Skip to Main Content

The Faculty of Medicine - Medical Neurobiology: Lev-Tov Aharon

Researchers

Last updated September 2023 - Medical Neurobiology

List of Publications

(1) Matzner H, Zelinger M, Cherniak M, Anglister L, Lev-Tov A. Rhythmogenic networks are potently modulated by activation of muscarinic acetylcholine receptors in the rodent spinal cord. J Neurochem 2021;158(6):1263-1273.

(2) Haimson B, Hadas Y, Bernat N, Kania A, Daley M, Cinnamon Y, et al. Spinal lumbar di2 interneurons contribute to stability of bipedal stepping. eLife 2021;10.

(3) Anglister L, Cherniak M, Lev-Tov A. Ascending pathways that mediate cholinergic modulation of lumbar motor activity. J Neurochem 2017;142:82-89.

(4) Cherniak M, Anglister L, Lev-Tov A. Shaping the output of lumbar flexor motoneurons by sacral neuronal networks. J Neurosci 2017;37(5):1294-1311.

(5) Cherniak M, Etlin A, Strauss I, Anglister L, Lev-Tov A. The sacral networks and neural pathways used to elicit lumbar motor rhythm in the rodent spinal cord. Front Neural Circuits 2014;8(DEC).

(6) Hadas Y, Etlin A, Falk H, Avraham O, Kobiler O, Panet A, et al. A 'tool box' for deciphering neuronal circuits in the developing chick spinal cord. Nucleic Acids Res 2014;42(19).

(7) Finkel E, Etlin A, Cherniak M, Mor Y, Lev-Tov A, Anglister L. Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections. J Comp Neurol 2014;522(15):3437-3455.

(8) Etlin A, Finkel E, Cherniak M, Lev-Tov A, Anglister L. The motor output of hindlimb innervating segments of the spinal cord is modulated by cholinergic activation of rostrally projecting sacral relay neurons. J Mol Neurosci 2014;53(3):517-524.

(9) Etlin A, Finkel E, Mor Y, O'Donovan MJ, Anglister L, Lev-Tov A. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input. J Neurosci 2013;33(2):734-747.

(10) Etlin A, Blivis D, Ben-Zwi M, Lev-Tov A. Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. J Neurosci 2010;30(31):10324-10336.

(11) Lev-Tov A, Etlin A, Blivis D. Sensory-induced activation of pattern generators in the absence of supraspinal control. Ann New York Acad Sci 2010;1198:54-62.

(12) Lev-Tov A, O'Donovan MJ. Neonatal Circuits. Encyclopedia of Neuroscience; 2009. p. 61-69.

(13) Anglister L, Etlin A, Finkel E, Durrant AR, Lev-Tov A. Cholinesterases in development and disease. Chem -Biol Interact 2008;175(1-3):92-100.

(14) Mor Y, Lev-Tov A. Analysis of rhythmic patterns produced by spinal neural networks. J Neurophysiol 2007;98(5):2807-2817.

(15) Blivis D, Mentis GZ, O'Donovan MJ, Lev-Tov A. Differential effects of opioids on sacrocaudal afferent pathways and central pattern generators in the neonatal rat spinal cord. J Neurophysiol 2007;97(4):2875-2886.

(16) Gabbay H, Lev-Tov A. Alpha-1 adrenoceptor agonists generate a "fast" NMDA receptor-independent motor rhythm in the neonatal rat spinal cord. J Neurophysiol 2004;92(2):997-1010.

(17) Strauss I, Lev-Tov A. Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats. J Neurophysiol 2003;89(2):773-784.

(18) Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 2002;21(13):3454-3463.

(19) Gabbay H, Delvolvé I, Lev-Tov A. Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord. J Neurophysiol 2002;88(2):732-739.

(20) Delvolvé I, Gabbay H, Lev-Tov A. The motor output and behavior produced by rhythmogenic sacrocaudal networks in spinal cords of neonatal rats. J Neurophysiol 2001;85(5):2100-2110.

(21) Lev-Tov A, Delvolvé I. Pattern generation in non-limb moving segments of the mammalian spinal cord. Brain Res Bull 2000;53(5):671-675.

(22) Lev-Tov A, Delvolvé I, Kremer E. Sacrocaudal afferents induce rhythmic efferent bursting in isolated spinal cords of neonatal rats. J Neurophysiol 2000;83(2):888-894.

(23) Kremer E, Lev-Tov A. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord. J Neurophysiol 1998;79(5):2581-2592.

(24) Lev-Tov A, O'Donovan MJ. Calcium imaging of motoneuron activity in the en-bloc spinal cord preparation of the neonatal rat. J Neurophysiol 1995;74(3):1324-1334.

(25) Pinco M, Lev-Tov A. Synaptic transmission between ventrolateral funiculus axons and lumbar motoneurons in the isolated spinal cord of the neonatal rat. J Neurophysiol 1994;72(5):2406-2419.

(26) Floeter MK, Lev-Tov A. Excitation of lumbar motoneurons by the medial longitudinal fasciculus in the in vitro brain stem spinal cord preparation of the neonatal rat. J Neurophysiol 1993;70(6):2241-2250.

