz J. Characterization of a lymphocyte subset displaying a unique regulatory activity in human decidua. International Immunology [Internet]. 2008;20(9):1147–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-53749096965&doi=10.1093%252fintimm%252fdxn072&partnerID=40&md5=f4fd96c08bf79c2a7bf0fb38450b75bd

22.

Orbach A, Rachmilewitz J, Parnas M, Huang JH, Tykocinski ML, Dranitzki-Elhalel M. CTLA-4·FasL induces early apoptosis of activated T cells by interfering with anti-apoptotic signals. Journal of Immunology [Internet]. 2007;179(11):7287–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-38849092640&doi=10.4049%252fjimmunol.179.11.7287&partnerID=40&md5=a5bb98bcff8d3a0f1b92d6e8af4ee751

23.

Dranitzki-Elhalel M, Huang JH, Sasson M, Rachmilewitz J, Parnas M, Tykocinski ML. CD40·FasL inhibits human T cells: Evidence for an auto-inhibitory loop-back mechanism. International Immunology [Internet]. 2007;19(4):355–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34047094965&doi=10.1093%252fintimm%252fdxm001&partnerID=40&md5=d70b3750f6cb0ab55bbe55ef528ce7c6

24.

Khvalevsky E, Rivkin L, Rachmilewitz J, Galun E, Giladi H. TLR3 signaling in a hepatoma cell line is skewed towards apoptosis. Journal of Cellular Biochemistry [Internet]. 2007;100(5):1301–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947591977&doi=10.1002%252fjcb.21119&partnerID=40&md5=4130a82d207d5bd9cc7b2d485baec91b

25.

Gur-Wahnon D, Borovsky Z, Beyth S, Liebergall M, Rachmilewitz J. Contact-dependent induction of regulatory antigen-presenting cells by human mesenchymal stem cells is mediated via STAT3 signaling. Experimental Hematology [Internet]. 2007;35(3):426–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847039191&doi=10.1016%252fj.exphem.2006.11.001&partnerID=40&md5=663552715adbbec6d28519bb8e1938af

26.

Ish-Shalom E, Gargir A, André S, Borovsky Z, Ochanuna Z, Gabius HJ, et al. α2,6-Sialylation promotes binding of placental protein 14 via its Ca2+-dependent lectin activity: Insights into differential effects on CD45RO and CD45RA T cells. Glycobiology [Internet]. 2006;16(3):173–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33144457345&doi=10.1093%252fglycob%252fcwj053&partnerID=40&md5=800b80ec9a423d48f5bda7323c7b0952

27.

Dranitzki-Elhalel M, Huang JH, Rachmilewitz J, Pappo O, Parnas M, Schmidt W, et al. CTLA-4·FasL inhibits allogeneic responses in vivo. Cellular Immunology [Internet]. 2006;239(2):129–35. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745857279&doi=10.1016%252fj.cellimm.2006.05.002&partnerID=40&md5=fc1022c5d3cfd2b1e0f7b2852f17b65b

28.

Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood [Internet]. 2005;105(5):2214–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-14944339174&doi=10.1182%252fblood-2004-07-2921&partnerID=40&md5=3ea861048b1e34f49d470ce06a8c185e

29.

Mishan-Eisenberg G, Borovsky Z, Weber MC, Gazit R, Tykocinski ML, Rachmilewitz J. Differential regulation of Th1/Th2 cytokine responses by placental protein 14. Journal of Immunology [Internet]. 2004;173(9):5524–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-6344274984&doi=10.4049%252fjimmunol.173.9.5524&partnerID=40&md5=b228f1b69113149d86772f6f312745b1

30.

Elhalel MD, Huang JH, Schmidt W, Rachmilewitz J, Tykocinski ML. CTLA-4 · FasL induces alloantigen-specific hyporesponsiveness. Journal of Immunology [Internet]. 2003;170(12):5842–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037606064&doi=10.4049%252fjimmunol.170.12.5842&partnerID=40&md5=c37ee0cf0f1ea5ef56b395b385c0f830

31.

Rachmilewitz J, Borovsky Z, Riely GJ, Miller R, Tykocinski ML. Negative regulation of T cell activation by placental protein 14 is mediated by the tyrosine phosphatase receptor CD45. Journal of Biological Chemistry [Internet]. 2003;278(16):14059–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038190995&doi=10.1074%252fjbc.M211716200&partnerID=40&md5=c9abf9492c92f7d22eeb0fafad300432

32.

Yaniv E, Borovsky Z, Mishan-Eisenberg G, Rachmilewitz J. Placental protein 14 regulates selective B cell responses. Cellular Immunology [Internet]. 2003;222(2):156–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037783957&doi=10.1016%2fS0008-8749%2803%2900129-1&partnerID=40&md5=2d77d79ac557a2ebdc4da16a479ab8cc

33.

