Skip to Main Content

The Faculty of Medicine - Medical Neurobiology: Minke Baruch

Researchers

Last updated September 2023 - Medical Neurobiology

List of Publications

1.

Stanhope SC, Brandwine-Shemmer T, Blum HR, Doud EH, Jannasch A, Mosley AL, et al. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age. Redox Biology [Internet]. 2023;63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85154616893&doi=10.1016%252fj.redox.2023.102723&partnerID=40&md5=2c2dce9a910bf8a77bb24b73b1759053

2.

Rhodes-Mordov E, Brandwine-Shemmer T, Zaguri R, Gutorov R, Peters M, Minke B. Diacylglycerol Activates the Drosophila Light Sensitive Channel TRPL Expressed in HEK Cells. International Journal of Molecular Sciences [Internet]. 2023;24(7). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152347193&doi=10.3390%252fijms24076289&partnerID=40&md5=877bc08f8ecffa840611d6e8fc2b1676

3.

Katz B, Zaguri R, Edvardson S, Maayan C, Elpeleg O, Lev S, et al. Nociception and pain in humans lacking a functional TRPV1 channel. Journal of Clinical Investigation [Internet]. 2023;133(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147234354&doi=10.1172%252fJCI153558&partnerID=40&md5=fefd655ef4e6ded269f65ee07e8dd8ee

4.

Gutorov R, Katz B, Rhodes-Mordov E, Zaguri R, Brandwine-Shemmer T, Minke B. The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels. Biomolecules [Internet]. 2022;12(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125268162&doi=10.3390%252fbiom12030382&partnerID=40&md5=6a02407034f7c6f97a54aaa607c3f0fd

5.

Minke B, Pak WL. The light-activated TRP channel: the founding member of the TRP channel superfamily. Journal of Neurogenetics [Internet]. 2022;36(2–3):55–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139771165&doi=10.1080%252f01677063.2022.2121824&partnerID=40&md5=7a83f80f566a1297ddd25a8d6ebf6214

6.

Brandwine T, Ifrah R, Bialistoky T, Zaguri R, Rhodes-Mordov E, Mizrahi-Meissonnier L, et al. Knockdown of Dehydrodolichyl Diphosphate Synthase in the Drosophila Retina Leads to a Unique Pattern of Retinal Degeneration. Frontiers in Molecular Neuroscience [Internet]. 2021;14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110466919&doi=10.3389%252ffnmol.2021.693967&partnerID=40&md5=2570bd2f7cfcdd2fe883c1349164574c

7.

Gutorov R, Peters M, Katz B, Brandwine T, Barbera NA, Levitan I, et al. Modulation of transient receptor potential c channel activity by cholesterol. Frontiers in Pharmacology [Internet]. 2019;10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077205007&doi=10.3389%252ffphar.2019.01487&partnerID=40&md5=93a74d60b1120045a891025a4fcea5ad

8.

Barbera NA, Minke B, Levitan I. Comparative docking analysis of cholesterol analogs to ion channels to discriminate between stereospecific binding vs. stereospecific response. Channels [Internet]. 2019;13(1):136–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065420646&doi=10.1080%252f19336950.2019.1606670&partnerID=40&md5=13cf0d1420fc2a9925b3adf9104a181d

9.

Katz B, Minke B. The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade. Progress in Retinal and Eye Research [Internet]. 2018;66:200–19. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047244697&doi=10.1016%252fj.preteyeres.2018.05.001&partnerID=40&md5=87f7f9ed8917156311c82d059d991f6c

10.

Katz B, Voolstra O, Tzadok H, Yasin B, Rhodes-Modrov E, Bartels JP, et al. The latency of the light response is modulated by the phosphorylation state of Drosophila TRP at a specific site. Channels (Austin, Tex) [Internet]. 2017;11(6):678–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027846794&doi=10.1080%252f19336950.2017.1361073&partnerID=40&md5=7c874b93cbfdd7593896f94fbdc0f5ee

11.

Katz B, Gutorov R, Rhodes-Mordov E, Hardie RC, Minke B. Electrophysiological method for whole-cell voltage clamp recordings from drosophila photoreceptors. Journal of Visualized Experiments [Internet]. 2017;2017(124). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021195463&doi=10.3791%252f55627&partnerID=40&md5=a85fb9c5969b85ac05d5ec26b0afe44d

12.

Voolstra O, Rhodes-Mordov E, Katz B, Bartels JP, Oberegelsbacher C, Schotthöfer SK, et al. The phosphorylation state of the Drosophila TRP channel modulates the frequency response to oscillating light In Vivo. Journal of Neuroscience [Internet]. 2017;37(15):4213–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018551415&doi=10.1523%252fJNEUROSCI.3670-16.2017&partnerID=40&md5=2de4739029f540080712db4a33fb2a4f

13.

Yasin B, Kohn E, Peters M, Zaguri R, Weiss S, Schopf K, et al. Ectopic expression of mouse melanopsin in drosophila photoreceptors reveals fast response kinetics and persistent dark excitation. Journal of Biological Chemistry [Internet]. 2017;292(9):3624–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014589378&doi=10.1074%252fjbc.M116.754770&partnerID=40&md5=ff552f7feafc7295f3c78b2cdaf89c2b

14.

Katz B, Payne R, Minke B. TRP channels in vision [Internet]. Neurobiology of TRP Channels. 2017. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052002350&doi=10.4324%252f9781315152837&partnerID=40&md5=c29529af8d15277450e32c87e1b3daa6

15.

Peters M, Katz B, Lev S, Zaguri R, Gutorov R, Minke B. Depletion of Membrane Cholesterol Suppresses Drosophila Transient Receptor Potential-Like (TRPL) Channel Activity. Current Topics in Membranes [Internet]. 2017;80:233–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020920382&doi=10.1016%252fbs.ctm.2017.05.005&partnerID=40&md5=fd993d6130ee113db0c799ff5e11a07d

16.

