Skip to Main Content

The Faculty of Medicine - Medical Neurobiology: Hanani Menachem

Researchers

Last updated September 2023 - Medical Neurobiology

List of Publications

1.

Hanani M, Spray DC, Huang TY. Age-Related Changes in Neurons and Satellite Glial Cells in Mouse Dorsal Root Ganglia. International Journal of Molecular Sciences [Internet]. 2023;24(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147894491&doi=10.3390%252fijms24032677&partnerID=40&md5=0d65b733e6845806dcc7aebaeb96aec4

2.

Chen Z, Zhang C, Song X, Cui X, Liu J, Ford NC, et al. BzATP Activates Satellite Glial Cells and Increases the Excitability of Dorsal Root Ganglia Neurons In Vivo. Cells [Internet]. 2022;11(15). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135130717&doi=10.3390%252fcells11152280&partnerID=40&md5=31999ad4051c594d9a139aa6f885c2bf

3.

Chen Z, Huang Q, Song X, Ford NC, Zhang C, Xu Q, et al. Purinergic signaling between neurons and satellite glial cells of mouse dorsal root ganglia modulates neuronal excitability in vivo. Pain [Internet]. 2022;163(8):1636–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134632015&doi=10.1097%252fj.pain.0000000000002556&partnerID=40&md5=a1b521f627f2199b819d690789e2bb2a

4.

Feldman-Goriachnik R, Blum E, Hanani M. Exercise reduces pain behavior and pathological changes in dorsal root ganglia induced by systemic inflammation in mice. Neuroscience Letters [Internet]. 2022;778. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127484496&doi=10.1016%252fj.neulet.2022.136616&partnerID=40&md5=79833ea574ef4d8b9f79bbb6a9faaece

5.

Cohen M, Feldman-Goriachnik R, Hanani M. Satellite Glial Cells and Neurons in Trigeminal Ganglia Are Altered in an Itch Model in Mice. Cells [Internet]. 2022;11(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126421642&doi=10.3390%252fcells11050886&partnerID=40&md5=8ddaea38e0cb73431897dab7b53dfa6a

6.

Hanani M. How Is Peripheral Injury Signaled to Satellite Glial Cells in Sensory Ganglia? Cells [Internet]. 2022;11(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123710208&doi=10.3390%252fcells11030512&partnerID=40&md5=a860d00717351688ab68a04d5c9339ea

7.

Hanani M, Verkhratsky A. Satellite Glial Cells and Astrocytes, a Comparative Review. Neurochemical Research [Internet]. 2021;46(10):2525–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100201006&doi=10.1007%252fs11064-021-03255-8&partnerID=40&md5=16cd4ced9eaf8ab9001eb866fc0946a9

8.

Hanani M, Banks RW. Letter to the Editor. Journal of Physiology [Internet]. 2021;599(17):4225–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108858769&doi=10.1113%252fJP281805&partnerID=40&md5=b9af907c9e65a23f2110eeddea20a153

9.

Feldman-Goriachnik R, Hanani M. How do neurons in sensory ganglia communicate with satellite glial cells? Brain Research [Internet]. 2021;1760. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101632974&doi=10.1016%252fj.brainres.2021.147384&partnerID=40&md5=7cbeed5c65997443715ed9226d53e36a

10.

Chiu WH, Kovacheva L, Musgrove RE, Arien-Zakay H, Koprich JB, Brotchie JM, et al. α-Synuclein–induced Kv4 channelopathy in mouse vagal motoneurons drives nonmotor parkinsonian symptoms. Science Advances [Internet]. 2021;7(11). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102427879&doi=10.1126%252fsciadv.abd3994&partnerID=40&md5=f4d886c233411b430397f0e8f9893932

11.

Hanani M, Spray DC. Author Correction: Emerging importance of satellite glia in nervous system function and dysfunction (Nature Reviews Neuroscience, (2020), 21, 9, (485-498), 10.1038/s41583-020-0333-z). Nature Reviews Neuroscience [Internet]. 2020;21(12):732. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093498022&doi=10.1038%252fs41583-020-00402-y&partnerID=40&md5=00ab57c19917210fdc15dfcbde549c3e

12.

Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nature Reviews Neuroscience [Internet]. 2020;21(9):485–98. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088382141&doi=10.1038%252fs41583-020-0333-z&partnerID=40&md5=8b5f1339829d0c7aa8a6db84db3e9a7d

13.

Feldman-Goriachnik R, Hanani M. The effects of sympathetic nerve damage on satellite glial cells in the mouse superior cervical ganglion. Autonomic Neuroscience: Basic and Clinical [Internet]. 2019;221. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071757391&doi=10.1016%252fj.autneu.2019.102584&partnerID=40&md5=0e4b382c6b8d9cad5ed74c1c0b108f77

14.

Belzer V, Hanani M. Nitric oxide as a messenger between neurons and satellite glial cells in dorsal root ganglia. GLIA [Internet]. 2019;67(7):1296–307. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061959605&doi=10.1002%252fglia.23603&partnerID=40&md5=6ec0ad89095d4fefe39ec956f52feaf7

15.

Spray DC, Iglesias R, Shraer N, Suadicani SO, Belzer V, Hanstein R, et al. Gap junction mediated signaling between satellite glia and neurons in trigeminal ganglia. GLIA [Internet]. 2019;67(5):791–801. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061053723&doi=10.1002%252fglia.23554&partnerID=40&md5=0fe1f229c722b8a1c94a03e851d4df68

16.

Spray DC, Hanani M. Gap junctions, pannexins and pain. Neuroscience Letters [Internet]. 2019;695:46–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023759245&doi=10.1016%252fj.neulet.2017.06.035&partnerID=40&md5=7936b6050cde037474e943ab190e9acd

17.

Feldman-Goriachnik R, Wu B, Hanani M. Cholinergic responses of satellite glial cells in the superior cervical ganglia. Neuroscience Letters [Internet]. 2018;671:19–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041565729&doi=10.1016%252fj.neulet.2018.01.051&partnerID=40&md5=35bda296a557493624ede7f7973a62ee

18.

Feldman-Goriachnik R, Hanani M. The effects of endothelin-1 on satellite glial cells in peripheral ganglia. Neuropeptides [Internet]. 2017;63:37–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016067878&doi=10.1016%252fj.npep.2017.03.002&partnerID=40&md5=506b613ad7dcbefcb6a7acf5ff610e17

19.

Blum E, Procacci P, Conte V, Sartori P, Hanani M. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia. Experimental Cell Research [Internet]. 2017;350(1):236–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007014269&doi=10.1016%252fj.yexcr.2016.11.026&partnerID=40&md5=6e98b6fe3f72e80743f47ff229c14a04

20.