Rachmilewitz J, Lanzavecchia A. A temporal and spatial summation model for T-cell activation: Signal integration and antigen decoding. Trends in Immunology [Internet]. 2002;23(12):592–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036898764&doi=10.1016%2fS1471-4906%2802%2902342-6&partnerID=40&md5=e84171733d824c3b6f1913b2c929b8d2

34.

Borovsky Z, Mishan-Eisenberg G, Yaniv E, Rachmilewitz J. Serial triggering of T cell receptors results in incremental accumulation of signaling intermediates. Journal of Biological Chemistry [Internet]. 2002;277(24):21529–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037077280&doi=10.1074%252fjbc.M201613200&partnerID=40&md5=8369263dc38e6d551d4a47a5682a3586

35.

Rachmilewitz J, Borovsky Z, Mishan-Eisenberg G, Yaniv E, Riely GJ, Tykocinski ML. Focal localization of placental protein 14 toward sites of TCR engagement. Journal of Immunology [Internet]. 2002;168(6):2745–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037087380&doi=10.4049%252fjimmunol.168.6.2745&partnerID=40&md5=03a5c3aa842d541f77c3f94a0c9da072

36.

Rachmilewitz J, Riely GJ, Huang JH, Chen A, Tykocinski ML. A rheostatic mechanism for T-cell inhibition based on elevation of activation thresholds. Blood [Internet]. 2001;98(13):3727–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035895064&doi=10.1182%252fblood.V98.13.3727&partnerID=40&md5=df349df2cf1c59b269325ac775c25057

37.

Rachmilewitz J, Riely GJ, Tykocinski ML. Placental protein 14 functions as a direct T-cell inhibitor. Cellular Immunology [Internet]. 1999;191(1):26–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033540328&doi=10.1006%252fcimm.1998.1408&partnerID=40&md5=4dfd9276462031b415aab7eca8495be7

38.

Rachmilewitz J, Tykocinski ML. Differential effects of chondroitin sulfates A and B on monocyte and B- cell activation: Evidence for B-cell activation via a CD44-dependent pathway. Blood [Internet]. 1998;92(1):223–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032126673&doi=10.1182%252fblood.v92.1.223.413k15_223_229&partnerID=40&md5=9a59cbd87684dd88a583646fbe806ccd

39.

Rachmilewitz J, Tykocinski ML. Human PP14: A unique immunosuppressive protein that targets early events in T-cell activation. FASEB Journal [Internet]. 1998;12(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749269538&partnerID=40&md5=65e9c7d3fea8a12e508646d64b26db3d

40.

Rachmilewitz J, Elkin M, Looijenga LHJ, Verkerk AJMH, Gonik B, Lustig O, et al. Characterization of the imprinted IPW gene: Allelic expression in normal and tumorigenic human tissues. Oncogene [Internet]. 1996;13(8):1687–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029860451&partnerID=40&md5=02726d07452eb69c16bad1bfec0f906b

41.

Rachmilewitz J, Elkin M, Rosensaft J, Gelman-Kohan Z, Ariel I, Lustig O, et al. H19 expression and tumorigenicity of choriocarcinoma derived cell lines. Oncogene [Internet]. 1995;11(5):863–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029092758&partnerID=40&md5=332cb7210549660d803bb769df692f24

42.

Rachmilewitz J, Goshen R, Elkin M, Gonik B, Neaman Z, Giloh H, et al. The interaction between cytotrophoblasts and their derived tumor cells. Gynecologic Oncology [Internet]. 1995;57(3):356–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029057907&doi=10.1006%252fgyno.1995.1155&partnerID=40&md5=7eeaf13eb7bd4c5ac952d0fc300c5806

43.

Lorberboum-Galski H, Yarkoni S, Nechushtan A, Rachmilewitz J, De Groot N, Hochberg A. ABL and BCR Genes are not imprinted in androgenetic and gynogenetic human tissues. Biochemical and Biophysical Research Communications [Internet]. 1994;204(2):621–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028004392&doi=10.1006%252fbbrc.1994.2504&partnerID=40&md5=07520c5e541b4406efd9910c0b022fb2

44.

Ne’eman Z, Gonik B, Goshen R, Rachmilewitz J, Ariel I, Rosenmann E, et al. Ultrastructural characteristics of cytotrophoblast cells during stages of differentiation. JSUBMICROSCCYTOLPATHOL [Internet]. 1994;26(3):341–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028468571&partnerID=40&md5=2df1240389bfa22739bc48cc3bc0b8ab

45.

de Groot N, Rachmilewitz J, Ariel I, Goshen R, Lustig O, Hochberg A. Genetic imprinting in human embryogenesis H19 and IGF2 gene expression. Placenta [Internet]. 1994;15:285–302. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025408976&doi=10.1016%2fS0143-4004%2805%2980352-2&partnerID=40&md5=6b50b408330aa620ffacbf5ecf23d49b

46.

