Skip to Main Content

HUJI logo Hebrew
The Library Authority    רשות הספריות

Library Research Guides    מדריכים לפי תחומים


The Faculty of Medicine - Medical Neurobiology: Minke Baruch

Researchers

Last updated September 2024 - Medical Neurobiology

List of Publications

1.            Minke, B. The pioneering use of the PDA phenotype by Bill Pak for screening a network of phototransduction genes and the associated signaling pathways. J. Neurogenet. (2024) doi:10.1080/01677063.2024.2335146.

2.            Gutorov, R., Katz, B., Peters, M. & Minke, B. Membrane lipid modulations by methyl-β-cyclodextrin uncouple the Drosophila light-activated phospholipase C from TRP and TRPL channel gating. J. Biol. Chem. 300, (2024).

3.            Stanhope, S. C. et al. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age. Redox Biol. 63, (2023).

4.            Rhodes-Mordov, E. et al. Diacylglycerol Activates the Drosophila Light Sensitive Channel TRPL Expressed in HEK Cells. Int. J. Mol. Sci. 24, (2023).

5.            Katz, B. & Minke, B. Methods for Studying the Optics, Physiology, and Biochemistry of the Fly Compound Eye. J. Vis. Exp. 2023, (2023).

6.            Katz, B. et al. Nociception and pain in humans lacking a functional TRPV1 channel. J. Clin. Invest. 133, (2023).

7.            Gutorov, R., Katz, B. & Minke, B. Electrophysiological Methods for Measuring Photopigment Levels in Drosophila Photoreceptors. J. Vis. Exp. (2022) doi:10.3791/63514.

8.            Gutorov, R. et al. The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels. Biomolecules 12, (2022).

9.            Minke, B. & Pak, W. L. The light-activated TRP channel: the founding member of the TRP channel superfamily. J. Neurogenet. 36, 55–64 (2022).

10.          Brandwine, T. et al. Knockdown of Dehydrodolichyl Diphosphate Synthase in the Drosophila Retina Leads to a Unique Pattern of Retinal Degeneration. Front. Mol. Neurosci. 14, (2021).

11.          Gutorov, R. et al. Modulation of transient receptor potential c channel activity by cholesterol. Front. Pharmacol. 10, (2019).

12.          Barbera, N. A., Minke, B. & Levitan, I. Comparative docking analysis of cholesterol analogs to ion channels to discriminate between stereospecific binding vs. stereospecific response. Channels 13, 136–146 (2019).

13.          Katz, B. & Minke, B. The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade. Prog. Retin. Eye Res. 66, 200–219 (2018).

14.          Katz, B., Pak, W. L. & Minke, B. TRPC CHANNELS-INSIGHT FROM THE DROSOPHILA LIGHT SENSITIVE CHANNELS. in The Oxford Handbook of Neuronal Ion Channels 611–645 (Oxford University Press, 2018). doi:10.1093/oxfordhb/9780190669164.013.5.

15.          Katz, B. et al. The latency of the light response is modulated by the phosphorylation state of Drosophila TRP at a specific site. Channels (Austin). 11, 678–685 (2017).

16.          Katz, B., Gutorov, R., Rhodes-Mordov, E., Hardie, R. C. & Minke, B. Electrophysiological method for whole-cell voltage clamp recordings from drosophila photoreceptors. J. Vis. Exp. 2017, (2017).

17.          Voolstra, O. et al. The phosphorylation state of the Drosophila TRP channel modulates the frequency response to oscillating light In Vivo. J. Neurosci. 37, 4213–4224 (2017).

18.          Yasin, B. et al. Ectopic expression of mouse melanopsin in drosophila photoreceptors reveals fast response kinetics and persistent dark excitation. J. Biol. Chem. 292, 3624–3636 (2017).

19.          Katz, B., Payne, R. & Minke, B. TRP channels in vision. in Neurobiology of TRP Channels 27–63 (CRC Press, 2017). doi:10.4324/9781315152837.

20.          Peters, M. et al. Depletion of Membrane Cholesterol Suppresses Drosophila Transient Receptor Potential-Like (TRPL) Channel Activity. Current Topics in Membranes vol. 80 233–254 (2017).

21.          Kohn, E. & Minke, B. Methods for studying drosophila TRP channels. in TRP Channels 423–446 (CRC Press, 2016).

22.          Minke, B. & Katz, B. Genetic dissection of invertebrate phototransduction. in The Curated Reference Collection in Neuroscience and Biobehavioral Psychology 195–206 (Elsevier Science Ltd., 2016). doi:10.1016/B978-0-12-809324-5.01376-6.