Kohn E, Minke B. Methods for studying drosophila TRP channels [Internet]. TRP Channels. 2016. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052238189&partnerID=40&md5=24014663c1721f00fe2c70cac3fd8f6d

17.

Minke B, Katz B. Genetic dissection of invertebrate phototransduction [Internet]. The Curated Reference Collection in Neuroscience and Biobehavioral Psychology. 2016. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079565948&doi=10.1016%252fB978-0-12-809324-5.01376-6&partnerID=40&md5=8d8f67ed4d6eb75abe47702ccbfe7976

18.

Weiss S, Minke B. A new genetic model for calcium induced autophagy and ER-stress in Drosophila photoreceptor cells. Channels [Internet]. 2015;9(1):14–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923626414&doi=10.4161%252f19336950.2014.981439&partnerID=40&md5=4c1315e39bea36968ac4728adfc3ec05

19.

Kohn E, Katz B, Yasin B, Peters M, Rhodes E, Zaguri R, et al. Functional cooperation between the IP3 receptor and Phospholipase C secures the high sensitivity to light of Drosophila photoreceptors In Vivo. Journal of Neuroscience [Internet]. 2015;35(6):2530–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922575494&doi=10.1523%252fJNEUROSCI.3933-14.2015&partnerID=40&md5=7c11989badd4ec1867e7d355514cb353

20.

Katz B, Oberacker T, Richter D, Tzadok H, Peters M, Minke B, et al. Drosophila trp and trpl are assembled as homomultimeric channels in vivo. Journal of Cell Science [Internet]. 2013;126(14):3121–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880658725&doi=10.1242%252fjcs.123505&partnerID=40&md5=6be45a5cf0a839bf90b819c8afcb2c2f

21.

Peters M, Trembovler V, Alexandrovich A, Parnas M, Birnbaumer L, Minke B, et al. Carvacrol together with TRPC1 elimination improve functional recovery after traumatic brain injury in mice. Journal of Neurotrauma [Internet]. 2012;29(18):2831–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870916955&doi=10.1089%252fneu.2012.2575&partnerID=40&md5=f74d69f6401cff837cc9d27f2e44723c

22.

Parnas M, Peters M, Minke B. Biophysics of TRP channels [Internet]. Vol. 6, Comprehensive Biophysics. 2012. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870862340&doi=10.1016%252fB978-0-12-374920-8.00617-2&partnerID=40&md5=923a0a61fa9a5bc862e2173e9ea7fc36

23.

Weiss S, Kohn E, Dadon D, Katz B, Peters M, Lebendiker M, et al. Compartmentalization and Ca2+ buffering are essential for prevention of light-induced retinal degeneration. Journal of Neuroscience [Internet]. 2012;32(42):14696–708. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867590095&doi=10.1523%252fJNEUROSCI.2456-12.2012&partnerID=40&md5=212f0d857d2e8c32bbffbde8166d28ce

24.

Minke B. The history of the Prolonged Depolarizing Afterpotential (PDA) and its role in genetic dissection of Drosophila phototransduction. Journal of Neurogenetics [Internet]. 2012;26(2):106–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863877662&doi=10.3109%252f01677063.2012.666299&partnerID=40&md5=8d5788b8a7b19310b74aad6032ac5bfd

25.

Katz B, Minke B. Phospholipase C-mediated suppression of dark noise enables single-photon detection in Drosophila photoreceptors. Journal of Neuroscience [Internet]. 2012;32(8):2722–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857402876&doi=10.1523%252fJNEUROSCI.5221-11.2012&partnerID=40&md5=06e5ca4be4e6f5fd54af44153daf176a

26.

Lev S, Katz B, Tzarfaty V, Minke B. Signal-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate without activation of phospholipase C: Implications on gating of drosophila TRPL (Transient Receptor Potential-Like) channel. Journal of Biological Chemistry [Internet]. 2012;287(2):1436–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855511313&doi=10.1074%252fjbc.M111.266585&partnerID=40&md5=da22aa29dd2631478d3eb24477f47232

27.

Lev S, Katz B, Minke B. The activity of the TRP-like channel depends on its expression system. Channels [Internet]. 2012;6(2):86–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045137020&doi=10.4161%252fchan.19946&partnerID=40&md5=b99a211ecc52dcba08f8d183977a7289

28.

Richter D, Katz B, Oberacker T, Tzarfaty V, Belusic G, Minke B, et al. Translocation of the Drosophila transient receptor potential-like (TRPL) channel requires both the N- and C-terminal regions together with sustained Ca2+ entry. Journal of Biological Chemistry [Internet]. 2011;286(39):34234–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053196578&doi=10.1074%252fjbc.M111.278564&partnerID=40&md5=bcc7939f068a646e47f58c3bd263860c

29.

Lev S, Minke B. Concluding remarks and future directions [Internet]. TRP Channels in Health and Disease: Implications for Diagnosis and Therapy. 2011. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060549583&partnerID=40&md5=8c8f191ec3542b913476678c95dc3e69

30.

Minke B, Peters M. Rhodopsin as thermosensor? Science [Internet]. 2011;331(6022):1272–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952516596&doi=10.1126%252fscience.1203482&partnerID=40&md5=039ef408595e9e324e7830029c9b2a42

31.

Minke B. The history of the drosophila TRP channel: The birth of a new channel superfamily. Journal of Neurogenetics [Internet]. 2010;24(4):216–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649340763&doi=10.3109%252f01677063.2010.514369&partnerID=40&md5=e2c2160dfbfb94addf5847756317eb2e

32.

Zeevi DA, Lev S, Frumkin A, Minke B, Bach G. Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. Journal of Cell Science [Internet]. 2010;123(18):3112–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956911289&doi=10.1242%252fjcs.067330&partnerID=40&md5=058167008e5cb654187aeaf52ee855fd

33.