Hanstein R, Hanani M, Scemes E, Spray DC. Glial pannexin1 contributes to tactile hypersensitivity in a mouse model of orofacial pain. Scientific Reports [Internet]. 2016;6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85004024059&doi=10.1038%252fsrep38266&partnerID=40&md5=f4a4ecfa0f0c54178d723d1ff91ac7be

21.

Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, et al. Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain. Neuron [Internet]. 2016;91(5):1085–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995470379&doi=10.1016%252fj.neuron.2016.07.044&partnerID=40&md5=80e90c58527e5106f633d85ba9589a4d

22.

Warwick RA, Hanani M. Involvement of aberrant calcium signalling in herpetic neuralgia. Experimental Neurology [Internet]. 2016;277:10–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951052448&doi=10.1016%252fj.expneurol.2015.12.002&partnerID=40&md5=92a910886d6eaa6024aaf719e906eb72

23.

Feldman-Goriachnik R, Belzer V, Hanani M. Systemic inflammation activates satellite glial cells in the mouse nodose ganglion and alters their functions. GLIA [Internet]. 2015;63(11):2121–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941170358&doi=10.1002%252fglia.22881&partnerID=40&md5=bdbbd1a336a9db3a908608c2b84b0615

24.

Hanani M. Role of satellite glial cells in gastrointestinal pain. Frontiers in Cellular Neuroscience [Internet]. 2015;9(OCT). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944445907&doi=10.3389%252ffncel.2015.00412&partnerID=40&md5=1610ca1fc13c0dc5f51e29a860bd9d61

25.

Poulsen JN, Warwick R, Duroux M, Hanani M, Gazerani P. Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia. Experimental Cell Research [Internet]. 2015;336(1):94–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84943416701&doi=10.1016%252fj.yexcr.2015.05.009&partnerID=40&md5=db7661a4d55fbcd31f0e94a828ec2572

26.

Hanani M, Blum E, Liu S, Peng L, Liang S. Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents. Journal of Cellular and Molecular Medicine [Internet]. 2014;18(12):2367–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84911985574&doi=10.1111%252fjcmm.12406&partnerID=40&md5=1699b5687aa27a4e51f57e6851e4a75b

27.

Burke S, Nagajyothi F, Thi MM, Hanani M, Scherer PE, Tanowitz HB, et al. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: Implications for Chagas disease. Microbes and Infection [Internet]. 2014;16(11):893–901. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919445678&doi=10.1016%252fj.micinf.2014.08.006&partnerID=40&md5=4815202342d6064d3b62c5fc69bb2a80

28.

Wagner L, Warwick RA, Pannicke T, Reichenbach A, Grosche A, Hanani M. Glutamate release from satellite glial cells of the murine trigeminal ganglion. Neuroscience Letters [Internet]. 2014;578:143–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904290575&doi=10.1016%252fj.neulet.2014.06.047&partnerID=40&md5=a7d3cbf750da5aec1a00891dd790f0aa

29.

Blum E, Procacci P, Conte V, Hanani M. Systemic inflammation alters satellite glial cell function and structure. A possible contribution to pain. Neuroscience [Internet]. 2014;274:209–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902282140&doi=10.1016%252fj.neuroscience.2014.05.029&partnerID=40&md5=2ed96e6097bce33fdb2c1e66316b4465

30.

Warwick RA, Ledgerwood CJ, Brenner T, Hanani M. Satellite glial cells in dorsal root ganglia are activated in experimental autoimmune encephalomyelitis. Neuroscience Letters [Internet]. 2014;569:59–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898782330&doi=10.1016%252fj.neulet.2014.03.033&partnerID=40&md5=f0e12ed16fca3d1d0b6e830c7128f49a

31.

Hanani M, Spray DC. Satellite glial cells as a target for chronic pain therapy [Internet]. Vol. 9781493909742, Pathological Potential of Neuroglia: Possible New Targets for Medical Intervention. 2014. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929865856&doi=10.1007%252f978-1-4939-0974-2_20&partnerID=40&md5=017d2244817f793758246a4fb6522964

32.

Warwick RA, Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. European Journal of Pain (United Kingdom) [Internet]. 2013;17(4):571–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879569163&doi=10.1002%252fj.1532-2149.2012.00219.x&partnerID=40&md5=3fd7a6844f4b0b7c0ea6c97450aaee02

33.

Hanani M. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: Implications for chronic pain. Brain Research [Internet]. 2012;1487:183–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869499771&doi=10.1016%252fj.brainres.2012.03.070&partnerID=40&md5=0f14c92ba0b9e34a8e00a1ce25b4afd3

34.

Hanani M, Grossman S, Nissan A, Eid A. Morphological and Quantitative Study of the Myenteric Plexus in the Human Tenia Coli. Anatomical Record [Internet]. 2012;295(8):1321–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863548360&doi=10.1002%252far.22511&partnerID=40&md5=2d521c5938ca6938ea2fa88aa858a4dc

35.

Burke S, Hanani M. The actions of hyperthermia on the autonomic nervous system: Central and peripheral mechanisms and clinical implications. Autonomic Neuroscience: Basic and Clinical [Internet]. 2012;168(1–2):4–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859427925&doi=10.1016%252fj.autneu.2012.02.003&partnerID=40&md5=5b87d410307cb8ae22a58941f0d788be

36.

Hanani M. Lucifer yellow - an angel rather than the devil. Journal of Cellular and Molecular Medicine [Internet]. 2012;16(1):22–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855180815&doi=10.1111%252fj.1582-4934.2011.01378.x&partnerID=40&md5=cba996d1e27ef44f9ac267aea7c9c67d

37.

Kushnir R, Cherkas PS, Hanani M. Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: A calcium imaging study. Neuropharmacology [Internet]. 2011;61(4):739–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960008253&doi=10.1016%252fj.neuropharm.2011.05.019&partnerID=40&md5=7ef2708fc03c07df4b88f52b30097780

38.

Feldman-Goriachnik R, Hanani M. Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia. NeuroReport [Internet]. 2011;22(10):465–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959815473&doi=10.1097%252fWNR.0b013e3283472487&partnerID=40&md5=97052fc1a9f05a90dcefbb9d6a340110

39.

Burke S, Abu-Wasel B, Eid A, Nissan A, Hanani M. Differential effect of hyperthermia on nerves and smooth muscle of the mouse ileum. Journal of Surgical Oncology [Internet]. 2011;103(1):92–100. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650630594&doi=10.1002%252fjso.21746&partnerID=40&md5=9cba20251197d9d4b82a5662b7605d9b

40.

