Skip to Main Content

Hadassah Medical Center: Bar-Shavit Rachel

Last updated September 2023 - Hadassah Medical Center

List of Publications

1.

Nag JK, Appasamy P, Sedley S, Malka H, Rudina T, Bar-Shavit R. RNF43 induces the turnover of protease-activated receptor 2 in colon cancer. FASEB Journal [Internet]. 2023;37(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143353113&doi=10.1096%252ffj.202200858RR&partnerID=40&md5=f5124c583cd082b71c420d995e59442d

2.

Nag JK, Malka H, Sedley S, Appasamy P, Rudina T, Levi T, et al. PH-Binding Motif in PAR4 Oncogene: From Molecular Mechanism to Drug Design. Molecular Cancer Therapeutics [Internet]. 2022;21(9):1415–29. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137709812&doi=10.1158%252f1535-7163.MCT-21-0946&partnerID=40&md5=af798b5bdbf665f0edef8a8029311250

3.

Sedley S, Nag JK, Rudina T, Bar-Shavit R. PAR-Induced Harnessing of EZH2 to β-Catenin: Implications for Colorectal Cancer. International Journal of Molecular Sciences [Internet]. 2022;23(15). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136342105&doi=10.3390%252fijms23158758&partnerID=40&md5=cca2427fa2095b292e622a155247eeb6

4.

Nag JK, Malka H, Appasamy P, Sedley S, Bar-Shavit R. Gpcr partners as cancer driver genes: Association with ph-signal proteins in a distinctive signaling network. International Journal of Molecular Sciences [Internet]. 2021;22(16). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113228466&doi=10.3390%252fijms22168985&partnerID=40&md5=608d1bc79258f1786bd91e98cffe10f7

5.

Grisaru-Granovsky S, Kumar Nag J, Zakar L, Rudina T, Lal Gupta C, Maoz M, et al. PAR1&2 driven placenta EVT invasion act via LRP5/6 as coreceptors. FASEB Journal [Internet]. 2020;34(12):15701–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096444197&doi=10.1096%252ffj.202000306R&partnerID=40&md5=d49d3c45bec9a5528187433551682d70

6.

Nag JK, Bar-Shavit R. Transcriptional landscape of pars in epithelial malignancies. International Journal of Molecular Sciences [Internet]. 2018;19(11). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056138246&doi=10.3390%252fijms19113451&partnerID=40&md5=d2b7f2058ad503b04a54f7edc1a424b7

7.

Nag JK, Rudina T, Maoz M, Grisaru-Granovsky S, Uziely B, Bar-Shavit R. Correction to: Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction (Cancer and Metastasis Reviews, (2018), 37, 1, (147-157), 10.1007/s10555-017-9711-z). Cancer and Metastasis Reviews [Internet]. 2018;37(1):197. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038354904&doi=10.1007%252fs10555-017-9721-x&partnerID=40&md5=40cb1234e8836a0122bdadc191bdac16

8.

Nag JK, Rudina T, Maoz M, Grisaru-Granovsky S, Uziely B, Bar-Shavit R. Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction. Cancer and Metastasis Reviews [Internet]. 2018;37(1):147–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037640084&doi=10.1007%252fs10555-017-9711-z&partnerID=40&md5=ae4993c88b6fa3ad98282a9419202ab8

9.

Jaber M, Maoz M, Kancharla A, Agranovich D, Peretz T, Grisaru-Granovsky S, et al. Erratum to: Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer (Cellular and Molecular Life Sciences, (2014), 71, 13, (2517-2533), 10.1007/s00018-013-1498-7). Cellular and Molecular Life Sciences [Internet]. 2017;74(3):571–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85000634210&doi=10.1007%252fs00018-016-2424-6&partnerID=40&md5=3da18822198a933997116889e5af63d8

10.

Nag JK, Kancharla A, Maoz M, Turm H, Agranovich D, Gupta CL, et al. Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated β-catenin stabilization. Oncotarget [Internet]. 2017;8(24):38650–67. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020748365&doi=10.18632%252foncotarget.16246&partnerID=40&md5=06b4bd37648a49e89be8c043a4766eb0

11.

