Skip to Main Content

The Faculty of Medicine - Medical Neurobiology: Rotshenker Shlomo

Researchers

Last updated September 2023 - Medical Neurobiology

List of Publications

1.

Zohar K, Lezmi E, Reichert F, Eliyahu T, Rotshenker S, Weinstock M, et al. Coordinated Transcriptional Waves Define the Inflammatory Response of Primary Microglial Culture. International Journal of Molecular Sciences [Internet]. 2023;24(13). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164845929&doi=10.3390%252fijms241310928&partnerID=40&md5=5dad29380a4666eee4962c58c283a501

2.

Rotshenker S. Galectin-3 (MAC-2) controls phagocytosis and macropinocytosis through intracellular and extracellular mechanisms. Frontiers in Cellular Neuroscience [Internet]. 2022;16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140232811&doi=10.3389%252ffncel.2022.949079&partnerID=40&md5=f5748cf69fc6609e5ba5cac6cea5b476

3.

Elberg G, Liraz-Zaltsman S, Reichert F, Matozaki T, Tal M, Rotshenker S. Deletion of SIRPα (signal regulatory protein-α) promotes phagocytic clearance of myelin debris in Wallerian degeneration, axon regeneration, and recovery from nerve injury. Journal of Neuroinflammation [Internet]. 2019;16(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077317321&doi=10.1186%252fs12974-019-1679-x&partnerID=40&md5=b0ceb7dbf3149795fe0300104db43cc4

4.

Reichert F, Rotshenker S. Galectin-3 (MAC-2) controls microglia phenotype whether amoeboid and phagocytic or branched and non-phagocytic by regulating the cytoskeleton. Frontiers in Cellular Neuroscience [Internet]. 2019;13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064207165&doi=10.3389%252ffncel.2019.00090&partnerID=40&md5=17fcc82b5648680dabbcdb3c29564278

5.

Menzfeld C, John M, van Rossum D, Regen T, Scheffel J, Janova H, et al. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. GLIA [Internet]. 2015;63(6):1083–99. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927970668&doi=10.1002%252fglia.22803&partnerID=40&md5=d30edb4662a183f41276bcd7c5870893

6.

Rotshenker S. Traumatic Injury to Peripheral Nerves [Internet]. Vol. 2, Nerves and Nerve Injuries. 2015. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940010516&doi=10.1016%252fB978-0-12-802653-3.00088-9&partnerID=40&md5=72c3658965c2f3532c28c499b5347990

7.

Gitik M, Kleinhaus R, Hadas S, Reichert F, Rotshenker S. Phagocytic receptors activate and immune inhibitory receptor SIRPα inhibits phagocytosis through paxillin and cofilin. Frontiers in Cellular Neuroscience [Internet]. 2014;8(1 APR). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898841614&doi=10.3389%252ffncel.2014.00104&partnerID=40&md5=e507c5b07b9a63a18539a37f02a727c3

8.

Hadas S, Spira M, Hanisch UK, Reichert F, Rotshenker S. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. Journal of Neuroinflammation [Internet]. 2012;9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863511515&doi=10.1186%252f1742-2094-9-166&partnerID=40&md5=785cf01f0486a2098aba177bc815a60f

9.

Rotshenker S. Wallerian degeneration: The innate-immune response to traumatic nerve injury. Journal of Neuroinflammation [Internet]. 2011;8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052104308&doi=10.1186%252f1742-2094-8-109&partnerID=40&md5=3b39d670c14d8f75c33dcb696fedb20a

10.

Gitik M, Liraz-Zaltsman S, Oldenborg PA, Reichert F, Rotshenker S. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. Journal of Neuroinflammation [Internet]. 2011;8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952545687&doi=10.1186%252f1742-2094-8-24&partnerID=40&md5=bda360f70fba275b11f96937204088f6

11.

Gitik M, Reichert F, Rotshenker S. Cytoskeleton plays a dual role of activation and inhibition in myelin and zymosan phagocytosis by microglia. FASEB Journal [Internet]. 2010;24(7):2211–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954447521&doi=10.1096%252ffj.09-146118&partnerID=40&md5=c2ac3c6c7356427325ff027d73b2038a

12.