Hanani M. Neurons and glial cells of the enteric nervous system: Studies in tissue culture. Journal of Basic and Clinical Physiology and Pharmacology [Internet]. 2011;4(3):157–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027728447&doi=10.1515%252fJBCPP.1993.4.3.157&partnerID=40&md5=92471d8bd39280df5b569214598d6442

41.

Belzer V, Shraer N, Hanani M. Phenotypic changes in satellite glial cells in cultured trigeminal ganglia. Neuron Glia Biology [Internet]. 2010;6(4):237–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857002341&doi=10.1017%252fS1740925X1100007X&partnerID=40&md5=e24a3632dcbe3d00011c472b2cd1ecaa

42.

Hanani M. Satellite glial cells in sympathetic and parasympathetic ganglia: In search of function. Brain Research Reviews [Internet]. 2010;64(2):304–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956344176&doi=10.1016%252fj.brainresrev.2010.04.009&partnerID=40&md5=04622ec3c510e50f08963205b70149ca

43.

Hanani M. Satellite glial cells: More than just rings around the neuron. Neuron Glia Biology [Internet]. 2010;6(1):1–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957372858&doi=10.1017%252fS1740925X10000104&partnerID=40&md5=24b68ae4a553b570391605f5e1f4fbda

44.

Hanani M, Caspi A, Belzer V. Peripheral inflammation augments gap junction-mediated coupling among satellite glial cells in mouse sympathetic ganglia. Neuron Glia Biology [Internet]. 2010;6(1):85–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957354852&doi=10.1017%252fS1740925X10000025&partnerID=40&md5=6cb977547dd66439a975bc34fcf00a52

45.

Suadicani SO, Cherkas PS, Zuckerman J, Smith DN, Spray DC, Hanani M. Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biology [Internet]. 2010;6(1):43–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956338290&doi=10.1017%252fS1740925X09990408&partnerID=40&md5=959cd44d96a1ca3fbf635e682066f0fa

46.

Huang TY, Belzer V, Hanani M. Gap junctions in dorsal root ganglia: Possible contribution to visceral pain. European Journal of Pain [Internet]. 2010;14(1):49.e1-49.e9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-72049107843&doi=10.1016%252fj.ejpain.2009.02.005&partnerID=40&md5=1a0ae0c946d193a8b05a697532bf4540

47.

Ledda M, Blum E, De Palo S, Hanani M. Augmentation in gap junction-mediated cell coupling in dorsal root ganglia following sciatic nerve neuritis in the mouse. Neuroscience [Internet]. 2009;164(4):1538–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70449517367&doi=10.1016%252fj.neuroscience.2009.09.038&partnerID=40&md5=42bae0eddb69294b37a3a9edeac6e464

48.

Pfeiffer-Guglielmi B, Francke M, Roski C, Hanani M, Reichenbach A, Hamprecht B. Immunohistochemical localization of glycogen phosphorylase isozymes in the rat gastrointestinal muscle layers and enteric nervous system. Neurochemical Research [Internet]. 2009;34(5):876–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67349102343&doi=10.1007%252fs11064-008-9834-2&partnerID=40&md5=86243812b30c36ada319c1cdd5c3339e

49.

Badriyyah M, Mazeh H, Brocke S, Osmanova V, Freund HR, Hanani M. Prevention of lipopolysaccharide-induced intussusception in mice by the COX2 inhibitor rofecoxib. Pediatric Surgery International [Internet]. 2008;24(3):333–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-43149105603&doi=10.1007%252fs00383-007-2066-8&partnerID=40&md5=070379e8fab938fad2dfecacf030a6e7

50.

Thi MM, Spray DC, Hanani M. Aquaporin-4 water channels in enteric neurons. Journal of Neuroscience Research [Internet]. 2008;86(2):448–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-38849084001&doi=10.1002%252fjnr.21496&partnerID=40&md5=990653a01c4e841c2ef4dd948dbf848e

51.

Hanani M, Nissan A, Freund HR. Innervation of submucosal adipocytes in the human colon. Neuroscience Letters [Internet]. 2007;428(1):7–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35448939987&doi=10.1016%252fj.neulet.2007.09.038&partnerID=40&md5=37e88424d97ed02ad8c32464d027a157

52.

Roeytenberg A, Cohen T, Freund HR, Hanani M. Cholinergic properties of soy. Nutrition [Internet]. 2007;23(9):681–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547678549&doi=10.1016%252fj.nut.2007.06.004&partnerID=40&md5=78b053d8d63c611596ad52ed0ece497d

53.

Dublin P, Hanani M. Satellite glial cells in sensory ganglia: Their possible contribution to inflammatory pain. Brain, Behavior, and Immunity [Internet]. 2007;21(5):592–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34249730948&doi=10.1016%252fj.bbi.2006.11.011&partnerID=40&md5=0efc512ecab46ddf8865c4d985718a01

54.

Faussone-Pellegrini MS, Vannucchi MG, Ledder O, Huang TY, Hanani M. Plasticity of interstitial cells of Cajal: A study of mouse colon. Cell and Tissue Research [Internet]. 2006;325(2):211–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745930534&doi=10.1007%252fs00441-006-0174-8&partnerID=40&md5=76ae71a9c623f6a69ad0252258bd1c8b

55.

Huang TY, Hanani M, Ledda M, De Palo S, Pannese E. Aging is associated with an increase in dye coupling and in gap junction number in satellite glial cells of murine dorsal root ganglia. Neuroscience [Internet]. 2006;137(4):1185–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-31144468212&doi=10.1016%252fj.neuroscience.2005.10.020&partnerID=40&md5=75cc868a2f478c879a483313a9b5ef5f

56.

Huang TY, Hanani M. Morphological and electrophysiological changes in mouse dorsal root ganglia after partial colonic obstruction. American Journal of Physiology - Gastrointestinal and Liver Physiology [Internet]. 2005;289(4 52-4):G670–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-25444468312&doi=10.1152%252fajpgi.00028.2005&partnerID=40&md5=dd5b24d28a1359f950098249bb097b5f

57.

Hanani M. Satellite glial cells in sensory ganglia: From form to function. Brain Research Reviews [Internet]. 2005;48(3):457–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-19444382923&doi=10.1016%252fj.brainresrev.2004.09.001&partnerID=40&md5=da7a36259a5448ea1d68ccbe009dbab7

58.

Huang TY, Cherkas PS, Rosenthal DW, Hanani M. Dye coupling among satellite glial cells in mammalian dorsal root ganglia. Brain Research [Internet]. 2005;1036(1–2):42–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-13844253819&doi=10.1016%252fj.brainres.2004.12.021&partnerID=40&md5=9dca3c58102feb8d76dfa7271430f8e4

59.