Bar-Shavit R, Maoz M, Kancharla A, Nag JK, Agranovich D, Grisaru-Granovsky S, et al. G protein-coupled receptors in cancer. International Journal of Molecular Sciences [Internet]. 2016;17(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84982218473&doi=10.3390%252fijms17081320&partnerID=40&md5=ab58803dd3ef7777b976d51a35160756

12.

Bar-Shavit R, Grisaru-Granovsky S, Uziely B. PH-domains as central modulators driving tumor growth. Cell Cycle [Internet]. 2016;15(5):615–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962033032&doi=10.1080%252f15384101.2016.1147112&partnerID=40&md5=5d89ded5b89c259074b7a30573506887

13.

Bar-Shavit R, Nag JK, Grisaru-Granovsky S, Uziely B. G-protein coupled receptor PAR1 is overexpressed in glioma progenitor cells. Translational Cancer Research [Internet]. 2016;5:S1185–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009955993&doi=10.21037%252ftcr.2016.11.14&partnerID=40&md5=ee91c9352f5170cc1b64b18c8353bb9c

14.

Bar-Shavit R, Maoz M, Kancharla A, Jaber M, Agranovich D, Grisaru-Granovsky S, et al. Protease-activated receptors (PARs) in cancer: Novel biased signaling and targets for therapy. Methods in Cell Biology [Internet]. 2016;132:341–58. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951752493&doi=10.1016%252fbs.mcb.2015.11.006&partnerID=40&md5=13b868f5c423b601406d629e21829f8f

15.

Kancharla A, Maoz M, Jaber M, Agranovich D, Peretz T, Grisaru-Granovsky S, et al. PH motifs in PAR1&2 endow breast cancer growth. Nature Communications [Internet]. 2015;6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948166420&doi=10.1038%252fncomms9853&partnerID=40&md5=2eee7dcb9b56037dfd49a1833ae9316d

16.

Grisaru-Granovsky S, Salah Z, Maoz M, Tevet A, Margalioth E, Samueloff A, et al. Protease-activated-receptor 1 polymorphisms correlate with risk for unexplained recurrent pregnancy loss: A pilot study querying an association beyond coagulation. European Journal of Obstetrics and Gynecology and Reproductive Biology [Internet]. 2015;185:13–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921328953&doi=10.1016%252fj.ejogrb.2014.11.021&partnerID=40&md5=4d868d3fc19bbe79152991073f1bcb96

17.

Jaber M, Maoz M, Kancharla A, Agranovich D, Peretz T, Grisaru-Granovsky S, et al. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cellular and Molecular Life Sciences [Internet]. 2014;71(13):2517–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903318931&doi=10.1007%252fs00018-013-1498-7&partnerID=40&md5=f3f3c3f02232c5ace00f4cb9a7eec956

18.

Grisaru-Granovsky S, Maoz M, Turm H, Bar-Shavit R. Emerging tasks of PAR1 and PAR2 in the placenta trophoblast anchoring to the uterus deciduas [Internet]. The Placenta: Development, Function and Diseases. 2013. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84895352052&partnerID=40&md5=934d681f69fe9716446406ffa64a4bab

19.

Uziely B, Maoz M, Salah Z, Jaber M, Turm H, Grisaru-Granovsky S, et al. Emerging tasks of thrombin and its receptors in epithelial tumor development [Internet]. Thrombin: Function and Pathophysiology. 2012. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84895251334&partnerID=40&md5=4e04ba0c02ad419f1e2002cc586dd05a

20.

Salah Z, Uziely B, Jaber M, Maoz M, Cohen I, Hamburger T, et al. Regulation of human protease-activated receptor 1 (hPar1) gene expression in breast cancer by estrogen. FASEB Journal [Internet]. 2012;26(5):2031–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860893109&doi=10.1096%252ffj.11-194704&partnerID=40&md5=50db8e9879031fa66cae99bc4f14830b

21.

Bar-Shavit R, Turm H, Salah Z, Maoz M, Cohen I, Weiss E, et al. PAR1 plays a role in epithelial malignancies: Transcriptional regulation and novel signaling pathway. IUBMB Life [Internet]. 2011;63(6):397–402. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959575294&doi=10.1002%252fiub.452&partnerID=40&md5=f2dd8603f849a43bb5cb713f0e7ae549

22.