Hadas S, Reichert F, Rotshenker S. Dissimilar and similar functional properties of complement receptor-3 in microglia and macrophages in combating yeast pathogens by phagocytosis. GLIA [Internet]. 2010;58(7):823–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952567454&doi=10.1002%252fglia.20966&partnerID=40&md5=4343486a3eb2ac59c3931d0b76c57fe2

13.

Rotshenker S. The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. Journal of Molecular Neuroscience [Internet]. 2009;39(1–2):99–103. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-74149092361&doi=10.1007%252fs12031-009-9186-7&partnerID=40&md5=2556092fb7bc5abf5c40f2cf56acb592

14.

Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y. Galectin-3/MAC-2, ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. GLIA [Internet]. 2008;56(15):1607–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149343875&doi=10.1002%252fglia.20713&partnerID=40&md5=f7398d82aaf3eafe87ea461fb90d10e1

15.

Cohen G, Makranz C, Spira M, Kodama T, Reichert F, Rotshenker S. Non-PKC DAG/phorbol-ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3K, and PLCγ activate myelin phagocytosis by both. GLIA [Internet]. 2006;53(5):538–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645387750&doi=10.1002%252fglia.20304&partnerID=40&md5=e7eaa672de7098458c20e8df1fd5b034

16.

Makranz C, Cohen G, Reichert F, Kodama T, Rotshenker S. cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. GLIA [Internet]. 2006;53(4):441–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33644512079&doi=10.1002%252fglia.20303&partnerID=40&md5=1e4ade543953fa92a41268ccb7a2a3bf

17.

Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F, et al. Erratum: Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cγ and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages (Neurobiology Disease (2004) 15 (279-286) DOI: 10.1016/j.nbd.2003. 11.007. Neurobiology of Disease [Internet]. 2004;16(3):659. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-3242735939&doi=10.1016%252fj.nbd.2004.04.005&partnerID=40&md5=8ba9928952938147f9cfc60a4e3f3801

18.

Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F, et al. Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cγ and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiology of Disease [Internet]. 2004;15(2):279–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542270757&doi=10.1016%252fj.nbd.2003.11.007&partnerID=40&md5=1e2a39d680c6c8e478ccf86a820ef300

19.

Rotshenker S. Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. Journal of Molecular Neuroscience [Internet]. 2003;21(1):65–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0141450468&doi=10.1385%252fJMN%253a21%253a1%253a65&partnerID=40&md5=f2e370279d92040b6b8760c6da7342fc

20.

Mirski R, Reichert F, Klar A, Rotshenker S. Granulocyte macrophage colony stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding molecule in Wallerian degeneration following injury to peripheral nerve axons. Journal of Neuroimmunology [Internet]. 2003;140(1–2):88–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037629298&doi=10.1016%2fS0165-5728%2803%2900179-6&partnerID=40&md5=d892c139c9a7e998981f5d2eaa93d64f

21.

Reichert F, Rotshenker S. Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiology of Disease [Internet]. 2003;12(1):65–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037327741&doi=10.1016%2fS0969-9961%2802%2900008-6&partnerID=40&md5=3fe55c1366e8b7ad46cea8a4752e991f

22.

Shamash S, Reichert F, Rotshenker S. The cytokine network of wallerian degeneration: Tumor necrosis factor-α, interleukin-1α, and interleukin-1β. Journal of Neuroscience [Internet]. 2002;22(8):3052–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037092441&doi=10.1523%252fjneurosci.22-08-03052.2002&partnerID=40&md5=9acc7257e23896b47c920074bebc5704

23.

Slobodov U, Reichert F, Mirski R, Rotshenker S. Distinct inflammatory stimuli induce different patterns of myelin phagocytosis and degradation in recruited macrophages. Experimental Neurology [Internet]. 2001;167(2):401–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035134433&doi=10.1006%252fexnr.2000.7559&partnerID=40&md5=8aa90ca8d434ef35216182552151b9ca

24.

Reichert F, Slobodov U, Makranz C, Rotshenker S. Modulation (inhibition and augmentation) of complement receptor-3-mediated myelin phagocytosis. Neurobiology of Disease [Internet]. 2001;8(3):504–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034984592&doi=10.1006%252fnbdi.2001.0383&partnerID=40&md5=b7d42f9731016491ccdc98aefc92ffa4

25.