Cherkas PS, Huang TY, Pannicke T, Tal M, Reichenbach A, Hanani M. The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain [Internet]. 2004;110(1–2):290–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-3242660930&doi=10.1016%252fj.pain.2004.04.007&partnerID=40&md5=6492ff340c780307447f346c4b4e1e2c

60.

Hanani M, Fellig Y, Udassin R, Freund HR. Age-related changes in the morphology of the myenteric plexus of the human colon. Autonomic Neuroscience: Basic and Clinical [Internet]. 2004;113(1–2):71–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-3543127161&doi=10.1016%252fj.autneu.2004.05.007&partnerID=40&md5=970e05bb44955c57d9710da718ed5872

61.

Bar-Shai A, Maayan C, Vromen A, Udassin R, Nissan A, Freund HR, et al. Decreased density of ganglia and neurons in the myenteric plexus of familial dysautonomia patients. Journal of the Neurological Sciences [Internet]. 2004;220(1–2):89–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-2442451296&doi=10.1016%252fj.jns.2004.02.017&partnerID=40&md5=fc5bb44b541685ee6ab3d551438acdb7

62.

Belzer V, Nissan A, Freund HR, Hanani M. Coupling among interstitial cells of Cajal in the human ileum. Neurogastroenterology and Motility [Internet]. 2004;16(1):75–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1342331489&doi=10.1046%252fj.1365-2982.2003.00462.x&partnerID=40&md5=ebf4b0199205bd93bdb9c68934282c0c

63.

Hanani M. Multiple myenteric networks in the human appendix. Autonomic Neuroscience: Basic and Clinical [Internet]. 2004;110(1):49–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0842324884&doi=10.1016%252fj.autneu.2003.09.001&partnerID=40&md5=f9bb4b4e99bf33ebc2ea87092a3b22d2

64.

Braun N, Sévigny J, Robson SC, Hammer K, Hanani M, Zimmermann H. Association of the Ecto-ATPase NTPDase2 with Glial Cells of the Peripheral Nervous System. GLIA [Internet]. 2004;45(2):124–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1042291303&doi=10.1002%252fglia.10309&partnerID=40&md5=3b5c698d512df458a1805f5aee33bef2

65.

Hanani M, Farrugia G, Komuro T. Intercellular coupling of interstitial cells of cajal in the digestive tract. International Review of Cytology [Internet]. 2004;242:249–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-10444251790&doi=10.1016%2fS0074-7696%2804%2942006-3&partnerID=40&md5=98419fa11ff034c031064433083a533e

66.

Kobilo T, Szurszewski JH, Farrugia G, Hanani M. Coupling and innervation patterns of interstitial cells of Cajal in the deep muscular plexus of the guinea-pig. Neurogastroenterology and Motility [Internet]. 2003;15(6):635–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0347595576&doi=10.1046%252fj.1350-1925.2003.00449.x&partnerID=40&md5=61161d8ae3c02933074787b99fd58cda

67.

Weick M, Cherkas PS, Härtig W, Pannicke T, Uckermann O, Bringmann A, et al. P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience [Internet]. 2003;120(4):969–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0043135215&doi=10.1016%2fS0306-4522%2803%2900388-9&partnerID=40&md5=f06441c5d297f146c5f54b3f9657fb1d

68.

Hanani M, Ledder O, Yutkin V, Abu-Dalu R, Huang TY, Härtig W, et al. Regeneration of myenteric plexus in the mouse colon after experimental denervation with benzalkonium chloride. Journal of Comparative Neurology [Internet]. 2003;462(3):315–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038310630&doi=10.1002%252fcne.10721&partnerID=40&md5=dd9e560530aa0317aaf3eccb1c6c0f0b

69.

Ermilov LG, Miller SM, Schmalz PF, Hanani M, Lennon VA, Szurszewski JH. Morphological characteristics and immunohistochemical detection of nicotinic acetylcholine receptors on intestinofugal afferent neurones in guinea-pig colon. Neurogastroenterology and Motility [Internet]. 2003;15(3):289–98. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038434487&doi=10.1046%252fj.1365-2982.2003.00411.x&partnerID=40&md5=faba69c9ad41a4773d21893289f4a12b

70.

Pannese E, Ledda M, Cherkas PS, Huang TY, Hanani M. Satellite cell reactions to axon injury of sensory ganglion neurons: Increase in number of gap junctions and formation of bridges connecting previously separate perineuronal sheaths. Anatomy and Embryology [Internet]. 2003;206(5):337–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038245161&doi=10.1007%252fs00429-002-0301-6&partnerID=40&md5=69d84faa09ead338a67b9c0a5d878762

71.

Hanani M, Huang TY, Cherkas PS, Ledda M, Pannese E. Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience [Internet]. 2002;114(2):279–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036774263&doi=10.1016%2fS0306-4522%2802%2900279-8&partnerID=40&md5=156c3573b73fa460847bf083bad1e6b2

72.

Rich A, Hanani M, Ermilov LG, Malysz J, Belzer V, Szurszewski JH, et al. Physiological study of interstitial cells of Cajal identified by vital staining. Neurogastroenterology and Motility [Internet]. 2002;14(2):189–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036254259&doi=10.1046%252fj.1365-2982.2002.00319.x&partnerID=40&md5=721758c129c60629a819344258368669

73.

Nissan A, Freund HR, Hanani M. Direct inhibitory effect of erythromycin on human alimentary tract smooth muscle. American Journal of Surgery [Internet]. 2002;183(4):413–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036224358&doi=10.1016%2fS0002-9610%2802%2900849-8&partnerID=40&md5=d6b630a97b4adedffd929643bc6d66b4

74.

Freund HR, Hanani M. The metabolic role of branched-chain amino acids. Nutrition [Internet]. 2002;18(3):287–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036197786&doi=10.1016%2fS0899-9007%2801%2900740-7&partnerID=40&md5=c280b86b37bc26a04b686cb5d5697bfc

75.

Belzer V, Kobilo T, Rich A, Hanani M. Intercellular coupling among interstitial cells of Cajal in the guinea pig small intestine. Cell and Tissue Research [Internet]. 2002;307(1):15–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036135066&doi=10.1007%252fs00441-001-0474-y&partnerID=40&md5=6abf5a8be02f3174546ca4b1e1bcac7a

76.