23.          Weiss, S. & Minke, B. A new genetic model for calcium induced autophagy and ER-stress in Drosophila photoreceptor cells. Channels 9, 14–20 (2015).

24.          Kohn, E. et al. Functional cooperation between the IP3 receptor and Phospholipase C secures the high sensitivity to light of Drosophila photoreceptors In Vivo. J. Neurosci. 35, 2530–2546 (2015).

25.          Katz, B. et al. Drosophila trp and trpl are assembled as homomultimeric channels in vivo. J. Cell Sci. 126, 3121–3133 (2013).

26.          Peters, M. et al. Carvacrol together with TRPC1 elimination improve functional recovery after traumatic brain injury in mice. J. Neurotrauma 29, 2831–2834 (2012).

27.          Parnas, M., Peters, M. & Minke, B. Biophysics of TRP channels. in Comprehensive Biophysics vol. 6 68–107 (Elsevier Inc., 2012).

28.          Weiss, S. et al. Compartmentalization and Ca2+ buffering are essential for prevention of light-induced retinal degeneration. J. Neurosci. 32, 14696–14708 (2012).

29.          Minke, B. The history of the Prolonged Depolarizing Afterpotential (PDA) and its role in genetic dissection of Drosophila phototransduction. J. Neurogenet. 26, 106–117 (2012).

30.          Katz, B. & Minke, B. Phospholipase C-mediated suppression of dark noise enables single-photon detection in Drosophila photoreceptors. J. Neurosci. 32, 2722–2733 (2012).

31.          Lev, S., Katz, B., Tzarfaty, V. & Minke, B. Signal-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate without activation of phospholipase C: Implications on gating of drosophila TRPL (Transient Receptor Potential-Like) channel. J. Biol. Chem. 287, 1436–1447 (2012).

32.          Lev, S., Katz, B. & Minke, B. The activity of the TRP-like channel depends on its expression system. Channels 6, 86–93 (2012).

33.          Richter, D. et al. Translocation of the Drosophila transient receptor potential-like (TRPL) channel requires both the N- and C-terminal regions together with sustained Ca2+ entry. J. Biol. Chem. 286, 34234–34243 (2011).

34.          Lev, S. & Minke, B. Concluding remarks and future directions. in TRP Channels in Health and Disease: Implications for Diagnosis and Therapy 515–533 (Nova Science Publishers, Inc., 2011).

35.          Minke, B. & Peters, M. Rhodopsin as thermosensor? Science (80-. ). 331, 1272–1273 (2011).

36.          Minke, B. The history of the drosophila TRP channel: The birth of a new channel superfamily. J. Neurogenet. 24, 216–233 (2010).

37.          Zeevi, D. A., Lev, S., Frumkin, A., Minke, B. & Bach, G. Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J. Cell Sci. 123, 3112–3124 (2010).

38.          Dadon, D. & Minke, B. Cellular functions of Transient Receptor Potential channels. Int. J. Biochem. Cell Biol. 42, 1430–1445 (2010).

39.          Lev, S. et al. Constitutive activity of the human TRPML2 channel induces cell degeneration. J. Biol. Chem. 285, 2771–2782 (2010).

40.          Katz, B. & Minke, B. Genetic dissection of invertebrate phototransduction. in Encyclopedia of the Eye 195–206 (Elsevier, 2010). doi:10.1016/B978-0-12-374203-2.00151-2.

41.          Katz, B. & Minke, B. Genetic dissection of invertebrate phototransduction. in Encyclopedia of the Eye, Four-Volume Set 195–206 (Elsevier, 2010). doi:10.1016/B978-0-12-374203-2.00151-2.

42.          Lev, S. & Minke, B. Constitutive activity of TRP Channels. Methods for measuring the activity and its outcome. Methods in Enzymology vol. 484 591–612 (2010).

43.          Katz, B. & Minke, B. Drosophila photoreceptors and signaling mechanisms. Front. Cell. Neurosci. 3, (2009).

44.          Parnas, M. et al. Membrane lipid modulations remove divalent open channel block from TRP-like and NMDA channels. J. Neurosci. 29, 2371–2383 (2009).

45.          Parnas, M., Peters, M. & Minke, B. Linoleic acid inhibits TRP channels with intrinsic voltage sensitivity: Implications on the mechanism of linoleic acid action. Channels 3, 164–166 (2009).