Dadon D, Minke B. Cellular functions of Transient Receptor Potential channels. International Journal of Biochemistry and Cell Biology [Internet]. 2010;42(9):1430–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955093253&doi=10.1016%252fj.biocel.2010.04.006&partnerID=40&md5=e3c40f5e9cfe988d17be21ce54994634

34.

Lev S, Zeevi DA, Frumkin A, Offen-Glasner V, Bach G, Minke B. Constitutive activity of the human TRPML2 channel induces cell degeneration. Journal of Biological Chemistry [Internet]. 2010;285(4):2771–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77449137885&doi=10.1074%252fjbc.M109.046508&partnerID=40&md5=626dd944fb0d60f9b65bff4f16b5ef66

35.

Katz B, Minke B. Genetic dissection of invertebrate phototransduction [Internet]. Encyclopedia of the Eye, Four-Volume Set. 2010. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079110253&doi=10.1016%252fB978-0-12-374203-2.00151-2&partnerID=40&md5=1e9e9f992ccdbe6f21f5752f52e6c15c

36.

Lev S, Minke B. Constitutive activity of TRP Channels. Methods for measuring the activity and its outcome. Methods in Enzymology [Internet]. 2010;484(C):591–612. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049268106&doi=10.1016%252fB978-0-12-381298-8.00029-0&partnerID=40&md5=42dbbde12f61c6ddc9141f6ed6d7c813

37.

Katz B, Minke B. Drosophila photoreceptors and signaling mechanisms. Frontiers in Cellular Neuroscience [Internet]. 2009;3(JUN). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890873409&doi=10.3389%252fneuro.03.002.2009&partnerID=40&md5=131071f87100fc1da24199244980b42c

38.

Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shaag A, et al. Membrane lipid modulations remove divalent open channel block from TRP-like and NMDA channels. Journal of Neuroscience [Internet]. 2009;29(8):2371–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-61449214110&doi=10.1523%252fJNEUROSCI.4280-08.2009&partnerID=40&md5=4917d6a542928596018f221bd5d4279f

39.

Parnas M, Peters M, Minke B. Linoleic acid inhibits TRP channels with intrinsic voltage sensitivity: Implications on the mechanism of linoleic acid action. Channels [Internet]. 2009;3(3):164–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67649363951&doi=10.4161%252fchan.3.3.8873&partnerID=40&md5=879f12176919eacedfe1dbd4c926abee

40.

Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, et al. Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium [Internet]. 2009;45(3):300–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-61449223525&doi=10.1016%252fj.ceca.2008.11.009&partnerID=40&md5=56e8f4b3530e609066c8c3fb0461a56e

41.

Frechter S, Elia N, Tzarfaty V, Selinger Z, Minke B. Translocation of Gqα mediates long-term adaptation in Drosophila photoreceptors. Journal of Neuroscience [Internet]. 2007;27(21):5571–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34250654475&doi=10.1523%252fJNEUROSCI.0310-07.2007&partnerID=40&md5=e2205cafa5147671359ff413a3ffb0f7

42.

Parnas M, Katz B, Minke B. Open channel block by Ca2+ underlies the voltage dependence of Drosophila TRPL channel. Journal of General Physiology [Internet]. 2007;129(1):17–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33845939887&doi=10.1085%252fjgp.200609659&partnerID=40&md5=237758872c9864f13a11d95dea2aa214

43.

Meyer NE, Joel-Almagor T, Frechter S, Minke B, Huber A. Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade. Journal of Cell Science [Internet]. 2006;119(12):2592–603. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33746032231&doi=10.1242%252fjcs.02986&partnerID=40&md5=9e57d48515e25980513284b35b27eedd

44.

Minke B, Parnas M. Insights on TRP channels from in vivo studies in Drosophila. Annual Review of Physiology [Internet]. 2006;68:649–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645997388&doi=10.1146%252fannurev.physiol.68.040204.100939&partnerID=40&md5=fb5394c56c700e6009dc1c7fe3a99364

45.

Frechter S, Minke B. Light-regulated translocation of signaling proteins in Drosophila photoreceptors. Journal of Physiology Paris [Internet]. 2006;99(2–3):133–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645019869&doi=10.1016%252fj.jphysparis.2005.12.010&partnerID=40&md5=64be9477647c32d18bc2d0768c36a700

46.

Minke B. TRP channels and Ca2+ signaling. Cell Calcium [Internet]. 2006;40(3):261–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745976773&doi=10.1016%252fj.ceca.2006.05.002&partnerID=40&md5=e9c3a703c2b70d5e826a560817ffdd4e

47.

Elia N, Frechter S, Gedi Y, Minke B, Selinger Z. Excess of Gβe over Gqαe in vivo prevents dark, spontaneous activity of Drosophila photoreceptors. Journal of Cell Biology [Internet]. 2005;171(3):517–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-27744476340&doi=10.1083%252fjcb.200506082&partnerID=40&md5=464c71470dc417ec29c8359b0fffcb7a

48.

Chorna-Ornan I, Tzarfaty V, Ankri-Eliahoo G, Joel-Almagor T, Meyer NE, Huber A, et al. Light-regulated interaction of Dmoesin with TRP and TRPL channels is required for maintenance of photoreceptors. Journal of Cell Biology [Internet]. 2005;171(1):143–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-26444447466&doi=10.1083%252fjcb.200503014&partnerID=40&md5=1eaec03cde85b616f9cb0dc4b722b080

49.

Iakhine R, Chorna-Ornan I, Zars T, Elia N, Cheng Y, Selinger Z, et al. Novel Dominant Rhodopsin Mutation Triggers Two Mechanisms of Retinal Degeneration and Photoreceptor Desensitization. Journal of Neuroscience [Internet]. 2004;24(10):2516–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542267743&doi=10.1523%252fJNEUROSCI.5426-03.2004&partnerID=40&md5=8823c86b2ba741e202c2a8ef78bffdaa

50.

