Skip to Main Content

HUJI logo Hebrew
The Library Authority    רשות הספריות

Library Research Guides    מדריכים לפי תחומים


Hadassah Medical Center: Bar-Shavit Rachel

Last updated September 2024 - Hadassah Medical Center

List of Publications

1.            Nag, J. K., Appasamy, P., Malka, H., Sedley, S. & Bar-Shavit, R. New Target(s) for RNF43 Regulation: Implications for Therapeutic Strategies. Int. J. Mol. Sci. 25, (2024).

2.            Nag, J. K. et al. Involvement of Protease-Activated Receptor2 Pleckstrin Homology Binding Domain in Ovarian Cancer: Expression in Fallopian Tubes and Drug Design. Biomedicines 12, (2024).

3.            Nag, J. K. et al. RNF43 induces the turnover of protease-activated receptor 2 in colon cancer. FASEB J. 37, (2023).

4.            Nag, J. K. et al. PH-Binding Motif in PAR4 Oncogene: From Molecular Mechanism to Drug Design. Mol. Cancer Ther. 21, 1415–1429 (2022).

5.            Sedley, S., Nag, J. K., Rudina, T. & Bar-Shavit, R. PAR-Induced Harnessing of EZH2 to β-Catenin: Implications for Colorectal Cancer. Int. J. Mol. Sci. 23, (2022).

6.            Nag, J. K., Malka, H., Appasamy, P., Sedley, S. & Bar-Shavit, R. Gpcr partners as cancer driver genes: Association with ph-signal proteins in a distinctive signaling network. Int. J. Mol. Sci. 22, (2021).

7.            Grisaru-Granovsky, S. et al. PAR1&2 driven placenta EVT invasion act via LRP5/6 as coreceptors. FASEB J. 34, 15701–15717 (2020).

8.            Nag, J. K. & Bar-Shavit, R. Transcriptional landscape of pars in epithelial malignancies. Int. J. Mol. Sci. 19, (2018).

9.            Nag, J. K. et al. Correction to: Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction (Cancer and Metastasis Reviews, (2018), 37, 1, (147-157), 10.1007/s10555-017-9711-z). Cancer Metastasis Rev. 37, 197 (2018).

10.          Nag, J. K. et al. Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction. Cancer Metastasis Rev. 37, 147–157 (2018).

11.          Jaber, M. et al. Erratum to: Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer (Cellular and Molecular Life Sciences, (2014), 71, 13, (2517-2533), 10.1007/s00018-013-1498-7). Cell. Mol. Life Sci. 74, 571–577 (2017).

12.          Nag, J. K. et al. Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated β-catenin stabilization. Oncotarget 8, 38650–38667 (2017).

13.          Bar-Shavit, R. et al. G protein-coupled receptors in cancer. Int. J. Mol. Sci. 17, (2016).

14.          Bar-Shavit, R., Grisaru-Granovsky, S. & Uziely, B. PH-domains as central modulators driving tumor growth. Cell Cycle 15, 615–616 (2016).

15.          Bar-Shavit, R., Nag, J. K., Grisaru-Granovsky, S. & Uziely, B. G-protein coupled receptor PAR1 is overexpressed in glioma progenitor cells. Transl. Cancer Res. 5, S1185–S1188 (2016).

16.          Bar-Shavit, R. et al. Protease-activated receptors (PARs) in cancer: Novel biased signaling and targets for therapy. G Protein-Coupled Receptors Signaling, Trafficking and Regulation, 2016 vol. 132 341–358 (2016).

17.          Kancharla, A. et al. PH motifs in PAR1&2 endow breast cancer growth. Nat. Commun. 6, (2015).

18.          Grisaru-Granovsky, S. et al. Protease-activated-receptor 1 polymorphisms correlate with risk for unexplained recurrent pregnancy loss: A pilot study querying an association beyond coagulation. Eur. J. Obstet. Gynecol. Reprod. Biol. 185, 13–18 (2015).

19.          Jaber, M. et al. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cell. Mol. Life Sci. 71, 2517–2533 (2014).

20.          Grisaru-Granovsky, S., Maoz, M., Turm, H. & Bar-Shavit, R. Emerging tasks of PAR1 and PAR2 in the placenta trophoblast anchoring to the uterus deciduas. in The Placenta: Development, Function and Diseases 31–42 (Nova Science Publishers, Inc., 2013).

21.          Uziely, B. et al. Emerging tasks of thrombin and its receptors in epithelial tumor development. in Thrombin: Function and Pathophysiology 199–213 (Nova Science Publishers, Inc., 2012).

22.          Salah, Z. et al. Regulation of human protease-activated receptor 1 (hPar1) gene expression in breast cancer by estrogen. FASEB J. 26, 2031–2042 (2012).

23.          Bar-Shavit, R. et al. PAR1 plays a role in epithelial malignancies: Transcriptional regulation and novel signaling pathway. IUBMB Life 63, 397–402 (2011).