Haskel Y, Udassin R, Freund HR, Zhang JM, Hanani M. Liquid enteral diets induce bacterial translocation by increasing cecal flora without changing intestinal motility. Journal of Parenteral and Enteral Nutrition [Internet]. 2001;25(2):60–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035105561&doi=10.1177%252f014860710102500260&partnerID=40&md5=8b90336169ef2d5b09e4c627d3b85bcb

77.

Hanani M, Freund HR. Interstitial cells of Cajal - Their role in pacing and signal transmission in the digestive system. Acta Physiologica Scandinavica [Internet]. 2000;170(3):177–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034473094&doi=10.1046%252fj.1365-201X.2000.00769.x&partnerID=40&md5=690c4f4ed423fd5e83a3e97fec32cf02

78.

Ermilov LG, Miller SM, Schmalz PF, Hanani M, Szurszewski JH. The three-dimensional structure of neurons in the guinea pig inferior mesenteric and pelvic hypogastric ganglia. Autonomic Neuroscience: Basic and Clinical [Internet]. 2000;83(3):116–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034597311&doi=10.1016%2fS0165-1838%2800%2900092-8&partnerID=40&md5=49bb6755c2425f1842a61425cc709ebc

79.

Hanani M, Brading AF. Electrical Coupling In Smooth Muscles. Is It Universal? Journal of Basic and Clinical Physiology and Pharmacology [Internet]. 2000;11(4):321–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034471931&doi=10.1515%252fJBCPP.2000.11.4.321&partnerID=40&md5=1a4f49367f43e0c5974a08756cea3d5f

80.

Hanani M, Francke M, Härtig W, Grosche J, Reichenbach A, Pannicke T. Patch-clamp study of neurons and glial cells in isolated myenteric ganglia. American Journal of Physiology - Gastrointestinal and Liver Physiology [Internet]. 2000;278(4 41-4):G644–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034000355&doi=10.1152%252fajpgi.2000.278.4.g644&partnerID=40&md5=f3c4d0ffe0e11cdd2d5009c37478114e

81.

Hanani M, Belzer V, Rich A, Faussone-Pellegrini SM. Visualization of interstitial cells of Cajal in living, intact tissues. Microscopy Research and Technique [Internet]. 1999;47(5):336–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032763420&doi=10.1002%2f%28SICI%291097-0029%2819991201%2947%3a5%3c336%3a%3aAID-JEMT5%3e3.0.CO%3b2-5&partnerID=40&md5=4d0fd1b703970373a900b25e45159bdc

82.

Hanani M. Introduction to interstitial cells of Cajal. Microscopy Research and Technique [Internet]. 1999;47(4):221–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033571198&doi=10.1002%2f%28SICI%291097-0029%2819991115%2947%3a4%3c221%3a%3aAID-JEMT1%3e3.0.CO%3b2-H&partnerID=40&md5=fcbc3bc3441449fbce967877797655a5

83.

Hanani M, Maudlej N, Härtig W. Morphology and intercellular communication in glial cells of intramural ganglia from the guinea-pig urinary bladder. Journal of the Autonomic Nervous System [Internet]. 1999;76(1):62–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033032709&doi=10.1016%2fS0165-1838%2899%2900004-1&partnerID=40&md5=a6894d749f4f055cdbc0091a3f1aa4f4

84.

Hanani M. Interstitial cells of Cajal–the pacemaker of the gastrointestinal system. Harefuah [Internet]. 1999;136(4):307–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033556735&partnerID=40&md5=540689788ac5e3c0cf1dc462a80aa96c

85.

Nissan A, Maudlej N, Beglaibter N, Haskel Y, Freund HR, Hanani M. A direct inhibitory effect of erythromycin on rat urinary bladder smooth muscle. Journal of Urology [Internet]. 1999;161(3):1006–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032864964&doi=10.1016%2fS0022-5347%2801%2961836-6&partnerID=40&md5=1c86d800e616b2613af22079f65eb8af

86.

Lin Z, Cohen P, Nissan A, Allweis TM, Freund HR, Hanani M. Bacterial wall lipopolysaccharide as a cause of intussusception in mice. Journal of Pediatric Gastroenterology and Nutrition [Internet]. 1998;27(3):301–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031690704&doi=10.1097%252f00005176-199809000-00006&partnerID=40&md5=ab0b0caa3280d7e978397b7ce10fb099

87.

Hanani M, Ermilov LG, Schmalz PF, Louzon V, Miller SM, Szurszewski JH. The three-dimensional structure of myenteric neurons in the guinea-pig ileum. Journal of the Autonomic Nervous System [Internet]. 1998;71(1):1–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032581092&doi=10.1016%2fS0165-1838%2898%2900054-X&partnerID=40&md5=aeccc12f6722d098a8d59d3f660dc32f

88.

Hanani M, Louzon V, Miller SM, Faussone-Pellegrini MS. Visualization of interstitial cells of Cajal in the mouse colon by vital staining. Cell and Tissue Research [Internet]. 1998;292(2):275–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031972392&doi=10.1007%252fs004410051058&partnerID=40&md5=c9ce6c3a9fa30d984cbc906c5475dbd3

89.

Granovsky-Grisaru S, Ilan D, Grisaru D, Lavie O, Aboulafia I, Diamant YZ, et al. Effects of erythromycin on contractility of isolated myometrium from pregnant rats. American Journal of Obstetrics and Gynecology [Internet]. 1998;178(1 I):171–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031842820&doi=10.1016%2fS0002-9378%2898%2970647-7&partnerID=40&md5=cef18b86ae9482e478bc7b2be25154f7

90.

Parr EJ, Myles EB, Hanani M, Seror D, Riabowol KT, Sharkey KA. Immunoreactivity for the Fas ligand in the mammalian enteric nervous system. Cell and Tissue Research [Internet]. 1997;290(1):21–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030772314&doi=10.1007%252fs004410050903&partnerID=40&md5=247fce54a5ed01e8755d83bcc16b5cac

91.

Hanani M, Lin Z, Louzon V, Brenner T, Boneh A. Phorbol esters alter the morphology of cultured guinea-pig myenteric glia via a protein kinase C-independent mechanism. Neuroscience Letters [Internet]. 1997;233(2–3):61–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030824120&doi=10.1016%2fS0304-3940%2897%2900630-7&partnerID=40&md5=cb92cd7d28bbfc80ebbfae3ae6a0b998

92.

Hanani M, Lasser-Ross N. Activity-dependent changes in intracellular calcium in myenteric neurons. American Journal of Physiology - Gastrointestinal and Liver Physiology [Internet]. 1997;273(6 36-6):G1359–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031431586&doi=10.1152%252fajpgi.1997.273.6.g1359&partnerID=40&md5=4f1bbb61ebc389ee81b41996e30df7a1

93.