Agam K, Frechter S, Minke B. Activation of the Drosophila TRP and TRPL channels requires both Ca2+ and protein dephosphorylation. Cell Calcium [Internet]. 2004;35(2):87–105. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0942287916&doi=10.1016%252fj.ceca.2003.08.001&partnerID=40&md5=e9f6ef488c6b57543257eb2e3772b159

51.

Kosloff M, Elia N, Joel-Almagor T, Timberg R, Zars TD, Hyde DR, et al. Regulation of light-dependent Gqα translocation and morphological changes in fly photoreceptors. EMBO Journal [Internet]. 2003;22(3):459–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037415749&doi=10.1093%252femboj%252fcdg054&partnerID=40&md5=f51b759d611ed0068bb8b9a6876a7536

52.

Minke B, Agam K. TRP gating is linked to the metabolic state and maintenance of the Drosophila photoreceptor cells. Cell Calcium [Internet]. 2003;33(5–6):395–408. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038650852&doi=10.1016%2fS0143-4160%2803%2900052-6&partnerID=40&md5=4495b09e241fa922d587330299f05368

53.

Bähner M, Frechter S, Da Silva N, Minke B, Paulsen R, Huber A. Light-regulated subcellular translocation of drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron [Internet]. 2002;34(1):83–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037187771&doi=10.1016%2fS0896-6273%2802%2900630-X&partnerID=40&md5=fc5a7f57c025e03e5b07291546be2b43

54.

Minke B. The TRP calcium channel and retinal degeneration. Advances in Experimental Medicine and Biology [Internet]. 2002;514:601–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036986347&doi=10.1007%252f978-1-4615-0121-3_34&partnerID=40&md5=aad7cb7369a4019d82145ee3c2cfd69f

55.

Minke B, Cook B. TRP channel proteins and signal transduction. Physiological Reviews [Internet]. 2002;82(2):429–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036080482&doi=10.1152%252fphysrev.00001.2002&partnerID=40&md5=8fe6b636aa7f3dcbe93e9a7f9c5ab986

56.

Minke B. The TRP channel and phospholipase C-mediated signaling. Cellular and Molecular Neurobiology [Internet]. 2001;21(6):629–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035568314&doi=10.1023%252fA%253a1015191702536&partnerID=40&md5=79d34ce194a10f3b4d91008f593f1125

57.

Chorna-Ornan I, Joel-Almagor T, Ben-Ami HC, Frechter S, Gillo B, Selinger Z, et al. A common mechanism underlies vertebrate calcium signaling and Drosophila phototransduction. Journal of Neuroscience [Internet]. 2001;21(8):2622–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035871732&doi=10.1523%252fjneurosci.21-08-02622.2001&partnerID=40&md5=d5e0b70283ef9580280d0ebbf2bd2b6f

58.

Minke B, Hardie RC. Chapter 9 Genetic dissection of Drosophila phototransduction. Handbook of Biological Physics [Internet]. 2000;3(C):449–525. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956805106&doi=10.1016%2fS1383-8121%2800%2980012-3&partnerID=40&md5=3885ae6c600554b13408336bf1aa41ef

59.

Cook B, Bar-Yaacov M, Cohen Ben-Ami H, Goldstein RE, Paroush Z, Selinger Z, et al. Phospholipase C and termination of G-protein-mediated signalling in vivo. Nature Cell Biology [Internet]. 2000;2(5):296–301. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033780894&doi=10.1038%252f35010571&partnerID=40&md5=9842e393a06cf560c89eb88b51ace458

60.

Agam K, Von Campenhausen M, Levy S, Ben-Ami HC, Cook B, Kirschfeld K, et al. Metabolic stress reversibly activates the Drosophila light-sensitive channels TRP and TRPL in vivo. Journal of Neuroscience [Internet]. 2000;20(15):5748–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034255456&doi=10.1523%252fjneurosci.20-15-05748.2000&partnerID=40&md5=424ceaef661017ceff657ba7296f3f86

61.

Yoon J, Ben-Ami HC, Hong YS, Park S, Strong LLR, Bowman J, et al. Novel mechanism of massive photoreceptor degeneration caused by mutations in the trp gene of Drosophila. Journal of Neuroscience [Internet]. 2000;20(2):649–59. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-17944393022&doi=10.1523%252fjneurosci.20-02-00649.2000&partnerID=40&md5=b0bc214108d4948980618212398f625d

62.

Cook B, Minke B. TRP and calcium stores in Drosophila phototransduction. Cell Calcium [Internet]. 1999;25(2):161–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033082798&doi=10.1054%252fceca.1998.0018&partnerID=40&md5=31285c7c946f8ce710e94cb0bfc88ac9

63.

Arnon A, Cook B, Gillo B, Montell C, Selinger Z, Minke B. Calmodulin regulation of light adaptation and store-operated dark current in Drosophila photoreceptors. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1997;94(11):5894–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030902987&doi=10.1073%252fpnas.94.11.5894&partnerID=40&md5=e943b81b9a1feebfc036900bbbbf8278

64.

Arnon A, Cook B, Montell C, Selinger Z, Minke B. Calmodulin regulation of calcium stores in phototransduction of Drosophila. Science [Internet]. 1997;275(5303):1119–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031036871&doi=10.1126%252fscience.275.5303.1119&partnerID=40&md5=a94097ded47862d5f2b38a53b114c5c8

65.

Gillo B, Chorna I, Cohen H, Cook B, Manistersky I, Chorev M, et al. Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1996;93(24):14146–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030467257&doi=10.1073%252fpnas.93.24.14146&partnerID=40&md5=12a70dfae63da7140f30aae28d785860

66.