(27) Lev-Tov A, Tal M, Lavy R. Diverse firing properties of single motor units in the inner and outer portions of the guinea pig anterior digastric muscle. Arch Oral Biol 1993;38(2):169-178.

(28) Pinco M, Lev-Tov A. Modulation of monosynaptic excitation in the neonatal rat spinal cord. J Neurophysiol 1993;70(3):1151-1158.

(29) Pinco M, Lev-Tov A. Synaptic excitation of α-motoneurons by dorsal root afferents in the neonatal rat spinal cord. J Neurophysiol 1993;70(1):406-417.

(30) Lev‐Tov A, Pinco M. In vitro studies of prolonged synaptic depression in the neonatal rat spinal cord. J Physiol 1992;447(1):149-169.

(31) Konnerth A, Keller BU, Lev-Tov A. Patch clamp analysis of excitatory synapses in mammalian spinal cord slices. Pflugers Arch 1990;417(3):285-290.

(32) Lev-Tov A, Meyers DER, Burke RE. Gabab receptors in the cat spinal cord. J Basic Clin Physiol Pharmacol 1990;1(1-4):87-94.

(33) Lev-Tov A, Meyers DER, Burke RE. Modification of primary afferent depolarization in cat group Ia afferents following high frequency intra-axonal tetanization of individual afferents. Brain Res 1988;438(1-2):328-330.

(34) Lev-Tov A, Meyers DE, Burke RE. Activation of type B gamma-aminobutyric acid receptors in the intact mammalian spinal cord mimics the effects of reduced presynaptic Ca2+ influx. Proc Natl Acad Sci U S A 1988;85(14):5330-5334.

(35) Lev-Tov A, Pratt CA, Burke RE. The motor-unit population of the cat tenuissimus muscle. J Neurophysiol 1988;59(4):1128-1142.

(36) Lev-Tov A, Tal M. The organization and activity patterns of the anterior and posterior heads of the guinea pig digastric muscle. J Neurophysiol 1987;58(3):496-509.

(37) Lev-Tov A. Modulation of synaptic potentials at central and peripheral synapses. Isr J Med Sci 1987;23(1-2):132-137.

(38) Lev-Tov A. Junctional transmission in fast- and slow-twitch mammalian motor units. J Neurophysiol 1987;57(3):660-671.

(39) Lev-Tov A, Fishman R. The modulation of transmitter release in motor nerve endings varies with the type of muscle fiber innervated. Brain Res 1986;363(2):379-382.

(40) Fleshman JW, Lev-Tov A, Burke RE. Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: The synaptic basis of functional diversity. Exp Brain Res 1984;54(1):133-149.

(41) Lev-Tov A, Fleshman JW, Burke RE. Primary afferent depolarization and presynaptic inhibition of monosynaptic group Ia EPSPs during posttetanic potentiation. J Neurophysiol 1983;50(2):413-427.

(42) Lev-Tov A, Miller JP, Burke RE, Rall W. Factors that control amplitude of EPSPs in dendritic neurons. J Neurophysiol 1983;50(2):399-412.

(43) Lev-Tov A, Pinter MJ, Burke RE. Posttetanic potentiation of group Ia EPSPs: Possible mechanisms for differential distribution among medial gastrocnemius motoneurons. J Neurophysiol 1983;50(2):379-398.

(44) Melinek R, Lev-Tov A, Meiri H, Erulkar SD, Rahamimoff R. Regulatory role of intracellular sodium ions in neurotransmitter secretion. Isr J Med Sci 1982;18(1):37-43.

(45) Burke RE, Dum RP, Fleshman JW, Glenn LL, Lev‐Tov A, O'Donovan MJ, et al. An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol 1982;209(1):17-28.

(46) Melinek R, Lev-Tov A, Rahamimoff R. Action of veratridine on neuromuscular transmission. Isr J Med Sci 1981;17(5):388.

(47) Rahamimoff R, Lev-Tov A, Meiri H. Primary and secondary regulation of quantal transmitter release: calcium and sodium. J Exp Biol 1980;89:5-18.

(48) Rahamimoff R, Lev-Tov A, Meiri H, Rahamimoff H, Nussinovitch I. Regulation of acetylcholine liberation from presynaptic nerve terminals. Monogr Neural Sci 1980;7:3-18.

(49) Lev‐Tov A, Rahamimoff R. A study of tetanic and post‐tetanic potentiation of miniature end‐plate potentials at the frog neuromuscular junction. J Physiol 1980;309(1):247-273.

(50) Rahamimoff R, Erulkar SD, Lev‐Tov A, Meiri H. INTRACELLULAR AND EXTRACELLULAR CALCIUM IONS IN TRANSMITTER RELEASE AT THE NEUROMUSCULAR SYNAPSE. Ann New York Acad Sci 1978;307(1):583-598.

(51) Lev Tov A, Erulkar SD, Rahamimoff R. The role of calcium in augmented transmitter release due to potassium channel blockade. Isr J Med Sci 1977;13(5):537-538.