Reichert F, Rotshenker S. Galectin-3/MAC-2 in experimental allergic encephalomyelitis. Experimental Neurology [Internet]. 1999;160(2):508–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032763663&doi=10.1006%252fexnr.1999.7229&partnerID=40&md5=7225d4f57caa3c0322ad0190bf22a8d0

26.

Be’eri H, Reichert F, Saada A, Rotshenker S. The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. European Journal of Neuroscience [Internet]. 1998;10(8):2707–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031901842&doi=10.1046%252fj.1460-9568.1998.00277.x&partnerID=40&md5=baf5c52abf57560d5477fde57db9f777

27.

Rand N, Reichert F, Floman Y, Rotshenker S. Murine nucleus pulposus-derived cells secrete interleukins-1-β, -6, and -10 and granulocyte-macrophage colony-stimulating factor in cell culture. Spine [Internet]. 1997;22(22):2598–602. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031409005&doi=10.1097%252f00007632-199711150-00002&partnerID=40&md5=e52f7e7275dc384f556d875bfbcf6864

28.

Saada A, Reichert F, Rotshenker S. Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. Journal of Cell Biology [Internet]. 1996;133(1):159–67. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029929404&doi=10.1083%252fjcb.133.1.159&partnerID=40&md5=f74c3009f9d70d8bac5bc40c9d089b6f

29.

Reichert F, Levitzky R, Rotshenker S. Interleukin 6 in intact and injured mouse peripheral nerves. European Journal of Neuroscience [Internet]. 1996;8(3):530–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029875871&doi=10.1111%252fj.1460-9568.1996.tb01237.x&partnerID=40&md5=9702a4381c784c75f128d0c04b35d8dc

30.

Reichert F, Rotshenker S. Deficient activation of microglia during optic nerve degeneration. Journal of Neuroimmunology [Internet]. 1996;70(2):153–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030298442&doi=10.1016%2fS0165-5728%2896%2900112-9&partnerID=40&md5=5990c4f3bc273c5b84a627d533f3b8ab

31.

Saada A, Dunaevsky‐Hutt A, Aamar A, Reichert F, Rotshenker S. Fibroblasts that Reside in Mouse and Frog Injured Peripheral Nerves Produce Apolipoproteins. Journal of Neurochemistry [Internet]. 1995;64(5):1996–2003. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028930810&doi=10.1046%252fj.1471-4159.1995.64051996.x&partnerID=40&md5=359eba21bf1e1de72456466a03344f5e

32.

Groner Y, Elroy-Sterol O, Avraham KB, Schickler M, Knobler H, Minc-Golomb D, et al. Cell damage by excess CuZnSOD and down’s syndrome. Biomedicine and Pharmacotherapy [Internet]. 1994;48(5–6):231-237,240. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028365043&doi=10.1016%2f0753-3322%2894%2990138-4&partnerID=40&md5=a2781c5fc3893c0e3e2bb51232f8457a

33.

Reichert F, Saada A, Rotshenker S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2. Journal of Neuroscience [Internet]. 1994;14(5 II):3231–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028334842&doi=10.1523%252fjneurosci.14-05-03231.1994&partnerID=40&md5=8550db01ebe1f44b787cb40443766a3f

34.

Aamar S, Saada A, Rotshenker S. Lesion‐Induced Changes in the Production of Newly Synthesized and Secreted Apo‐E and Other Molecules Are Independent of the Concomitant Recruitment of Blood‐Borne Macrophages into Injured Peripheral Nerves. Journal of Neurochemistry [Internet]. 1992;59(4):1287–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026761485&doi=10.1111%252fj.1471-4159.1992.tb08439.x&partnerID=40&md5=7db44e1f7d6aea3acf7ad0c627988d89

35.

Rotshenker S, Aamar S, Barak V. Interleukin-1 activity in lesioned peripheral nerve. Journal of Neuroimmunology [Internet]. 1992;39(1–2):75–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026753607&doi=10.1016%2f0165-5728%2892%2990176-L&partnerID=40&md5=a2a832b33ee820eb5185b605dc851802

36.