Hardie RC, Minke B. Erratum: Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: The role of Ca2+ and trp (Cell Calcium (1995) 18 (256-274)). Cell Calcium [Internet]. 1996;19(1):95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-13344269693&doi=10.1016%2fS0143-4160%2896%2990018-4&partnerID=40&md5=89ea0e26de33d0cc31def78faf5b1364

67.

Minke B, Selinger Z. The roles of trp and calcium in regulating photoreceptor function in Drosophila. Current Opinion in Neurobiology [Internet]. 1996;6(4):459–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030218120&doi=10.1016%2fS0959-4388%2896%2980050-X&partnerID=40&md5=26d1a836e1e3e07ecf68cd3de8b2a6d0

68.

Gillo B, Sealfon SC, Minke B. Pharmacology of a capacitative Ca2+ entry in Xenopus oocytes. Journal of Photochemistry and Photobiology B: Biology [Internet]. 1996;35(1–2):77–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030208818&doi=10.1016%2f1011-1344%2896%2907303-4&partnerID=40&md5=20a8592a3c3d5aace7031aa7acd37a13

69.

Minke B, Selinger Z. Role of Drosophila TRP in inositide-mediated Ca2+ entry. Molecular Neurobiology [Internet]. 1996;12(2):163–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030115307&doi=10.1007%252fBF02740652&partnerID=40&md5=83561c95417ac112f8cb0e6d816b1c5f

70.

Ben-Oren I, Peleg G, Lewis A, Minke B, Loew L. Infrared nonlinear optical measurements of membrane potential in photoreceptor cells. Biophysical Journal [Internet]. 1996;71(3):1616–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029738681&doi=10.1016%2fS0006-3495%2896%2979365-7&partnerID=40&md5=c264f030f68ae005a7eb7203c58b4906

71.

Porter JA, Minke B, Montell C. Calmodulin binding to drosophila NinaC required for termination of phototransduction. EMBO Journal [Internet]. 1995;14(18):4450–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029114653&doi=10.1002%252fj.1460-2075.1995.tb00124.x&partnerID=40&md5=a0ad2f498ceb4b4e312bd2c78ead0d92

72.

Pollock JA, Assaf A, Peretz A, Nichols CD, Mojet MH, Hardie RC, et al. TRP, a protein essential for inositide-mediated Ca2+ influx is localized adjacent to the calcium stores in Drosophila photoreceptors. Journal of Neuroscience [Internet]. 1995;15(5 II):3747–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029010304&doi=10.1523%252fjneurosci.15-05-03747.1995&partnerID=40&md5=d4f0a442611beeb2626bbd0c102e9d2a

73.

Hardie RC, Minke B. Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium [Internet]. 1995;18(4):256–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028827329&doi=10.1016%2f0143-4160%2895%2990023-3&partnerID=40&md5=d566a1f242f9b5ac89238eec66075bdd

74.

Peretz A, Sandler C, Kirschfeld K, Hardie RC, Minke B. Genetic dissection of light-induced Ca2+ influx into Drosophila photoreceptors. Journal of General Physiology [Internet]. 1994;104(6):1057–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028561805&doi=10.1085%252fjgp.104.6.1057&partnerID=40&md5=a4d9998d04bf868c9e322bc53b3decac

75.

Sahly I, Schröder WH, Minke B, Zierold K. Accumulation of calcium in degenerating photoreceptors of several Drosophila mutants. Visual Neuroscience [Internet]. 1994;11(4):763–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028467945&doi=10.1017%252fS0952523800003060&partnerID=40&md5=c3473e2415cf1e7d83f34b32724ffd31

76.

Hardie RC, Minke B. Spontaneous activation of light-sensitive channels in Drosophila photoreceptors. Journal of General Physiology [Internet]. 1994;103(3):389–407. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028294559&doi=10.1085%252fjgp.103.3.389&partnerID=40&md5=57136ab80a234270f6353653e6c01a69

77.

Hardie RC, Minke B. Calcium-dependent inactivation of light-sensitive channels in Drosophila photoreceptors. Journal of General Physiology [Internet]. 1994;103(3):409–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028220639&doi=10.1085%252fjgp.103.3.409&partnerID=40&md5=35341d5ac3e3661047d9c68d5c8d946b

78.

Minke B. Protein kinase C is required for light adaptation in drosophila photoreceptors. Biomedicine and Pharmacotherapy [Internet]. 1994;48(3–4):175–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-50749132455&doi=10.1016%2f0753-3322%2894%2990109-0&partnerID=40&md5=c19a07420cc839c532b123615431a7e1

79.

Peretz A, Suss-Toby E, Rom-Glas A, Arnon A, Payne R, Minke B. The light response of drosophila photoreceptors is accompanied by an increase in cellular calcium: Effects of specific mutations. Neuron [Internet]. 1994;12(6):1257–67. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028284467&doi=10.1016%2f0896-6273%2894%2990442-1&partnerID=40&md5=dde78add5f9e650a14c9412783cf5b64

80.

Selinger Z, Doza YN, Minke B. Mechanisms and genetics of photoreceptors desensitization in Drosophila flies. BBA - Molecular Cell Research [Internet]. 1993;1179(3):283–99. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027381201&doi=10.1016%2f0167-4889%2893%2990084-3&partnerID=40&md5=3536dbc5bebed10ee0817af58a8bec72

81.

Byk T, Bar-Yaacov M, Doza YN, Minke B, Selinger Z. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1993;90(5):1907–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027401240&doi=10.1073%252fpnas.90.5.1907&partnerID=40&md5=4d4085d9c951d71111c06b21a4ceb54d

82.

Hardie RC, Minke B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends in Neurosciences [Internet]. 1993;16(9):371–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027338192&doi=10.1016%2f0166-2236%2893%2990095-4&partnerID=40&md5=c84b5aabfddf6bca174fb0e001ba3ddd

83.