46.          Parnas, M. et al. Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45, 300–309 (2009).

47.          Frechter, S., Elia, N., Tzarfaty, V., Selinger, Z. & Minke, B. Translocation of Gqα mediates long-term adaptation in Drosophila photoreceptors. J. Neurosci. 27, 5571–5583 (2007).

48.          Parnas, M., Katz, B. & Minke, B. Open channel block by Ca2+ underlies the voltage dependence of Drosophila TRPL channel. J. Gen. Physiol. 129, 17–28 (2007).

49.          Meyer, N. E., Joel-Almagor, T., Frechter, S., Minke, B. & Huber, A. Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade. J. Cell Sci. 119, 2592–2603 (2006).

50.          Minke, B. & Parnas, M. Insights on TRP channels from in vivo studies in Drosophila. Annual Review of Physiology vol. 68 649–684 (2006).

51.          Frechter, S. & Minke, B. Light-regulated translocation of signaling proteins in Drosophila photoreceptors. J. Physiol. Paris 99, 133–139 (2006).

52.          Minke, B. TRP channels and Ca2+ signaling. Cell Calcium 40, 261–275 (2006).

53.          Elia, N., Frechter, S., Gedi, Y., Minke, B. & Selinger, Z. Excess of Gβe over Gqαe in vivo prevents dark, spontaneous activity of Drosophila photoreceptors. J. Cell Biol. 171, 517–526 (2005).

54.          Chorna-Ornan, I. et al. Light-regulated interaction of Dmoesin with TRP and TRPL channels is required for maintenance of photoreceptors. J. Cell Biol. 171, 143–152 (2005).

55.          Iakhine, R. et al. Novel Dominant Rhodopsin Mutation Triggers Two Mechanisms of Retinal Degeneration and Photoreceptor Desensitization. J. Neurosci. 24, 2516–2526 (2004).

56.          Agam, K., Frechter, S. & Minke, B. Activation of the Drosophila TRP and TRPL channels requires both Ca2+ and protein dephosphorylation. Cell Calcium 35, 87–105 (2004).

57.          Kosloff, M. et al. Regulation of light-dependent Gqα translocation and morphological changes in fly photoreceptors. EMBO J. 22, 459–468 (2003).

58.          Minke, B. & Agam, K. TRP gating is linked to the metabolic state and maintenance of the Drosophila photoreceptor cells. Cell Calcium 33, 395–408 (2003).

59.          Bähner, M. et al. Light-regulated subcellular translocation of drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron 34, 83–93 (2002).

60.          Minke, B. The TRP calcium channel and retinal degeneration. Advances in Experimental Medicine and Biology vol. 514 601–622 (2002).

61.          Minke, B. & Cook, B. TRP channel proteins and signal transduction. Physiol. Rev. 82, 429–472 (2002).

62.          Minke, B. The TRP channel and phospholipase C-mediated signaling. Cell. Mol. Neurobiol. 21, 629–643 (2001).

63.          Chorna-Ornan, I. et al. A common mechanism underlies vertebrate calcium signaling and Drosophila phototransduction. J. Neurosci. 21, 2622–2629 (2001).

64.          Minke, B. & Hardie, R. C. Chapter 9 Genetic dissection of Drosophila phototransduction. Handbook of Biological Physics vol. 3 449–525 (2000).

65.          Cook, B. et al. Phospholipase C and termination of G-protein-mediated signalling in vivo. Nat. Cell Biol. 2, 296–301 (2000).

66.          Agam, K. et al. Metabolic stress reversibly activates the Drosophila light-sensitive channels TRP and TRPL in vivo. J. Neurosci. 20, 5748–5755 (2000).

67.          Yoon, J. et al. Novel mechanism of massive photoreceptor degeneration caused by mutations in the trp gene of Drosophila. J. Neurosci. 20, 649–659 (2000).

68.          Cook, B. & Minke, B. TRP and calcium stores in Drosophila phototransduction. Cell Calcium 25, 161–171 (1999).

69.          Arnon, A. et al. Calmodulin regulation of light adaptation and store-operated dark current in Drosophila photoreceptors. Proc. Natl. Acad. Sci. U. S. A. 94, 5894–5899 (1997).

70.          Arnon, A., Cook, B., Montell, C., Selinger, Z. & Minke, B. Calmodulin regulation of calcium stores in phototransduction of Drosophila. Science (80-. ). 275, 1119–1121 (1997).

71.          Gillo, B. et al. Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc. Natl. Acad. Sci. U. S. A. 93, 14146–14151 (1996).