Nissan A, Zhang JM, Lin Z, Haskel Y, Freund HR, Hanani M. The contribution of inflammatory mediators and nitric oxide to lipopolysaccharide-induced intussusception in mice. Journal of Surgical Research [Internet]. 1997;69(1):205–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031127915&doi=10.1006%252fjsre.1997.5078&partnerID=40&md5=3642b6ae992786db7198c6d18f56a5ee

94.

Bitan G, Sukhotinsky I, Mashriki Y, Hanani M, Selinger Z, Gilon C. Synthesis and biological activity of novel backbone-bicyclic: Substance- P analogs containing lactam and disulfide bridges. Journal of Peptide Research [Internet]. 1997;49(5):421–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030948998&doi=10.1111%252fj.1399-3011.1997.tb00894.x&partnerID=40&md5=7fcc9ece0bbc47f9d7a568df98319bf6

95.

Hanani M. Microscopic Analysis of Pressure Ejection of Drugs from Micropipettes. Journal of Basic and Clinical Physiology and Pharmacology [Internet]. 1997;8(1–2):57–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030763781&doi=10.1515%252fJBCPP.1997.8.1-2.57&partnerID=40&md5=197104ab55a5d38688f6fd68a580e8b2

96.

Nissan A, Mashriki Y, Zhang JM, Haskel Y, Freund HR, Hanani M. Direct Inhibitory Effect of Erythromycin on the Gallbladder Muscle. Journal of Gastrointestinal Surgery [Internet]. 1997;1(4):331–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0008819035&doi=10.1016%2fS1091-255X%2897%2980053-4&partnerID=40&md5=594d6b4e6b04e67d6c6c52ac20849c67

97.

Abu-Dalu R, Zhang JM, Hanani M. The actions of ketotifen on intestinal smooth muscles. European Journal of Pharmacology [Internet]. 1996;309(2):189–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030575540&doi=10.1016%2f0014-2999%2896%2900342-1&partnerID=40&md5=b1efbce188e573a912a13cce9bccfca8

98.

Miller SM, Hanani M, Kuntz SM, Schmalz PF, Szurszewski JH. Light, electron, and confocal microscopic study of the mouse superior mesenteric ganglion. Journal of Comparative Neurology [Internet]. 1996;365(3):427–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030023205&doi=10.1002%2f%28SICI%291096-9861%2819960212%29365%3a3%3c427%3a%3aAID-CNE7%3e3.0.CO%3b2-6&partnerID=40&md5=3c5554cbe93e6126e67a39e7f05f634d

99.

Bitan G, Zeltser I, Byk G, Halle D, Mashriki Y, Gluhov EV, et al. Backbone cyclization of the C-terminal part of substance P. Part 1: The important role of the sulphur in position 11. Journal of Peptide Science [Internet]. 1996;2(4):261–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030178429&doi=10.1002%2f%28SICI%291099-1387%28199607%292%3a4%3c261%3a%3aAID-PSC76%3e3.0.CO%3b2-T&partnerID=40&md5=f04b706822468fa268b942e7934eb9ab

100.

Bitan G, Behrens S, Mathä B, Mashriki Y, Hanani M, Kessler H, et al. New backbone cyclic substance P analogs. Letters in Peptide Science [Internet]. 1995;2(3–4):121–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001362806&doi=10.1007%252fBF00119137&partnerID=40&md5=c055e1cbb90e2a95cf4de9161739dd50

101.

Hanani M, Maudlej N. Intracellular recordings from intramural neurons in the guinea pig urinary bladder. Journal of Neurophysiology [Internet]. 1995;74(6):2358–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029592766&doi=10.1152%252fjn.1995.74.6.2358&partnerID=40&md5=15122a85b16211689df6cf7f9b92e25b

102.

Hanani M, Louzon V, Udassin R, Freund HR, Karmeli F, Rachmilewitz D. Nitric oxide-containing nerves in bowel segments of patients with Hirschsprung’s disease. Journal of Pediatric Surgery [Internet]. 1995;30(6):818–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029031163&doi=10.1016%2f0022-3468%2895%2990756-4&partnerID=40&md5=f1211e5f716b695aa3c6faaa958bf779

103.

Haskel Y, Hanani M. Inhibition of gastrointestinal motility by MPTP via adrenergic and dopaminergic mechanisms. Digestive Diseases and Sciences [Internet]. 1994;39(11):2364–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028037533&doi=10.1007%252fBF02087652&partnerID=40&md5=b7bfaf99decc28a706dbcc8d0bafcfdc

104.

Hanani M, reichenbach A. Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig. Cell and Tissue Research [Internet]. 1994;278(1):153–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027978081&doi=10.1007%252fBF00305787&partnerID=40&md5=f3a487bc6aaef04652533b867dbd7050

105.

Hanani M, Ermilov L, Louzon V, Schmalz PF, Miller SM, Szurszewski JH. Three dimensional reconstruction of myenteric Neurons of the Guinea pig. In: Proceedings of SPIE - The International Society for Optical Engineering [Internet]. 1994. p. 730–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344727805&doi=10.1117%252f12.185235&partnerID=40&md5=fa190a96f6ad4491de4ae0d352372c90

106.

HANANI M, XIA Y, WOOD JD. Myenteric ganglia from the adult guinea‐pig small intestine in tissue culture. Neurogastroenterology & Motility [Internet]. 1994;6(2):103–18. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028000554&doi=10.1111%252fj.1365-2982.1994.tb00178.x&partnerID=40&md5=9c11bba5cfe53fc0ce191ce31fd6c8a2

107.

Christofi FL, Hanani M, Maudlej N, Wood JD. Enteric glial cells are major contributors to formation of cyclic AMP in myenteric plexus cultures from adult guinea-pig small intestine. Neuroscience Letters [Internet]. 1993;159(1–2):107–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027205647&doi=10.1016%2f0304-3940%2893%2990810-8&partnerID=40&md5=a99e91db2874d7c87502cfc434d63d1a

108.

Hanani M, Udassin R, Ariel I, Freund HR. A simple and rapid method for staining the enteric ganglia: Application for Hirschsprung’s disease. Journal of Pediatric Surgery [Internet]. 1993;28(7):939–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027321850&doi=10.1016%2f0022-3468%2893%2990702-M&partnerID=40&md5=69741c3d813a5cd55693dd7506464d50

109.

Hanani M. Discussion: Are gap junctions necessary for cell to cell coupling of smooth muscle?: An update. Canadian Journal of Physiology and Pharmacology [Internet]. 1993;71(8):625–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027139370&doi=10.1139%252fy93-089&partnerID=40&md5=8b7486f0d6569bc5bf2ee9e68935ca45

110.