Hardie RC, Peretz A, Pollock JA, Minke B. Ca2+ limits the development of the light response in Drosophila photoreceptors. Proceedings of the Royal Society B: Biological Sciences [Internet]. 1993;252(1335):223–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027337908&doi=10.1098%252frspb.1993.0069&partnerID=40&md5=6a30882d70550ef46bbd528ef3bf7191

84.

Hardie RC, Peretz A, Suss-Toby E, Rom-Glas A, Bishop SA, Selinger Z, et al. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature [Internet]. 1993;363(6430):634–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027201549&doi=10.1038%252f363634a0&partnerID=40&md5=1b762b7fcf0aa66174f3a1c625fbb933

85.

Rom-Glas A, Sandler C, Kirschfeld K, Minke B. The nss mutation or lanthanum inhibits light-induced Ca2+ influx into fly photoreceptors. Journal of General Physiology [Internet]. 1992;100(5):767–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026455040&doi=10.1085%252fjgp.100.5.767&partnerID=40&md5=d19c3f916b34fe162875195e5587bd92

86.

Werner U, Suss-Toby E, Rom A, Minke B. Calcium is necessary for light excitation in barnacle photoreceptors. Journal of Comparative Physiology A [Internet]. 1992;170(4):427–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026847077&doi=10.1007%252fBF00191459&partnerID=40&md5=fe4d635db3f9533c8ddf920b8e7a2aa5

87.

Minke B, Selinger Z. The inositol-lipid pathway is necessary for light excitation in fly photoreceptors. Society of General Physiologists series [Internet]. 1992;47:201–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027106454&partnerID=40&md5=cad78660883a6616a05884abf6402df0

88.

Hardie RC, Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron [Internet]. 1992;8(4):643–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026583241&doi=10.1016%2f0896-6273%2892%2990086-S&partnerID=40&md5=0340357655637e51daa14c470ad6bb34

89.

Sahly I, Nachum SB, Suss-Toby E, Rom A, Peretz A, Kleiman J, et al. Calcium channel blockers inhibit retinal degeneration in the retinal- degeneration-B mutant of Drosophila. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1992;89(1):435–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026557160&doi=10.1073%252fpnas.89.1.435&partnerID=40&md5=a2eef9ea7115ecb77de5ae65981a609a

90.

DOZA YN, MINKE B, CHOREV M, SELINGER Z. Characterization of fly rhodopsin kinase. European Journal of Biochemistry [Internet]. 1992;209(3):1035–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026457362&doi=10.1111%252fj.1432-1033.1992.tb17379.x&partnerID=40&md5=e4f1e69341f10793bfc26e1ead12e30b

91.

Suss-Toby E, Selinger Z, Minke B. Lanthanum reduces the excitation efficiency in fly photoreceptors. Journal of General Physiology [Internet]. 1991;98(4):849–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026335890&doi=10.1085%252fjgp.98.4.849&partnerID=40&md5=8c2bef3541771346597e02c40ed901ed

92.

Minke B, Selinger Z. Chapter 5 Inositol lipid pathway in fly photoreceptors: Excitation, calcium mobilization and retinal degeneration. Progress in Retinal Research [Internet]. 1991;11(C):99–124. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026351140&doi=10.1016%2f0278-4327%2891%2990026-X&partnerID=40&md5=4ceded9fb5a286d41610415bac3344bd

93.

Minke B, Payne R. Spatial restriction of light adaptation and mutation-induced inactivation in fly photoreceptors. Journal of Neuroscience [Internet]. 1991;11(4):900–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025939425&doi=10.1523%252fjneurosci.11-04-00900.1991&partnerID=40&md5=d8be084cfb4c0a1dcae10fa91b19ee8b

94.

Minke B, Rubinstein CT, Sahly I, Bar-Nachum S, Timberg R, Selinger Z. Phorbol ester induces photoreceptor-specific degeneration in a Drosophila mutant. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1990;87(1):113–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025021990&doi=10.1073%252fpnas.87.1.113&partnerID=40&md5=32f52f2635b9f9947d43f3f34b069ec6

95.

Suss E, Barash S, Stavenga DG, Stieve H, Selinger Z, Minke B. Chemical excitation and inactivation in photoreceptors of the fly mutants trp and nss. Journal of General Physiology [Internet]. 1989;94(3):465–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024413045&doi=10.1085%252fjgp.94.3.465&partnerID=40&md5=e3ff2574eea7cb86b427f012f3b02fd6

96.

Rubinstein CT, Bar-Nachum S, Selinger Z, Minke B. Light-induced retinal degeneration in rdgB (retinal degeneration B) mutant of Drosophila: Electrophysiological and morphological manifestations of degeneration. Visual Neuroscience [Internet]. 1989;2(6):529–39. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024892203&doi=10.1017%252fS0952523800003473&partnerID=40&md5=9f67885c353e1a5b77927bd35f8c682d

97.

Rubinstein CT, Bar-Nachum S, Selinger Z, Minke B. Chemically induced retinal degeneration in the rdgB (retinal degeneration B) mutant of Drosophila. Visual Neuroscience [Internet]. 1989;2(6):541–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024869295&doi=10.1017%252fS0952523800003485&partnerID=40&md5=3d55a7ff3c97559c089f15a1e0769059

98.

Barash S, Suss E, Stavenga DG, Rubinstein CT, Selinger Z, Minke B. Light reduces the excitation efficiency in the ms mutant of the sheep blowfly Lucilia. Journal of General Physiology [Internet]. 1988;92(3):307–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023813368&doi=10.1085%252fjgp.92.3.307&partnerID=40&md5=42ea8de7d823fcef9988b1fd56a73535

99.