72.          Hardie, R. C. & Minke, B. Erratum: Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: The role of Ca2+ and trp (Cell Calcium (1995) 18 (256-274)). Cell Calcium 19, 95 (1996).

73.          Minke, B. & Selinger, Z. The roles of trp and calcium in regulating photoreceptor function in Drosophila. Curr. Opin. Neurobiol. 6, 459–466 (1996).

74.          Gillo, B., Sealfon, S. C. & Minke, B. Pharmacology of a capacitative Ca2+ entry in Xenopus oocytes. J. Photochem. Photobiol. B Biol. 35, 77–82 (1996).

75.          Minke, B. & Selinger, Z. Role of Drosophila TRP in inositide-mediated Ca2+ entry. Mol. Neurobiol. 12, 163–180 (1996).

76.          Ben-Oren, I., Peleg, G., Lewis, A., Minke, B. & Loew, L. Infrared nonlinear optical measurements of membrane potential in photoreceptor cells. Biophys. J. 71, 1616–1620 (1996).

77.          Porter, J. A., Minke, B. & Montell, C. Calmodulin binding to drosophila NinaC required for termination of phototransduction. EMBO J. 14, 4450–4459 (1995).

78.          Pollock, J. A. et al. TRP, a protein essential for inpsitide-mediated Ca2+ influx is localized adjacent to the calcium stores in Drosophila photoreceptors. J. Neurosci. 15, 3747–3760 (1995).

79.          Hardie, R. C. & Minke, B. Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium 18, 256–274 (1995).

80.          Sahly, I., Schröder, W. H., Minke, B. & Zierold, K. Accumulation of calcium in degenerating photoreceptors of several Drosophila mutants. Vis. Neurosci. 11, 763–772 (1994).

81.          Minke, B. Protein kinase C is required for light adaptation in drosophila photoreceptors. Biomed. Pharmacother. 48, 175–176 (1994).

82.          Peretz, A., Sandler, C., Kirschfeld, K., Hardie, R. C. & Minke, B. Genetic dissection of light-induced Ca2+ influx into Drosophila photoreceptors. J. Gen. Physiol. 104, 1057–1077 (1994).

83.          Hardie, R. C. & Minke, B. Spontaneous activation of light-sensitive channels in Drosophila photoreceptors. J. Gen. Physiol. 103, 389–407 (1994).

84.          Peretz, A. et al. The light response of drosophila photoreceptors is accompanied by an increase in cellular calcium: Effects of specific mutations. Neuron 12, 1257–1267 (1994).

85.          Hardie, R. C. & Minke, B. Calcium-dependent inactivation of light-sensitive channels in Drosophila photoreceptors. J. Gen. Physiol. 103, 409–427 (1994).

86.          Selinger, Z., Doza, Y. N. & Minke, B. Mechanisms and genetics of photoreceptors desensitization in Drosophila flies. BBA - Mol. Cell Res. 1179, 283–299 (1993).

87.          Byk, T., Bar-Yaacov, M., Doza, Y. N., Minke, B. & Selinger, Z. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Proc. Natl. Acad. Sci. U. S. A. 90, 1907–1911 (1993).

88.          Hardie, R. C. & Minke, B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci. 16, 371–376 (1993).

89.          Hardie, R. C., Peretz, A., Pollock, J. A. & Minke, B. Ca2+ limits the development of the light response in Drosophila photoreceptors. Proc. R. Soc. B Biol. Sci. 252, 223–229 (1993).

90.          Hardie, R. C. et al. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature 363, 634–637 (1993).

91.          Werner, U., Suss-Toby, E., Rom, A. & Minke, B. Calcium is necessary for light excitation in barnacle photoreceptors. J. Comp. Physiol. A 170, 427–434 (1992).

92.          Minke, B. & Selinger, Z. The inositol-lipid pathway is necessary for light excitation in fly photoreceptors. Soc. Gen. Physiol. Ser. 47, 201–217 (1992).

93.          Hardie, R. C. & Minke, B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8, 643–651 (1992).

94.          Sahly, I. et al. Calcium channel blockers inhibit retinal degeneration in the retinal-degeneration-B mutant of Drosophila. Proc. Natl. Acad. Sci. U. S. A. 89, 435–439 (1992).

95.          DOZA, Y. N., MINKE, B., CHOREV, M. & SELINGER, Z. Characterization of fly rhodopsin kinase. Eur. J. Biochem. 209, 1035–1040 (1992).