Sugarman H, Dunaevsky-Hutt A, Rotshenker S. The roles of the synaptic basal lamina and of innervation in directing the accumulation of a synaptic molecule, mAb 3B6 antigen, in regenerating skeletal muscles. Journal of Neurocytology [Internet]. 1991;20(10):810–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025916712&doi=10.1007%252fBF01191732&partnerID=40&md5=1ee8a77cf40ca8a2940b6ce8b859510d

37.

Connor EA, Sugarman H, Rotshenker S. Molecular alterations in the perijunctional region of frog skeletal muscle fibres following denervation. Journal of Neurocytology [Internet]. 1991;20(4):323–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026021043&doi=10.1007%252fBF01235549&partnerID=40&md5=499ca013eefac316f19b521460dc6e09

38.

Avraham KB, Sugarman H, Rotshenker S, Groner Y. Down’s syndrome: morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. Journal of Neurocytology [Internet]. 1991;20(3):208–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026096819&doi=10.1007%252fBF01186993&partnerID=40&md5=76ba1cc0930dbea7841655dc7eef05f1

39.

Rotshenker S. Multiple modes and sites for the induction of axonal growth. Trends in Neurosciences [Internet]. 1988;11(8):363–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023801605&doi=10.1016%2f0166-2236%2888%2990059-8&partnerID=40&md5=a3ee425dddf47dec764548d5950f44cd

40.

Rotshenker S, Ring G, Tal M, Sugarman H, Reichert F. Regulation of motor axon sprouting. Israel Journal of Medical Sciences [Internet]. 1987;23(1–2):89–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023253971&partnerID=40&md5=967132be795d43e95df1f5119fc0cb05

41.

Rotshenker S, Tal M. The transneuronal induction of sprouting and synapse formation in intact mouse muscles. The Journal of Physiology [Internet]. 1985;360(1):387–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021895471&doi=10.1113%252fjphysiol.1985.sp015623&partnerID=40&md5=6e1796526269ebbad9ec4338ccec025a

42.

Tal M, Rotshenker S. Sprouting and synapse formation produced by carbocaine. Journal of Neuroscience [Internet]. 1984;4(2):458–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021276815&doi=10.1523%252fjneurosci.04-02-00458.1984&partnerID=40&md5=bd5d54b8c93a414066e477a683f96e8b

43.

Tal M, Rotshenker S. Recycling of synaptic vesicles in motor nerve endings separated from their target muscle fibers. Brain Research [Internet]. 1983;270(1):131–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020563448&doi=10.1016%2f0006-8993%2883%2990799-0&partnerID=40&md5=8cf34d3a40cb322c9f32ce9b8df023a4

44.

Ring G, Reichert F, Rotshenker S. Sprouting in intact sartorius muscles of the frog following contralateral axotomy. Brain Research [Internet]. 1983;260(2):313–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020684369&doi=10.1016%2f0006-8993%2883%2990687-X&partnerID=40&md5=0c3dc663c407b71db2f6449e78eb5b4e

45.

Rotshenker S. Transneuronal and peripheral mechanisms for the induction of motor neuron sprouting. Journal of Neuroscience [Internet]. 1982;2(10):1359–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020470184&doi=10.1523%252fjneurosci.02-10-01359.1982&partnerID=40&md5=639db3178167482250f086714df47ed3

46.

Rotshenker S. Sprouting and synapse formation by motor axons separated from their cell bodies. Brain Research [Internet]. 1981;223(1):141–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019453622&doi=10.1016%2f0006-8993%2881%2990813-1&partnerID=40&md5=5ddf9bd5c88b04caac845e599d969bb4

47.

Rotshenker S, Reichert F. Motor axon sprouting and site of synapse formation in intact innervated skeletal muscle of the frog. Journal of Comparative Neurology [Internet]. 1980;193(2):413–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019135628&doi=10.1002%252fcne.901930208&partnerID=40&md5=d46388138f1685935493df35a88183a2

48.

Rotshenker S. Colchicine induces sprouting and synapse formation. Israel Journal of Medical Sciences [Internet]. 1980;16(8):614. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018819797&partnerID=40&md5=e687ed8a2c35a960aa5f416a5a93b2bf

49.