Selinger Z, Minke B. Inositol lipid cascade of vision studied in mutant flies. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 1988;53(1):333–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024151761&doi=10.1101%252fsqb.1988.053.01.040&partnerID=40&md5=3e7634cb29ccf9aeba9b04f84160cdac

100.

Devary O, Heichal O, Blumenfeld A, Cassel D, Suss E, Barash S, et al. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1987;84(19):6939–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023432774&doi=10.1073%252fpnas.84.19.6939&partnerID=40&md5=2c0109bd0811ae139f9ec24c86d02b08

101.

Minke B. Bleaching adaptation in photoreceptors. Israel Journal of Medical Sciences [Internet]. 1987;23(1–2):61–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023185140&partnerID=40&md5=6a7e887b93e5174823bd81ff87859c25

102.

Selinger Z, Devary O, Blumenfeld A, Heichal O, Barash S, Minke B. Light-dependent phospholipase C activity in Musca eye membranes and excitation of photoreceptor cells by inositol triphosphate and 2,3 diphosphoglycerate. Progress in clinical and biological research [Internet]. 1987;249:169–78. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023072902&partnerID=40&md5=5dd423472de4257feb9763c25bf146a8

103.

Almagor E, Hillman P, Minke B. Spatial properties of the prolonged depolarizing afterpotential in barnacle photoreceptors: I. the induction process. Journal of General Physiology [Internet]. 1986;87(3):391–405. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022633512&doi=10.1085%252fjgp.87.3.391&partnerID=40&md5=75bcf368cb97ca5c45dff3b7e7f539a1

104.

Almagor E, Hillman P, Minke B. Spatial properties of the prolonged depolarizing afterpotential in barnacle photoreceptors: II. antagonistic interactions. Journal of General Physiology [Internet]. 1986;87(3):407–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022624253&doi=10.1085%252fjgp.87.3.407&partnerID=40&md5=ac455681327655f6b10225944f697e80

105.

Minke B, Tsacopoulos M. Light induced sodium dependent accumulation of calcium and potassium in the extracellular space of bee retina. Vision Research [Internet]. 1986;26(5):679–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022606802&doi=10.1016%2f0042-6989%2886%2990082-9&partnerID=40&md5=dce78c5fb0f43136c63f6c6b9705c730

106.

Blumenfeld A, Erusalimsky J, Heichal O, Selinger Z, Minke B. Light-activated guanosinetriphosphatase in Musca eye membranes resembles the prolonged depolarizing afterpotential in photoreceptor cells. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1985;82(20):7116–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022404333&doi=10.1073%252fpnas.82.20.7116&partnerID=40&md5=06390896c558175474650d3109ded7e0

107.

Minke B, Stephenson RS. The characteristics of chemically induced noise in Musca photoreceptors. Journal of Comparative Physiology A [Internet]. 1985;156(3):339–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001743337&doi=10.1007%252fBF00610727&partnerID=40&md5=536bcdbacadd63a03747c320a97ae699

108.

Minke B, Kirschfeld K. Non-local interactions between light induced processes in Calliphora photoreceptors. Journal of Comparative Physiology A [Internet]. 1984;154(2):175–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0342402997&doi=10.1007%252fBF00604983&partnerID=40&md5=84263e27a0ba1f81c596fcc52af880cd

109.

Minke B, Armon E. Activation of electrogenic Na-Ca exchange by light in fly photoreceptors. Vision Research [Internet]. 1984;24(2):109–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021352184&doi=10.1016%2f0042-6989%2884%2990095-6&partnerID=40&md5=541e509be21dad4256912f6fb0ff240e

110.

Minke B. The trp is a Drosophila mutant sensitive to developmental temperature. Journal of Comparative Physiology □ A [Internet]. 1983;151(4):483–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344173808&doi=10.1007%252fBF00605465&partnerID=40&md5=81c74988ba5a1ea4db0bb2e384cfc970

111.

Armon E, Minke B. Light activated electrogenic Na+-Ca2+-exchange in fly photoreceptors: Modulation by Na+/K+-pump activity. Biophysics of Structure and Mechanism [Internet]. 1983;9(4):349–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020541632&doi=10.1007%252fBF00535670&partnerID=40&md5=ec8bff65d3044d2b279c56ad74d3f236

112.

Hillman P, Hochstein S, Minke B. Transduction in invertebrate photoreceptors: Role of pigment bistability. Physiological Reviews [Internet]. 1983;63(2):668–772. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020581293&doi=10.1152%252fphysrev.1983.63.2.668&partnerID=40&md5=4155ead4afb06920c1f4d794b0fa833c

113.

Franceschini N, Kirschfeld K, Minke B. Fluorescence of photoreceptor cells observed in vivo. Science [Internet]. 1981;213(4513):1264–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019793972&doi=10.1126%252fscience.7268434&partnerID=40&md5=eae7d8cfc0a971e3f1fc914c51e548b7

114.

Minke B, Kirschfeld K. Fast electrical potentials arising from activation of metarhodopsin in the fly. Journal of General Physiology [Internet]. 1980;75(4):381–402. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018900607&doi=10.1085%252fjgp.75.4.381&partnerID=40&md5=989aa962a2b4eb4e9182bed75ae067c4

115.

Minke B, Armon E. INTERMEDIATE PROCESSES IN PHOTOTRANSDUCTION: A STUDY IN DROSOPHILA MUTANTS. Photochemistry and Photobiology [Internet]. 1980;32(4):553–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84985485768&doi=10.1111%252fj.1751-1097.1980.tb03802.x&partnerID=40&md5=a4ec3a6f409dc3522f4cd7da42071ca0

116.

Minke B. Transduction in photoreceptors with bistable pigments: Intermediate processes. Biophysics of Structure and Mechanism [Internet]. 1979;5(2–3):163–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018742844&doi=10.1007%252fBF00535445&partnerID=40&md5=fa8e0e27cece90cd59e32f16508d1977

117.