Turm H, Grisaru-Granvosky S, Maoz M, Offermanns S, Bar-Shavit R. DVL as a scaffold protein capturing classical GPCRs. Communicative and Integrative Biology [Internet]. 2010;3(6):495–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650929806&doi=10.4161%252fcib.3.6.12979&partnerID=40&md5=e0050115aba88fb3eb6c78a0465cb4af

23.

Cohen I, Maoz M, Turm H, Grisaru-Granovsky S, Maly B, Uziely B, et al. Etk/Bmx regulates proteinase-activated-receptor1 (PAR1) in breast cancer invasion: Signaling partners, hierarchy and physiological significance. PLoS ONE [Internet]. 2010;5(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955296482&doi=10.1371%252fjournal.pone.0011135&partnerID=40&md5=2b5f9fd57040d87850d5aa5900ae9b5e

24.

Turm H, Maoz M, Katz V, Yin YJ, Offermanns S, Bar-Shavit R. Protease-activated receptor-1 (PAR1) acts via a novel Gα 13-dishevelled axis to stabilize β-catenin levels. Journal of Biological Chemistry [Internet]. 2010;285(20):15137–48. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952047728&doi=10.1074%252fjbc.M109.072843&partnerID=40&md5=8aac971f47eddf5632828be60272ab3e

25.

Grisaru-Granovsky S, Maoz M, Barzilay O, Yin YJ, Prus D, Bar-Shavit R. Protease Activated Receptor-1, PAR1, promotes placenta trophoblast invasion and β-catenin stabilization. Journal of Cellular Physiology [Internet]. 2009;218(3):512–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149401697&doi=10.1002%252fjcp.21625&partnerID=40&md5=1c648b364d7c5dc8518d996386480546

26.

Salah Z, Grisaru-Granovsky S, Maoz M, Uziely B, Cohen I, Turm H, et al. The role of thrombin and its receptors in epithelial malignancies: Lessons from a transgenic mouse model and transcriptional regulation [Internet]. Thrombin: Physiology and Disease. 2009. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77149143019&doi=10.1007%252f978-0-387-09637-7_10&partnerID=40&md5=5eaf8bcaa10cbc2d5d0b1e81522fe395

27.

Salah Z, Haupt S, Maoz M, Baraz L, Rotter V, Peretz T, et al. p53 controls hPar1 function and expression. Oncogene [Internet]. 2008;27(54):6866–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-56649092823&doi=10.1038%252fonc.2008.324&partnerID=40&md5=89bb07cc410dfae4633137976e27c1cf

28.

Shavit E, Beilin O, Korczyn AD, Sylantiev C, Aronovich R, Drory VE, et al. Thrombin receptor PAR-1 on myelin at the node of Ranvier: A new anatomy and physiology of conduction block. Brain [Internet]. 2008;131(4):1113–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-41849119085&doi=10.1093%252fbrain%252fawn005&partnerID=40&md5=64cd0bc999a565732ce6063930dc4af2

29.

Grisaru-Granovsky S, Tevet A, Bar-Shavit R, Salah Z, Elstein D, Samueloff A, et al. Association study of protease activated receptor 1 gene polymorphisms and adverse pregnancy outcomes: Results of a pilot study in Israel. American Journal of Medical Genetics, Part A [Internet]. 2007;143(21):2557–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35848966800&doi=10.1002%252fajmg.a.31985&partnerID=40&md5=91570c18f4e656c966d30624ca50b006

30.

Salah Z, Maoz M, Pizov G, Bar-Shavit R. Transcriptional regulation of human protease-activated receptor 1: A role for the early growth response-1 protein in prostate cancer. Cancer Research [Internet]. 2007;67(20):9835–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35448985707&doi=10.1158%252f0008-5472.CAN-07-1886&partnerID=40&md5=c64711c5b8c13172e8c9eadf385cb231

31.