Reichert F, Rotshenker S. Motor axon terminal sprouting in intact muscles. Brain Research [Internet]. 1979;170(1):187–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018358830&doi=10.1016%2f0006-8993%2879%2990952-1&partnerID=40&md5=c628ac89ed84df06802f3204d3f2d152

50.

Rotshenker S. Synapse formation in intact innervated cutaneous‐pectoris muscles of the frog following denervation of the opposite muscle. The Journal of Physiology [Internet]. 1979;292(1):535–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018657178&doi=10.1113%252fjphysiol.1979.sp012870&partnerID=40&md5=86cbf75ee17fa25228c6eb85d8871687

51.

Rotshenker S. Sprouting of intact motor neurons induced by neuronal lesion in the absence of denervated muscle fibers and degenerating axons. Brain Research [Internet]. 1978;155(2):354–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018091609&doi=10.1016%2f0006-8993%2878%2991029-6&partnerID=40&md5=3f3f21c66f5cb6b341b187b59ab2cf7e

52.

Erulkar SD, Rahamimoff R, Rotshenker S. Quelling of spontaneous transmitter release by nerve impulses in low extracellular calcium solutions. The Journal of Physiology [Internet]. 1978;278(1):491–500. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018199181&doi=10.1113%252fjphysiol.1978.sp012319&partnerID=40&md5=0fa71e1a4272962ebd78e6b60849b501

53.

Rotshenker S, McMahan UJ. Altered patterns of innervation in frog muscle after denervation. Journal of Neurocytology [Internet]. 1976;5(6):719–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017144891&doi=10.1007%252fBF01181583&partnerID=40&md5=22fa6bde1aac43b10d1b0fdbff3ba136

54.

Rotshenker S, Palti Y. The latent period of anode break excitation in myelinated and giant axons. Journal of Theoretical Biology [Internet]. 1976;59(2):293–302. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017069149&doi=10.1016%2f0022-5193%2876%2990171-5&partnerID=40&md5=69adfaafc34390f3e1882b5de87034e6

55.

Rotshenker S, Erulkar SD, Rahamimoff R. Reduction in the frequency of miniature end-plate potentials by nerve stimulation in low calcium solutions. Brain Research [Internet]. 1976;101(2):362–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016809202&doi=10.1016%2f0006-8993%2876%2990277-8&partnerID=40&md5=4047cd18f335ad72940fa360c64ef0c6

56.

Rahamimoff R, Erulkar SD, Alnaes E, Meiri H, Rotshenker S, Rahamimoff H. Modulation of transmitter release by calcium ions and nerve impulses. Cold Spring Harbor symposia on quantitative biology [Internet]. 1976;40:107–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016910106&doi=10.1101%252fSQB.1976.040.01.012&partnerID=40&md5=6003d396be29406297a004a09283b73c

57.

Alnaes E, Rahamimoff R, Rotshenker S, Shimoni Y. Mitochondrial inhibitors and transmitter release at the frog neuromuscular junction. Israel Journal of Medical Sciences [Internet]. 1975;11(1):67–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016432720&partnerID=40&md5=5628b00bdf3ade0a82bde7bc2fb33bda

58.

Rotshenker S, Palti Y. Changes in fraction of current penetrating an axon as a function of duration of stimulating pulse. Journal of Theoretical Biology [Internet]. 1973;41(3):401–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015843467&doi=10.1016%2f0022-5193%2873%2990050-7&partnerID=40&md5=42de210506d4efcb1229b898c3060c04

59.

Rotshenker S, Rahamimoff R. Editorial: The pathophysiology of myasthenia gravis and the myasthenic syndrome. Harefuah [Internet]. 1972;83(8):344–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015511073&partnerID=40&md5=4f9ea3af100668171f326376c0bcf95c

60.

Rotshenker S, Rahamimoff R. Neuromuscular synapse: Stochastic properties of spontaneous release of transmitter. Science [Internet]. 1970;170(3958):648–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014935423&doi=10.1126%252fscience.170.3958.648&partnerID=40&md5=412ac909cf382fd1c76b34acaa3164d9