Ron D, Chorev M, Gilon C, Hanani M, Vromen A, Salinger Z. N-Methylated Analogs of Ac[Nle28,31]CCK(26-33): Synthesis, Activity, and Receptor Selectivity. Journal of Medicinal Chemistry [Internet]. 1992;35(15):2806–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026625290&doi=10.1021%252fjm00093a013&partnerID=40&md5=d6ac41b831ded1e66c6bc8302151828c

111.

Hanani M. Visualization of enteric and gallbladder ganglia with a vital fluorescent dye. Journal of the Autonomic Nervous System [Internet]. 1992;38(2):77–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026581072&doi=10.1016%2f0165-1838%2892%2990228-9&partnerID=40&md5=65502916ad6c1c372ee48a00ae6ba546

112.

Maudlej N, Hanani M. Modulation of dye coupling among glial cells in the myenteric and submucosal plexuses of the guinea pig. Brain Research [Internet]. 1992;578(1–2):94–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026535604&doi=10.1016%2f0006-8993%2892%2990234-Z&partnerID=40&md5=b6f0e8da8f3176030e88b23855e31561

113.

Vromen A, Hanani M. Pentazocine reduces cholinergic responses in the guinea-pig extrahepatic biliary tract by a non-opiate mechanism. Journal of Basic and Clinical Physiology and Pharmacology [Internet]. 1992;3(1):71–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026786242&doi=10.1515%252fJBCPP.1992.3.1.71&partnerID=40&md5=cea2a88fea4cd3bf2199365654023845

114.

Bauer AJ, Hanani M, Muir TC, Szurszewski JH. Intracelluar recordings from gallbladder ganglia of opossums. American Journal of Physiology - Gastrointestinal and Liver Physiology [Internet]. 1991;260(2 23-2):G299–306. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026110178&partnerID=40&md5=3e3a437e00408b0f9f6c36fc5d9a716e

115.

Zamir O, Hanani M. Intercellular dye-coupling in intestinal smooth muscle. Are gap junctions required for intercellular coupling? Experientia [Internet]. 1990;46(10):1002–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025153885&doi=10.1007%252fBF01940654&partnerID=40&md5=705d52e43e022ab4d457b11a5ab8d9b2

116.

Hanani M. Rapid effects of MPTP in the mouse colon. European Journal of Pharmacology [Internet]. 1990;175(3):273–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025057651&doi=10.1016%2f0014-2999%2890%2990564-M&partnerID=40&md5=25e3981bf7ea482da3d5caa61d83b2cc

117.

Hanani M, Zamir O, Baluk P. Glial cells in the guinea pig myenteric plexus are dye coupled. Brain Research [Internet]. 1989;497(2):245–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024450433&doi=10.1016%2f0006-8993%2889%2990269-2&partnerID=40&md5=74626946bdc7ed9ce0bc250ae05059a1

118.

Hanani M, Chorev M, Gilon C, Selinger Z. The actions of receptor-selective substance P analogs on myenteric neurons: an electrophysiological investigation. European Journal of Pharmacology [Internet]. 1988;153(2–3):247–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023726748&doi=10.1016%2f0014-2999%2888%2990612-7&partnerID=40&md5=ddb4510042fe3f5bbcfdb03496d01159

119.

Goldberg M, Vatashsky E, Haskel Y, Seror D, Nissan S, Hanani M. The effect of meperidine on the guinea pig extrahepatic biliary tract. Anesthesia and Analgesia [Internet]. 1987;66(12):1282–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023595157&doi=10.1213%252f00000539-198712000-00014&partnerID=40&md5=c7dd8b269bbf8ba56b016c9ad72dc284

120.

Vatashsky E, Haskel Y, Nissan S, Hanani M. Effect of morphine on the mechanical activity of common bile duct isolated from the guinea pig. Anesthesia and Analgesia [Internet]. 1987;66(3):245–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023132724&doi=10.1213%252f00000539-198703000-00008&partnerID=40&md5=260b86b094620a71855ca25b9e919f3f

121.

Hanani M, Nissan S. Phenazine methosulfate induces a neurally-mediated contraction of the guinea-pig ileum. Life Sciences [Internet]. 1986;39(19):1805–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022515030&doi=10.1016%2f0024-3205%2886%2990100-1&partnerID=40&md5=9973d6a780b9019db4337f4db8710e7d

122.

Goldberg M, Hanani M, Nissan S. Effects of serotonin on the internal anal sphincter: In vivo manometric study in rats. Gut [Internet]. 1986;27(1):49–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022620307&doi=10.1136%252fgut.27.1.49&partnerID=40&md5=ee8125186c4d4dc793123c931a26b022

123.

Hanani M, Lernau OZ, Zamir O, Nissan S. Nerve mediated responses to drugs and electrical stimulation in aganglionic muscle segments in Hirschsprung’s disease. Journal of Pediatric Surgery [Internet]. 1986;21(10):848–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022531092&doi=10.1016%2fS0022-3468%2886%2980005-7&partnerID=40&md5=f16c9a03fd7ad852ace6ed2c0270fb58

124.

Hanani M. The relation between sensitivity changes and response time scale in the barnacle photoreceptor. Vision Research [Internet]. 1986;26(6):819–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022479597&doi=10.1016%2f0042-6989%2886%2990140-9&partnerID=40&md5=5152d2b5c73ebc87e82af70558080dd9

125.

Hanani M, Burnstock G. The actions of substance P and serotonin on myenteric neurons in tissue culture. Brain Research [Internet]. 1985;358(1–2):276–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022340104&doi=10.1016%2f0006-8993%2885%2990971-0&partnerID=40&md5=69689ffd7d1f3daf0a6265ca728574c5

126.

Vinograd I, Hanani M, Hadary A, Merguerian P, Nissan S. Animal model for the study of internal anal sphincter activity. European Surgical Research [Internet]. 1985;17(4):259–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022345927&doi=10.1159%252f000128476&partnerID=40&md5=63d035176b71faf341827a332df27c55

127.

Hanani M, Burnstock G. Synaptic activity of myenteric neurons in tissue culture. Journal of the Autonomic Nervous System [Internet]. 1985;14(1):49–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021832854&doi=10.1016%2f0165-1838%2885%2990124-9&partnerID=40&md5=b5d26c1a189dbefadd6141656b3735ac

128.

Vinograd I, Hanani M, Hadary A, Merguerian P, Goldberg M, Nissan S. Neuropharmacological study of the internal anal sphincter in an animal model. Harefuah [Internet]. 1984;107(9):221-224+272. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021735848&partnerID=40&md5=442472fc574e2a9734b71953c778280b

129.