Salah Z, Maoz M, Pokroy E, Lotem M, Bar-Shavit R, Uziely B. Protease-activated receptor-1 (hPar1), a survival factor eliciting tumor progression. Molecular Cancer Research [Internet]. 2007;5(3):229–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34147206365&doi=10.1158%252f1541-7786.MCR-06-0261&partnerID=40&md5=ad93d055084aa98dc0c8e1af9f1fced6

32.

Granovsky-Grisaru S, Zaidoun S, Grisaru D, Yekel Y, Prus D, Beller U, et al. The pattern of Protease Activated Receptor 1 (PAR1) expression in endometrial carcinoma. Gynecologic Oncology [Internet]. 2006;103(3):802–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33751430494&doi=10.1016%252fj.ygyno.2006.05.048&partnerID=40&md5=182ce4de7bd8220426a615fe3c6579a6

33.

Yin YJ, Katz V, Salah Z, Maoz M, Cohen I, Uziely B, et al. Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to β-catenin stabilization. Cancer Research [Internet]. 2006;66(10):5224–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33744931129&doi=10.1158%252f0008-5472.CAN-05-4234&partnerID=40&md5=9d820ab875f59882828fc866b6208db2

34.

Cohen I, Pappo O, Elkin M, San T, Bar-Shavit R, Hazan R, et al. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. International Journal of Cancer [Internet]. 2006;118(7):1609–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33644863802&doi=10.1002%252fijc.21552&partnerID=40&md5=8579c06442a7ad33ac0431525d1b5d5e

35.

Grisaru-Granovsky S, Salah Z, Maoz M, Pruss D, Beller U, Bar-Shavit R. Differential expression of Protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. International Journal of Cancer [Internet]. 2005;113(3):372–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-11144285417&doi=10.1002%252fijc.20607&partnerID=40&md5=ba6458d373b4fd5797fb5be08d34bd57

36.

Salah Z, Maoz M, Cohen I, Pizov G, Pode D, Runge MS, et al. Identification of a novel functional androgen response element within hPar1 promoter: Implications to prostate cancer progression. FASEB Journal [Internet]. 2005;19(1):62–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-11244255408&doi=10.1096%252ffj.04-2386com&partnerID=40&md5=ee95967b583b0988e26f25479a4a9052

37.

Yin YJ, Salah Z, Grisaru-Granovsky S, Cohen I, Even-Ram SC, Maoz M, et al. Human protease-activated receptor 1 expression in malignant epithelia: A role in invasiveness. Arteriosclerosis, Thrombosis, and Vascular Biology [Internet]. 2003;23(6):940–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037783286&doi=10.1161%252f01.ATV.0000066878.27340.22&partnerID=40&md5=84e2702dbde517340dfd82b2ab3a90d4

38.

Even-Ram SC, Grisaru-Granovsky S, Pruss D, Maoz M, Salah Z, Yong-Jun Y, et al. The pattern of expression of protease-activated receptors (PARs) during early trophoblast development. Journal of Pathology [Internet]. 2003;200(1):47–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038663228&doi=10.1002%252fpath.1338&partnerID=40&md5=23adba82ce86d78a25c8ec21066aa3d5

39.

Yin YJ, Salah Z, Maoz M, Ram SCE, Ochayon S, Neufeld G, et al. Oncogenic transformation induces tumor angiogenesis: A role for PAR1 activation. FASEB Journal [Internet]. 2003;17(2):163–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037308089&doi=10.1096%252ffj.02-0316com&partnerID=40&md5=1cd5bc03c7fd52dd14fdfe74f753f1e6

40.

Nassar T, Akkawi S, Bar-Shavit R, Haj-Yehia A, Bdeir K, Al-Mehdi AB, et al. Human α-defensin regulates smooth muscle cell contraction: A role for low-density lipoprotein receptor-related protein/α2-macroglobulin receptor. Blood [Internet]. 2002;100(12):4026–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036892613&doi=10.1182%252fblood-2002-04-1080&partnerID=40&md5=2373ad03872f24aae62dbb80ae80354e

41.