24.          Turm, H., Grisaru-Granvosky, S., Maoz, M., Offermanns, S. & Bar-Shavit, R. DVL as a scaffold protein capturing classical GPCRs. Commun. Integr. Biol. 3, 495–498 (2010).

25.          Cohen, I. et al. Etk/Bmx regulates proteinase-activated-receptor1 (PAR1) in breast cancer invasion: Signaling partners, hierarchy and physiological significance. PLoS One 5, (2010).

26.          Turm, H. et al. Protease-activated receptor-1 (PAR1) acts via a novel Gα 13-dishevelled axis to stabilize β-catenin levels. J. Biol. Chem. 285, 15137–15148 (2010).

27.          Grisaru-Granovsky, S. et al. Protease Activated Receptor-1, PAR1, promotes placenta trophoblast invasion and β-catenin stabilization. J. Cell. Physiol. 218, 512–521 (2009).

28.          Salah, Z. et al. The role of thrombin and its receptors in epithelial malignancies: Lessons from a transgenic mouse model and transcriptional regulation. in Thrombin: Physiology and Disease 173–188 (Springer US, 2009). doi:10.1007/978-0-387-09637-7_10.

29.          Salah, Z. et al. p53 controls hPar1 function and expression. Oncogene 27, 6866–6874 (2008).

30.          Shavit, E. et al. Thrombin receptor PAR-1 on myelin at the node of Ranvier: A new anatomy and physiology of conduction block. Brain 131, 1113–1122 (2008).

31.          Grisaru-Granovsky, S. et al. Association study of protease activated receptor 1 gene polymorphisms and adverse pregnancy outcomes: Results of a pilot study in Israel. Am. J. Med. Genet. Part A 143, 2557–2563 (2007).

32.          Salah, Z., Maoz, M., Pizov, G. & Bar-Shavit, R. Transcriptional regulation of human protease-activated receptor 1: A role for the early growth response-1 protein in prostate cancer. Cancer Res. 67, 9835–9843 (2007).

33.          Salah, Z. et al. Protease-activated receptor-1 (hPar1), a survival factor eliciting tumor progression. Mol. Cancer Res. 5, 229–240 (2007).

34.          Granovsky-Grisaru, S. et al. The pattern of Protease Activated Receptor 1 (PAR1) expression in endometrial carcinoma. Gynecol. Oncol. 103, 802–806 (2006).

35.          Yin, Y.-J. et al. Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to β-catenin stabilization. Cancer Res. 66, 5224–5233 (2006).

36.          Cohen, I. et al. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int. J. Cancer 118, 1609–1617 (2006).

37.          Grisaru-Granovsky, S. et al. Differential expression of Protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int. J. Cancer 113, 372–378 (2005).

38.          Salah, Z. et al. Identification of a novel functional androgen response element within hPar1 promoter: Implications to prostate cancer progression. FASEB J. 19, 62–72 (2005).

39.          Yin, Y.-J. et al. Human protease-activated receptor 1 expression in malignant epithelia: A role in invasiveness. Arterioscler. Thromb. Vasc. Biol. 23, 940–944 (2003).

40.          Even-Ram, S. C. et al. The pattern of expression of protease-activated receptors (PARs) during early trophoblast development. J. Pathol. 200, 47–52 (2003).

41.          Yin, Y.-J. et al. Oncogenic transformation induces tumor angiogenesis: A role for PAR1 activation. FASEB J. 17, 163–174 (2003).

42.          Nassar, T. et al. Human α-defensin regulates smooth muscle cell contraction: A role for low-density lipoprotein receptor-related protein/α2-macroglobulin receptor. Blood 100, 4026–4032 (2002).

43.          Bar-Shavit, R. et al. Signalling pathways induced by protease-activated receptors and integrins in T cells. Immunology 105, 35–46 (2002).

44.          Schiffenbauer, Y. S. et al. Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell adhesion mediated by CD44 and by αv-integrin. Gynecol. Oncol. 84, 296–302 (2002).

45.          Even-Ram, S. C. et al. Tumor Cell Invasion Is Promoted by Activation of Protease Activated Receptor-1 in Cooperation with the αvβ5 Integrin. J. Biol. Chem. 276, 10952–10962 (2001).

46.          Landau, E. et al. Protection of thrombin receptor expression under hypoxia. J. Biol. Chem. 275, 2281–2287 (2000).

47.          Even-Ram, S. et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat. Med. 4, 909–914 (1998).

48.          Bar-Shavit, R., Maoz, M., Ginzburg, Y. & Vlodavsky, I. Specific involvement of glypican in thrombin adhesive properties. J. Cell. Biochem. 61, 278–291 (1996).

49.          Bar-Shavit, R., Maoz, M., Ginzburg, Y. & Vlodavsky, I. Erratum: Specific involvement of Glypican in thrombin adhesive properties (Journal of Cell Biochemistry (1996) 61 (278-291)). J. Cell. Biochem. 62, 144 (1996).