Hanani M, Burnstock G. Substance P evokes slow and fast responses in cultured myenteric neurons of the guinea pig. Neuroscience Letters [Internet]. 1984;48(1):19–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021249920&doi=10.1016%2f0304-3940%2884%2990282-9&partnerID=40&md5=419d61a5de0d3c962d2604156f84d870

130.

Nissan S, Vinograd Y, Hadari A, Merguerian P, Zamir O, Lernau O, et al. Physiological and pharmacological studies of the internal anal sphincter in the rat. Journal of Pediatric Surgery [Internet]. 1984;19(1):12–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021325487&doi=10.1016%2fS0022-3468%2884%2980006-8&partnerID=40&md5=6dc0cc637ea8f095b6c53fe9cfca5ff2

131.

Jessen KR, Jill Saffrey M, Bałuk P, Hanani M, Burnstock G. The enteric nervous system in tissue culture. III. Studies on neuronal survival and the retention of biochemical and morphological differentiation. Brain Research [Internet]. 1983;262(1):49–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020662119&doi=10.1016%2f0006-8993%2883%2990468-7&partnerID=40&md5=8f53c0b7f793b2206b71494a98daf451

132.

Hanani M. Receptive field properties of horizontal cells in the tiger salamander retina: Contributions of rods and cones. Vision Research [Internet]. 1983;23(10):1115–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021029434&doi=10.1016%2f0042-6989%2883%2990024-X&partnerID=40&md5=67b8385cb9f8c9eec49f67691acf8761

133.

Hanani M, Hillman P. The contribution of pigment transitions to sensitivity changes in the barnacle photoreceptor and the correlation with the prolonged depolarizing afterpotential. Biophysics of Structure and Mechanism [Internet]. 1982;8(3):161–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020013564&doi=10.1007%252fBF00535457&partnerID=40&md5=593e65f69a5b623e416c2b2a79e76fa6

134.

Hanani M, Baluk P, Burnstock G. Myenteric neurons express electrophysiological and morphological diversity in tissue culture. Journal of the Autonomic Nervous System [Internet]. 1982;5(2):155–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020028662&doi=10.1016%2f0165-1838%2882%2990036-4&partnerID=40&md5=380f5c8f50a5e87be5ccac5837cca218

135.

Hanani M, Fein A. Diamide, a sulfhydryl reagent, modifies the light response of Limulus ventral photoreceptors. Neuroscience Letters [Internet]. 1981;21(2):165–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019377678&doi=10.1016%2f0304-3940%2881%2990376-1&partnerID=40&md5=2dc2cc62c6e014c0fe6e4da94dfa850e

136.

Shaw C, Hanani M, Atzmon Z, Hillman P. The effects of alcohol on receptor potentials, adaptation, and discrete wave rate in invertebrate photoreceptors. Investigative Ophthalmology and Visual Science [Internet]. 1980;19(Suppl. 4):284. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019239891&partnerID=40&md5=aa74e125724f765dbcc3b3459854f173

137.

Hanani M, Vallerga S. Rod and cone signals in the horizontal cells of the tiger salamander retina. The Journal of Physiology [Internet]. 1980;298(1):397–405. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018908250&doi=10.1113%252fjphysiol.1980.sp013089&partnerID=40&md5=be88872a60d395abeeb10e667f1b266a

138.

Hanani M, Fein A. Effects of diamide on the light response of Limulus ventral photoreceptors. Israel Journal of Medical Sciences [Internet]. 1980;16(8):619. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018819236&partnerID=40&md5=97e4c6effabdc8c5a0f6434c261b7370

139.

Normann RA, Kolb H, Hanani M, Pasino E, Holub R. Orientation of horizontal cell axon terminals in the streak of the turtle retina [15]. Nature [Internet]. 1979;280(5717):60–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018759286&doi=10.1038%252f280060a0&partnerID=40&md5=99b0b668589aa8a779ce2b3df959fba8

140.

Shaw C, Hanani M, Hillman P. The effects of Mn2+ and Ca2+ on the prolonged depolarising after-potential in barnacle photoreceptor. Biophysics of Structure and Mechanism [Internet]. 1979;5(2–3):223–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018425884&doi=10.1007%252fBF00535450&partnerID=40&md5=ad1bbbb1612d10c6c1106194fb5926c9

141.

Hanani M, Hillman P. Absorption of light by metarhodopsin modifies the effect of a conditioning light on the barnacle photoreceptor. Biophysics of Structure and Mechanism [Internet]. 1979;5(2–3):231–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018405364&doi=10.1007%252fBF00535451&partnerID=40&md5=24ac585cf9f4cb6e0ba3cdd360c37934

142.

Shaw C, Hanani M, Hillman P. Does alcohol mimic the effects of light on bump rate in Limulus ventral photoreceptors? Israel Journal of Medical Sciences [Internet]. 1979;15(11):952. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018631558&partnerID=40&md5=543bbe94ab84405f17a97b8cdbb4d7ab

143.

Fein A, Hanani M. Light-induced increase in discrete waves in the dark in Limulus ventral photoreceptors. Brain Research [Internet]. 1978;156(1):157–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018123499&doi=10.1016%2f0006-8993%2878%2990093-8&partnerID=40&md5=958b78f0f0e2dce7ecdc10d159771c2a

144.

Hanani M, Shaw C. A potassium contribution to the response of the barnacle photoreceptor. The Journal of Physiology [Internet]. 1977;270(1):151–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017739857&doi=10.1113%252fjphysiol.1977.sp011943&partnerID=40&md5=11320d3669ec43b0c6752786f98c62fa

145.

Stieve H, Hanani M. Light and Dark Adaptation of Crayfish Visual Cells Depending on Extracellular Calcium Concentration. Zeitschrift fur Naturforschung - Section C Journal of Biosciences [Internet]. 1976;31(5–6):324–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017143979&doi=10.1515%252fznc-1976-5-620&partnerID=40&md5=ba65b612d43d568f9783497f2565042c

146.

Hanani M, Hillman P. Adaptation and facilitation in the barnacle photoreceptor. Journal of General Physiology [Internet]. 1976;67(2):235–49. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017275495&doi=10.1085%252fjgp.67.2.235&partnerID=40&md5=97b218a955839f1dd346ac17f6915d27

147.

Hanani M. Calcium induced increase in potassium conductance in photoreceptors. Israel Journal of Medical Sciences [Internet]. 1976;12(10):1218. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017054803&partnerID=40&md5=86d35db631b0b8dd17cc8696b7ec54cf