Bar-Shavit R, Maoz M, Yongjun Y, Groysman M, Dekel I, Katzav S. Signalling pathways induced by protease-activated receptors and integrins in T cells. Immunology [Internet]. 2002;105(1):35–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036164574&doi=10.1046%252fj.0019-2805.2001.01351.x&partnerID=40&md5=079309779f5b48efa8f793550993d74c

42.

Schiffenbauer YS, Meir G, Maoz M, Even-Ram SC, Bar-Shavit R, Neeman M. Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell adhesion mediated by CD44 and by αv-integrin. Gynecologic Oncology [Internet]. 2002;84(2):296–302. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036171364&doi=10.1006%252fgyno.2001.6512&partnerID=40&md5=33c8af82b13bd8b0e566cb6e8fcb7bd6

43.

Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, Gutwein P, et al. Tumor Cell Invasion Is Promoted by Activation of Protease Activated Receptor-1 in Cooperation with the αvβ5 Integrin. Journal of Biological Chemistry [Internet]. 2001;276(14):10952–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035815711&doi=10.1074%252fjbc.M007027200&partnerID=40&md5=5736e12234ba2604c53d8845120cb4b5

44.

Landau E, Tirosh R, Pinson A, Banai S, Even-Ram S, Maoz M, et al. Protection of thrombin receptor expression under hypoxia. Journal of Biological Chemistry [Internet]. 2000;275(4):2281–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034723351&doi=10.1074%252fjbc.275.4.2281&partnerID=40&md5=0c792c27b5a8e973e4e3c233ce42fb39

45.

Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y, et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Medicine [Internet]. 1998;4(8):909–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031927754&doi=10.1038%252fnm0898-909&partnerID=40&md5=b97649232c39c51d112e12da165f629d

46.

Bar-Shavit R, Maoz M, Ginzburg Y, Vlodavsky I. Specific involvement of glypican in thrombin adhesive properties. Journal of Cellular Biochemistry [Internet]. 1996;61(2):278–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030009336&doi=10.1002%2f%28SICI%291097-4644%2819960501%2961%3a2%3c278%3a%3aAID-JCB11%3e3.0.CO%3b2-I&partnerID=40&md5=3027cec541f3a93d2eb48a51175870ca

47.

Bar-Shavit R, Maoz M, Ginzburg Y, Vlodavsky I. Erratum: Specific involvement of Glypican in thrombin adhesive properties (Journal of Cell Biochemistry (1996) 61 (278-291)). Journal of Cellular Biochemistry [Internet]. 1996;62(1):144. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029839505&doi=10.1002%2f%28SICI%291097-4644%28199607%2962%3a1%3c144%3a%3aAID-JCB17%3e3.0.CO%3b2-N&partnerID=40&md5=f3b1131a5f9ebc7ea6158210d18180e2

48.

Vlodavsky I, Miao HQ, Atzmon R, Levi E, Zimmermann J, Bar-Shavit R, et al. Control of cell proliferation by heparan sulfate and heparin-binding growth factors. Thrombosis and Haemostasis [Internet]. 1995;74(1):534–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029090438&doi=10.1055%252fs-0038-1642735&partnerID=40&md5=4f78af4b9a3961f786a7d9fd299445e6

49.

Bitan M, Mohsen M, Levi E, Wygoda MR, Miao HQ, Lider O, et al. Structural requirements for inhibition of melanoma lung colonization by heparanase inhibiting species of heparin. Israel Journal of Medical Sciences [Internet]. 1995;31(2–3):106–18. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029053106&partnerID=40&md5=e7e067879208a647a66e344c17da032f

50.

Bar-Shavit R, Ginzburg Y, Maoz M, Vlodavsky I, Peretz T. The involvement of thrombin RGD in metastasis: Characterization of a cryptic adhesive site. Israel Journal of Medical Sciences [Internet]. 1995;31(2–3):86–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029000246&partnerID=40&md5=d284ee9b0e1e5ddda4a3c46e559518f1

51.

Herbert JM, Dupuy E, Laplace MC, Zini JM, Bar Shavit R, Tobelem G. Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway. Biochemical Journal [Internet]. 1994;303(1):227–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028027007&doi=10.1042%252fbj3030227&partnerID=40&md5=12f250f1632929add6838f539188ddfd

52.