96.          Rom-Glas, A., Sandler, C., Kirschfeld, K. & Minke, B. The nss mutation or lanthanum inhibits light-induced Ca2+ influx into fly photoreceptors. J. Gen. Physiol. 100, 767–781 (1992).

97.          Minke, B. & Selinger, Z. Chapter 5 Inositol lipid pathway in fly photoreceptors: Excitation, calcium mobilization and retinal degeneration. Prog. Retin. Res. 11, 99–124 (1991).

98.          Suss-Toby, E., Selinger, Z. & Minke, B. Lanthanum reduces the excitation efficiency in fly photoreceptors. J. Gen. Physiol. 98, 849–868 (1991).

99.          Minke, B. & Payne, R. Spatial restriction of light adaptation and mutation-induced inactivation in fly photoreceptors. J. Neurosci. 11, 900–909 (1991).

100.        Minke, B. et al. Phorbol ester induces photoreceptor-specific degeneration in a Drosophila mutant. Proc. Natl. Acad. Sci. U. S. A. 87, 113–117 (1990).

101.        Suss, E. et al. Chemical excitation and inactivation in photoreceptors of the fly mutants trp and nss. J. Gen. Physiol. 94, 465–491 (1989).

102.        Rubinstein, C. T., Bar-Nachum, S., Selinger, Z. & Minke, B. Light-induced retinal degeneration in rdgB (retinal degeneration B) mutant of Drosophila: Electrophysiological and morphological manifestations of degeneration. Vis. Neurosci. 2, 529–539 (1989).

103.        Rubinstein, C. T., Bar-Nachum, S., Selinger, Z. & Minke, B. Chemically induced retinal degeneration in the rdgB (retinal degeneration B) mutant of Drosophila. Vis. Neurosci. 2, 541–551 (1989).

104.        Barash, S. et al. Light reduces the excitation efficiency in the ms mutant of the sheep blowfly Lucilia. J. Gen. Physiol. 92, 307–330 (1988).

105.        Selinger, Z. & Minke, B. Inositol lipid cascade of vision studied in mutant flies. Cold Spring Harbor Symposia on Quantitative Biology vol. 53 333–341 (1988).

106.        Devary, O. et al. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc. Natl. Acad. Sci. U. S. A. 84, 6939–6943 (1987).

107.        Minke, B. Bleaching adaptation in photoreceptors. Isr. J. Med. Sci. 23, 61–68 (1987).

108.        Selinger, Z. et al. Light-dependent phospholipase C activity in Musca eye membranes and excitation of photoreceptor cells by inositol triphosphate and 2,3 diphosphoglycerate. Prog. Clin. Biol. Res. 249, 169–178 (1987).

109.        Almagor, E., Hillman, P. & Minke, B. Spatial properties of the prolonged depolarizing afterpotential in barnacle photoreceptors: I. the induction process. J. Gen. Physiol. 87, 391–405 (1986).

110.        Almagor, E., Hillman, P. & Minke, B. Spatial properties of the prolonged depolarizing afterpotential in barnacle photoreceptors: II. antagonistic interactions. J. Gen. Physiol. 87, 407–423 (1986).

111.        Minke, B. & Tsacopoulos, M. Light induced sodium dependent accumulation of calcium and potassium in the extracellular space of bee retina. Vision Res. 26, 679–690 (1986).

112.        Blumenfeld, A., Erusalimsky, J., Heichal, O., Selinger, Z. & Minke, B. Light-activated guanosinetriphosphatase in Musca eye membranes resembles the prolonged depolarizing afterpotential in photoreceptor cells. Proc. Natl. Acad. Sci. U. S. A. 82, 7116–7120 (1985).

113.        Minke, B. & Stephenson, R. S. The characteristics of chemically induced noise in Musca photoreceptors. J. Comp. Physiol. A 156, 339–356 (1985).

114.        Minke, B. & Kirschfeld, K. Non-local interactions between light induced processes in Calliphora photoreceptors. J. Comp. Physiol. A 154, 175–187 (1984).

115.        Minke, B. & Armon, E. Activation of electrogenic Na-Ca exchange by light in fly photoreceptors. Vision Res. 24, 109–115 (1984).

116.        Minke, B. The trp is a Drosophila mutant sensitive to developmental temperature. J. Comp. Physiol. □ A 151, 483–486 (1983).

117.        Armon, E. & Minke, B. Light activated electrogenic Na+-Ca2+-exchange in fly photoreceptors: Modulation by Na+/K+-pump activity. Biophys. Struct. Mech. 9, 349–357 (1983).