Almagor E, Hillman P, Minke B. Upper limit on translational diffusion of visual pigment in intact unfixed barnacle photoreceptors. Biophysics of Structure and Mechanism [Internet]. 1979;5(2–3):243–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018404888&doi=10.1007%252fBF00535453&partnerID=40&md5=84b25499cb28da11da1ef6fde5bbbb99

118.

Minke B, Kirschfeld K. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. Journal of General Physiology [Internet]. 1979;73(5):517–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018363674&doi=10.1085%252fjgp.73.5.517&partnerID=40&md5=d9126aca699de45ae5893a3647d7ef43

119.

Kirschfeld K, Feiler R, Minke B. The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Zeitschrift fur Naturforschung - Section C Journal of Biosciences [Internet]. 1978;33(11–12):1009–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018220739&doi=10.1515%252fznc-1978-11-1234&partnerID=40&md5=dbcd80c819dfc2d44fec8c7936db3a07

120.

Minke B, Hochstein S, Hillman P. The kinetics of visual pigment systems - II. Application to measurements on a bistable pigment system. Biological Cybernetics [Internet]. 1978;30(1):33–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018139815&doi=10.1007%252fBF00365481&partnerID=40&md5=dda81600594100f9df74513166099c4d

121.

Hochstein S, Minke B, Hillman P, Knight BW. The kinetics of visual pigment systems - I. Mathematical analysis. Biological Cybernetics [Internet]. 1978;30(1):23–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018096910&doi=10.1007%252fBF00365480&partnerID=40&md5=fca777447710fcc6077e23c6fdd7bbf4

122.

Minke B, Kirschfeld K. Microspectrophotometric evidence for two photointerconvertible states of visual pigment in the barnacle lateral eye. Journal of General Physiology [Internet]. 1978;71(1):37–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017813328&doi=10.1085%252fjgp.71.1.37&partnerID=40&md5=63151bee3a77715187210e2dcd329415

123.

Kirschfeld K, Franceschini N, Minke B. Evidence for a sensitising pigment in fly photoreceptors. Nature [Internet]. 1977;269(5627):386–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017748286&doi=10.1038%252f269386a0&partnerID=40&md5=2ab12b1f37256ed1ee6c226fc6317505

124.

Minke B. Drosophila mutant with a transducer defect. Biophysics of Structure and Mechanism [Internet]. 1977;3(1):59–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017335111&doi=10.1007%252fBF00536455&partnerID=40&md5=54b7dfa1bfaff65ffe34b7d10759fcae

125.

Hillman P, Hochstein S, Minke B. Nonlocal interactions in the photoreceptor transduction process. Journal of General Physiology [Internet]. 1976;68(2):227–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017171167&doi=10.1085%252fjgp.68.2.227&partnerID=40&md5=66e73e8ac556f007a98470bec4ed8414

126.

Minke B, Wu CF, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature [Internet]. 1975;258(5530):84–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016743642&doi=10.1038%252f258084a0&partnerID=40&md5=10067007dd5ac2d011fb3a3f0b54a617

127.

Minke B, Wu CF, Pak WL. Isolation of light induced response of the central retinula cells from the electroretinogram of Drosophila. JCOMPPHYSIOLSERA [Internet]. 1975;98(4):345–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016694055&partnerID=40&md5=b938dbf567b1599817e401202c3e699c

128.

Minke B, Hochstein S, Hillman P. Derivation of a Quantitative Kinetic Model for a Visual Pigment from Observations of Early Receptor Potential. Biophysical Journal [Internet]. 1974;14(6):490–512. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016249449&doi=10.1016%2fS0006-3495%2874%2985929-1&partnerID=40&md5=a24e02f7d7889bc6cbd5f2cee63e2b12

129.

Minke B, Hochstein S, Hillman P. Photoreceptor transduction. A new system. Israel journal of medical sciences [Internet]. 1973;9 Suppl:114–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015911689&partnerID=40&md5=e9aba06372cf6647f163348b32e82168

130.

Hillman P, Dodge FA, Hochstein S, Knight BW, Minke B. Rapid dark recovery of the invertebrate early receptor potential. Journal of General Physiology [Internet]. 1973;62(1):77–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015881722&doi=10.1085%252fjgp.62.1.77&partnerID=40&md5=ffba800a2fbd80d029d6e186d66a8093

131.

Hochstein S, Minke B, Hillman P. Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. Journal of General Physiology [Internet]. 1973;62(1):105–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015830670&doi=10.1085%252fjgp.62.1.105&partnerID=40&md5=38f24d60885188999de32cfb9e072d6d

132.

Minke B, Hochstein S, Hillman P. Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. Journal of General Physiology [Internet]. 1973;62(1):87–104. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015783535&doi=10.1085%252fjgp.62.1.87&partnerID=40&md5=509c5d0ec2e05fcd91a07f5384e10fca

133.

Minke B, Auerbach E. Latencies and correlation in single units and visual evoked potentials in the cat striate cortex following monocular and binocular stimulations. Experimental Brain Research [Internet]. 1972;14(4):409–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015270638&doi=10.1007%252fBF00235036&partnerID=40&md5=5ef72c9ac4a152fdaee7df957a8da3fb

134.

Hillman P, Hochstein S, Minke B. A visual pigment with two physiologically active stable states. Science [Internet]. 1972;175(4029):1486–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015530665&doi=10.1126%252fscience.175.4029.1486&partnerID=40&md5=3ce79268cc690f1104be99f87cf1dc47

135.

Hochstein S, Minke B, Hillman P. Receptor potentials from a visual pigment with two thermally stable states. Advances in experimental medicine and biology [Internet]. 1972;24:65–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015470546&doi=10.1007%252f978-1-4684-8231-7_6&partnerID=40&md5=9a46daac5a97424812204142c9ae66dd