Benezra M, Ben-Sasson SA, Regan J, Chang M, Bar-Shavit R, Vlodavsky I. Antiproliferative activity to vascular smooth muscle cells and receptor binding of heparin-mimicking polyaromatic anionic compounds. Arteriosclerosis, Thrombosis, and Vascular Biology [Internet]. 1994;14(12):1992–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027983942&doi=10.1161%252f01.ATV.14.12.1992&partnerID=40&md5=b8991bd833cfd63d27900acb86bff83c

53.

Bar-Shavit R, Eskohjido Y, Fenton II JW, Esko JD, Vlodavsky I. Thrombin adhesive properties: Induction by plasmin and heparan sulfate. Journal of Cell Biology [Internet]. 1993;123(5):1279–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027508318&doi=10.1083%252fjcb.123.5.1279&partnerID=40&md5=ffc29fd5c23dab27da1c78f0be21c356

54.

Benezra M, Vlodavsky I, Bar-Shavit R. Prothrombin conversion to thrombin by plasminogen activator residing in the subendothelial extracellular matrix. Seminars in Thrombosis and Hemostasis [Internet]. 1993;19(4):405–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027761149&doi=10.1055%252fs-2007-993292&partnerID=40&md5=d261ea0b06ba72764ec31a98171f2d2a

55.

Vettel U, Brunner G, Bar‐Shavit R, Vlodavsky I, Kramer MD. Charge‐dependent binding of granzyme A (MTSP‐1) to basement membranes. European Journal of Immunology [Internet]. 1993;23(1):279–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027518513&doi=10.1002%252feji.1830230144&partnerID=40&md5=4a807fa603fa9eb924c39992593a1aff

56.

Benezra M, Vlodavsky I, Ishai-Michaeli R, Neufeld G, Bar-Shavit R. Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extracellular matrix. Blood [Internet]. 1993;81(12):3324–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027198859&doi=10.1182%252fblood.v81.12.3324.3324&partnerID=40&md5=e3c1acd207c93e1483983c13b9dd3104

57.

Bar-Shavit R, Benezra M, Sabbah V, Bode W, Vlodavsky I. Thrombin as a multifunctional protein: induction of cell adhesion and proliferation. American journal of respiratory cell and molecular biology [Internet]. 1992;6(2):123–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026816214&doi=10.1165%252fajrcmb%252f6.2.123&partnerID=40&md5=f61a81946354d7165de594fa67e84776

58.

Benezra M, Vlodavsky I, Bar-Shavit R. Thrombin enhances degradation of heparan sulfate in the extracellular matrix by tumor cell heparanase. Experimental Cell Research [Internet]. 1992;201(1):208–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026708226&doi=10.1016%2f0014-4827%2892%2990365-F&partnerID=40&md5=822e843241c92f380ecdf405928adbc2

59.

Vlodavsky I, Ishai-Michaeli R, Mohsen M, Bar-Shavit R, Catane R, Ekre HPT, et al. Modulation of neovascularization and metastasis by species of heparin. Advances in Experimental Medicine and Biology [Internet]. 1992;313:317–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026655522&partnerID=40&md5=22048d5edb59e5bf00c642ccf2034bad

60.

Bar-Shavit R, Sabbah V, Grazia Lampugnani MG, Marchisio PC, Fenton II JW, Vlodavsky I, et al. An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion. Journal of Cell Biology [Internet]. 1991;112(2):335–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026053766&doi=10.1083%252fjcb.112.2.335&partnerID=40&md5=07120fbf789fd93c6b16574724bc0ffc

61.

VLOAVSKY I, BASHKIN P, ISHAI‐MICHAELI R, CHAJEK‐SHAUL T, BAR‐SHAVIT R, HAIMOVITZ‐FRIEDMAN A, et al. Sequestration and Release of Basic Fibroblast Growth Factor. Annals of the New York Academy of Sciences [Internet]. 1991;638(1):207–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026410874&doi=10.1111%252fj.1749-6632.1991.tb49032.x&partnerID=40&md5=ef353c82df960c9f21e6b2ba91f80f04

62.