Gonik B, Rachmilewitz J, Hochberg A, Goshen R, de Groot N, Gonik B, et al. Induction of Tumor Necrosis Factor and lnterleukin-6 cmRNA in Human Cytotrophoblast Cells Exposedc to Lipopolysaccharide. Infectious Diseases in Obstetrics and Gynecology [Internet]. 1994;2(1):3–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-10544231920&doi=10.1155%252fS1064744994000311&partnerID=40&md5=b03755ff3eccf7ce51da027f012b8821

47.

Voutilainen R, Ilvesmäki V, Ariel I, Rachmilewitz J, De-Groot N, Hochberg A. Parallel regulation of parentally imprinted H19 and insulin-like growth factor-II genes in cultured human fetal adrenal cells. Endocrinology [Internet]. 1994;134(5):2051–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028326318&doi=10.1210%252fendo.134.5.7512497&partnerID=40&md5=81361d0a926f79a3f5bec6f9baf0c9b4

48.

Ariel I, Lustig O, Oyer CE, Elkin M, Gonik B, Rachmilewitz J, et al. Relaxation of Imprinting in Trophoblastic Disease. Gynecologic Oncology [Internet]. 1994;53(2):212–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028263860&doi=10.1006%252fgyno.1994.1118&partnerID=40&md5=b3d0e359d30011aaccb7e3ea8d5cb5f9

49.

Rachmilewitz J, Gonik B, Goshen R, Ariel I, Schneider T, Degroot N, et al. Use of a novel system for defining a gene imprinting region. Biochemical and Biophysical Research Communications [Internet]. 1993;196(2):659–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027425364&doi=10.1006%252fbbrc.1993.2300&partnerID=40&md5=2cf304cd321264530f7454abfb61e76a

50.

De Groot N, Goshen R, Rachmilewitz J, Gonik B, Ben‐Hur H, Hochberg A. Genomic imprinting and b‐chorionic gonadotropin. Prenatal Diagnosis [Internet]. 1993;13(12):1159–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027757161&doi=10.1002%252fpd.1970131214&partnerID=40&md5=133aef562d4eed1420d4745bfeffe2c3

51.

Rachmilewitz J, Gonik B, Goshen R, Ariel I, Schneider T, Eldar-Geva T, et al. Intermediate cells during cytotrophoblast differentiation in vitro. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research [Internet]. 1993;4(5):395–402. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027597616&partnerID=40&md5=47e1cb8930d390509cff550cd7d755be

52.

Goshen R, Rachmilewitz J, Schneider T, de‐Groot N, Ariel I, Palti Z, et al. The expression of the H‐19 and IGF‐2 genes during human embryogenesis and placental development. Molecular Reproduction and Development [Internet]. 1993;34(4):374–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027536679&doi=10.1002%252fmrd.1080340405&partnerID=40&md5=030c6bf198736ae5f3119e1607d00edf

53.

Hochberg A, DeGroot N, Rachmilewitz J, Gonik B. Genetic imprinting in human evolution: The decisive role of maternal lineage. Medical Hypotheses [Internet]. 1993;41(4):355–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027527003&doi=10.1016%2f0306-9877%2893%2990083-3&partnerID=40&md5=786004d40713052633eea2a47e312ee2

54.

Eldar-Geva T, Rachmilewitz J, de Groot N, Hochberg A. Interaction between choriocarcinoma cell line (JAr) and human cytotrophoblasts in vitro. Placenta [Internet]. 1993;14(2):217–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027193462&doi=10.1016%2fS0143-4004%2805%2980262-0&partnerID=40&md5=c525f027c69cca126f7278de7522c5a8

55.

Rachmilewitz J, Goshen R, Ariel I, Schneider T, de Groot N, Hochberg A. Parental imprinting of the human H19 gene. FEBS Letters [Internet]. 1992;309(1):25–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026732759&doi=10.1016%2f0014-5793%2892%2980731-U&partnerID=40&md5=fe6ddfaa07a05614c2072a85ca764ec2

56.

Rachmilewitz J, Gileadi O, Eldar‐Geva T, Schneider T, De‐Groot N, Hochberg A. Transcription of the H19 gene in differentiating cytotrophoblasts from human placenta. Molecular Reproduction and Development [Internet]. 1992;32(3):196–202. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026683331&doi=10.1002%252fmrd.1080320303&partnerID=40&md5=9702b25a66c9234c8296e963726fff91

57.

Hochberg A, Rachmilewitz J, Eldar-Geva T, Salant T, Schneider T, de Groot N. Differentiation of Choriocarcinoma Cell Line (JAr). Cancer Research [Internet]. 1992;52(13):3713–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026638756&partnerID=40&md5=9d6e86e9b09ca3682d6cf2fa3869001d