118.        Hillman, P., Hochstein, S. & Minke, B. Transduction in invertebrate photoreceptors: Role of pigment bistability. Physiol. Rev. 63, 668–772 (1983).

119.        Franceschini, N., Kirschfeld, K. & Minke, B. Fluorescence of photoreceptor cells observed in vivo. Science (80-. ). 213, 1264–1267 (1981).

120.        Minke, B. & Kirschfeld, K. Fast electrical potentials arising from activation of metarhodopsin in the fly. J. Gen. Physiol. 75, 381–402 (1980).

121.        Minke, B. & Armon, E. INTERMEDIATE PROCESSES IN PHOTOTRANSDUCTION: A STUDY IN DROSOPHILA MUTANTS. Photochem. Photobiol. 32, 553–562 (1980).

122.        Minke, B. Transduction in photoreceptors with bistable pigments: Intermediate processes. Biophys. Struct. Mech. 5, 163–174 (1979).

123.        Almagor, E., Hillman, P. & Minke, B. Upper limit on translational diffusion of visual pigment in intact unfixed barnacle photoreceptors. Biophys. Struct. Mech. 5, 243–248 (1979).

124.        Minke, B. & Kirschfeld, K. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J. Gen. Physiol. 73, 517–540 (1979).

125.        Kirschfeld, K., Feiler, R. & Minke, B. The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 33, 1009–1010 (1978).

126.        Minke, B., Hochstein, S. & Hillman, P. The kinetics of visual pigment systems - II. Application to measurements on a bistable pigment system. Biol. Cybern. 30, 33–43 (1978).

127.        Hochstein, S., Minke, B., Hillman, P. & Knight, B. W. The kinetics of visual pigment systems - I. Mathematical analysis. Biol. Cybern. 30, 23–32 (1978).

128.        Minke, B. & Kirschfeld, K. Microspectrophotometric evidence for two photointerconvertible states of visual pigment in the barnacle lateral eye. J. Gen. Physiol. 71, 37–45 (1978).

129.        Kirschfeld, K., Franceschini, N. & Minke, B. Evidence for a sensitising pigment in fly photoreceptors. Nature 269, 386–390 (1977).

130.        Minke, B. Drosophila mutant with a transducer defect. Biophys. Struct. Mech. 3, 59–64 (1977).

131.        Hillman, P., Hochstein, S. & Minke, B. Nonlocal interactions in the photoreceptor transduction process. J. Gen. Physiol. 68, 227–245 (1976).

132.        Minke, B., Wu, C.-F. & Pak, W. L. Isolation of light-induced response of the central retinula cells from the electroretinogram of Drosophila. J. Comp. Physiol. A 98, 345–355 (1975).

133.        Minke, B., Wu, C.-F. & Pak, W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258, 84–87 (1975).

134.        Minke, B., Wu, C. F. & Pak, W. L. Isolation of light induced response of the central retinula cells from the electroretinogram of Drosophila. J.COMP.PHYSIOL.SER.A 98, 345–355 (1975).

135.        Minke, B., Hochstein, S. & Hillman, P. Derivation of a Quantitative Kinetic Model for a Visual Pigment from Observations of Early Receptor Potential. Biophys. J. 14, 490–512 (1974).

136.        Minke, B., Hochstein, S. & Hillman, P. Photoreceptor transduction. A new system. Isr. J. Med. Sci. 9 Suppl, 114–118 (1973).

137.        Hillman, P., Dodge, F. A., Hochstein, S., Knight, B. W. & Minke, B. Rapid dark recovery of the invertebrate early receptor potential. J. Gen. Physiol. 62, 77–86 (1973).

138.        Hochstein, S., Minke, B. & Hillman, P. Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. J. Gen. Physiol. 62, 105–128 (1973).

139.        Minke, B., Hochstein, S. & Hillman, P. Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J. Gen. Physiol. 62, 87–104 (1973).

140.        Minke, B. & Auerbach, E. Latencies and correlation in single units and visual evoked potentials in the cat striate cortex following monocular and binocular stimulations. Exp. Brain Res. 14, 409–422 (1972).

141.        Hillman, P., Hochstein, S. & Minke, B. A visual pigment with two physiologically active stable states. Science (80-. ). 175, 1486–1488 (1972).

142.        Hochstein, S., Minke, B. & Hillman, P. Receptor potentials from a visual pigment with two thermally stable states. Adv. Exp. Med. Biol. 24, 65–73 (1972).