Vlodavsky I, Ishai‐Michaeli R, Bashkin P, Levi E, Korner G, Bar‐Shavit R, et al. Extracellular matrix‐resident basic fibroblast growth factor: Implication for the control of angiogenesis. Journal of Cellular Biochemistry [Internet]. 1991;45(2):167–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026065140&doi=10.1002%252fjcb.240450208&partnerID=40&md5=5b7a43f6b6512105810fce02b3a45987

63.

Vettel U, Bar‐Shavit R, Simon MM, Brunner G, Vlodavsky I, Kramer MD. Coordinate secretion and functional synergism of T cell‐associated serine proteinase‐1 (MTSP‐1) and endoglycosidase(s) of activated T cells. European Journal of Immunology [Internet]. 1991;21(9):2247–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025823649&doi=10.1002%252feji.1830210936&partnerID=40&md5=a057f6753fcca3bd32bce17b17260759

64.

Vlodavsky I, Bar-Shavit R, Ishar-Michael R, Bashkin P, Fuks Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends in Biochemical Sciences [Internet]. 1991;16(C):268–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025812425&doi=10.1016%2f0968-0004%2891%2990102-2&partnerID=40&md5=386ea188bbd680d3a75fe04886bb0923

65.

Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. CANCER AND METASTASIS REVIEW [Internet]. 1990;9(3):203–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025013701&doi=10.1007%252fBF00046361&partnerID=40&md5=5d1ebaf3a55f84dc6ec98dc0202dd2e0

66.

Chajek-Shaul T, Friedman G, Bengtsson-Olivecrona G, Vlodavsky I, Bar-Shavit R. Interaction of lipoprotein lipase with subendothelial extracellular matrix. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism [Internet]. 1990;1042(2):168–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025103364&doi=10.1016%2f0005-2760%2890%2990003-G&partnerID=40&md5=a686a1837ff8736a055b9dab86dfe1b1

67.

Bar-Shavit R, Benezra M, Eldor A, Hy-Am E, Fenton II JW, Wilner GD, et al. Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: Nonenzymatic mode of action. Molecular Biology of the Cell [Internet]. 1990;1(6):453–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025431097&doi=10.1091%252fmbc.1.6.453&partnerID=40&md5=06f8220626b1ccfbcfc02951d91eddb1

68.

Bar-Shavit R, Eldor A, Vlodavsky I. Binding of thrombin to subendothelial extracellular matrix. Protection and expression of functional properties. Journal of Clinical Investigation [Internet]. 1989;84(4):1096–104. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024457599&doi=10.1172%252fJCI114272&partnerID=40&md5=b0624114baa53824720bee480010bf8b

69.

Spira O, Atzmon R, Rahamim E, Bar-Shavit R, Gross J, Gordon A, et al. Striated muscle fibers differentiate in primary cultures of adult anterior pituitary cells. Endocrinology [Internet]. 1988;122(6):3002–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023898226&doi=10.1210%252fendo-122-6-3002&partnerID=40&md5=63412f321e8ac70c08a1933a18b57bb6

70.

Bar‐Shavit R, Hruska KA, Kahn AJ, Wilner GD. Thrombin chemotactic stimulation of HL‐60 cells: Studies on thrombin responsiveness as a function of differentiation. Journal of Cellular Physiology [Internet]. 1987;131(2):255–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023191402&doi=10.1002%252fjcp.1041310216&partnerID=40&md5=123ae56cd1d709c58b0b13031fba3361

71.

Bar-Shavit R, Kahn AJ, Mann KG, Wilner GD. Identification of a thrombin sequence with growth factor activity on macrophages. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1986;83(4):976–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344908213&doi=10.1073%252fpnas.83.4.976&partnerID=40&md5=448338ec59e429c4b27e0ec251ea925b

72.

Bar-Shavit R, Kahn AJ, Mann KG, Wilner GD. Growth-promoting effects of esterolytically inactive thrombin on macrophages. Journal of Cellular Biochemistry [Internet]. 1986;32(4):261–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023002449&doi=10.1002%252fjcb.240320403&partnerID=40&md5=d2aac7ad7171e3ca8f24dabdafc6f5f2

73.

Bar-Shavit R, Wilner GD. Biologic activities of nonenzymatic thrombin: Elucidation of a macrophage interactive domain. Seminars in Thrombosis and Hemostasis [Internet]. 1986;12(3):244–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022978846&doi=10.1055%252fs-2007-1003561&partnerID=40&md5=883b5650217c485ced1518abda53f7db

74.

Bar-Shavit R, Wilner GD. Mediation of cellular events by thrombin. International Review of Experimental Pathology [Internet]. 1986;Vol. 29:213–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022931334&partnerID=40&md5=3808200f3ca4be6b9d83bae0312541da

75.

BAR‐SHAVIT R, HRUSKA KA, KAHN AJ, WILNER GD. Hormone‐Like Activity of Human Thrombin. Annals of the New York Academy of Sciences [Internet]. 1986;485(1):335–48. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022924098&doi=10.1111%252fj.1749-6632.1986.tb34595.x&partnerID=40&md5=ce45dcc2de5a6257088d7edc42e23386

76.

Bar-Shavit R, Kahn A, Mudd MS, Wilner GD, Mann KG, Fenton JW. Localization of a Chemotactic Domain in Human Thrombin. Biochemistry [Internet]. 1984;23(3):397–400. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021774158&doi=10.1021%252fbi00298a001&partnerID=40&md5=6463b3f854d808f313693a786954bc9b

77.

Shainberg A, Brik H, Bar Shavit R, Sampson SR. Inhibition of acetylcholine receptor synthesis by thyroid hormones. Journal of Endocrinology [Internet]. 1984;101(2):141–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021180054&doi=10.1677%252fjoe.0.1010141&partnerID=40&md5=3729ff2e40c6c501b91eec5dc4814820

78.

Bar Shavit R, Kahn A, Fenton II JW, Wilner GD. Receptor-mediated chemotactic response of a macrophage cell line (J774) to thrombin. Laboratory Investigation [Internet]. 1983;49(6):702–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021091174&partnerID=40&md5=24c1b92d904c12ac6b4ac513d1720ca1

79.

Bar-Shavit R, Kahn A, Fenton II JW, Wilner GD. Chemotactic response of monocytes to thrombin. Journal of Cell Biology [Internet]. 1983;96(1):282–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020662680&doi=10.1083%252fjcb.96.1.282&partnerID=40&md5=4ff57f87f3d71b00e5c4041b7bf80c3b

80.

Bar-Shavit R, Kahn A, Wilner GD, Fenton II JW. Monocyte chemotaxis: Stimulation by specific exosite region in thrombin. Science [Internet]. 1983;220(4598):728–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020570701&doi=10.1126%252fscience.6836310&partnerID=40&md5=8a322c56a872e9140e051cd95127e759

81.

Bar Shavit R, Kahn A, Fenton II JW, Wilner GD. Chemotactic response of monocytes to thrombin. Clinical Research [Internet]. 1982;30(4). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020355298&partnerID=40&md5=a9246c80419920f127a2de2ffdbdfc5c

82.

DePamphilis ML, Anderson S, Bar-Shavit R, Collins E, Edenberg H, Herman T, et al. Replication and structure of simian virus 40 chromosomes. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 1979;43(2):679–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018380447&doi=10.1101%252fsqb.1979.043.01.076&partnerID=40&md5=ce4e8c282d86dadd5a9ef9847436899f

83.

Kaufmann G, Bar-Shavit R, Depamphilis ML. Okazaki pieces grow opposite to the replication fork direction during simian virus 40 DNA replication. Nucleic Acids Research [Internet]. 1978;5(7):2535–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018190330&doi=10.1093%252fnar%252f5.7.2535&partnerID=40&md5=4fad358de13eb9d6feed255e2a0218b1

84.

Bar-Shavit R, Laub O, Aloni Y. The Frequencies of Transcription from the E- and L-Strands of Polyoma DNA. Journal of General Virology [Internet]. 1978;39(2):357–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017840059&doi=10.1099%252f0022-1317-39-2-357&partnerID=40&md5=b8e97b6b3a9dfa19d6e91ae9aac87e40