50.          Vlodavsky, I. et al. Control of cell proliferation by heparan sulfate and heparin-binding growth factors. Thromb. Haemost. 74, 534–540 (1995).

51.          Bitan, M. et al. Structural requirements for inhibition of melanoma lung colonization by heparanase inhibiting species of heparin. Isr. J. Med. Sci. 31, 106–118 (1995).

52.          Bar-Shavit, R., Ginzburg, Y., Maoz, M., Vlodavsky, I. & Peretz, T. The involvement of thrombin RGD in metastasis: Characterization of a cryptic adhesive site. Isr. J. Med. Sci. 31, 86–94 (1995).

53.          Herbert, J.-M. et al. Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway. Biochem. J. 303, 227–231 (1994).

54.          Benezra, M. et al. Antiproliferative activity to vascular smooth muscle cells and receptor binding of heparin-mimicking polyaromatic anionic compounds. Arterioscler. Thromb. Vasc. Biol. 14, 1992–1999 (1994).

55.          Benezra, M., Vlodavsky, I., Ishai-Michaeli, R., Neufeld, G. & Bar-Shavit, R. Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extracellular matrix. Blood 81, 3324–3331 (1993).

56.          Benezra, M., Vlodavsky, I. & Bar-Shavit, R. Prothrombin conversion to thrombin by plasminogen activator residing in the subendothelial extracellular matrix. Semin. Thromb. Hemost. 19, 405–411 (1993).

57.          Vettel, U., Brunner, G., Bar‐Shavit, R., Vlodavsky, I. & Kramer, M. D. Charge‐dependent binding of granzyme A (MTSP‐1) to basement membranes. Eur. J. Immunol. 23, 279–282 (1993).

58.          Bar-Shavit, R., Eskohjido, Y., Fenton II, J. W., Esko, J. D. & Vlodavsky, I. Thrombin adhesive properties: Induction by plasmin and heparan sulfate. J. Cell Biol. 123, 1279–1287 (1993).

59.          Bar-Shavit, R., Benezra, M., Sabbah, V., Bode, W. & Vlodavsky, I. Thrombin as a multifunctional protein: induction of cell adhesion and proliferation. Am. J. Respir. Cell Mol. Biol. 6, 123–130 (1992).

60.          Benezra, M., Vlodavsky, I. & Bar-Shavit, R. Thrombin enhances degradation of heparan sulfate in the extracellular matrix by tumor cell heparanase. Exp. Cell Res. 201, 208–215 (1992).

61.          Vlodavsky, I. et al. Modulation of neovascularization and metastasis by species of heparin. Adv. Exp. Med. Biol. 313, 317–327 (1992).

62.          VLOAVSKY, I. et al. Sequestration and Release of Basic Fibroblast Growth Factor. Annals of the New York Academy of Sciences vol. 638 207–220 (1991).

63.          Vlodavsky, I. et al. Extracellular matrix‐resident basic fibroblast growth factor: Implication for the control of angiogenesis. J. Cell. Biochem. 45, 167–176 (1991).

64.          Bar-Shavit, R. et al. An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion. J. Cell Biol. 112, 335–344 (1991).

65.          Vettel, U. et al. Coordinate secretion and functional synergism of T cell‐associated serine proteinase‐1 (MTSP‐1) and endoglycosidase(s) of activated T cells. Eur. J. Immunol. 21, 2247–2251 (1991).

66.          Vlodavsky, I., Bar-Shavit, R., Ishar-Michael, R., Bashkin, P. & Fuks, Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem. Sci. 16, 268–271 (1991).

67.          Vlodavsky, I. et al. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. CANCER METASTASIS Rev. 9, 203–226 (1990).

68.          Chajek-Shaul, T., Friedman, G., Bengtsson-Olivecrona, G., Vlodavsky, I. & Bar-Shavit, R. Interaction of lipoprotein lipase with subendothelial extracellular matrix. Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab. 1042, 168–175 (1990).

69.          Bar-Shavit, R. et al. Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: Nonenzymatic mode of action. Mol. Biol. Cell 1, 453–463 (1990).

70.          Bar-Shavit, R., Eldor, A. & Vlodavsky, I. Binding of thrombin to subendothelial extracellular matrix. Protection and expression of functional properties. J. Clin. Invest. 84, 1096–1104 (1989).

71.          Spira, O. et al. Striated muscle fibers differentiate in primary cultures of adult anterior pituitary cells. Endocrinology 122, 3002–3004 (1988).

72.          Bar‐Shavit, R., Hruska, K. A., Kahn, A. J. & Wilner, G. D. Thrombin chemotactic stimulation of HL‐60 cells: Studies on thrombin responsiveness as a function of differentiation. J. Cell. Physiol. 131, 255–261 (1987).

73.          Bar-Shavit, R., Kahn, A. J., Mann, K. G. & Wilner, G. D. Identification of a thrombin sequence with growth factor activity on macrophages. Proc. Natl. Acad. Sci. U. S. A. 83, 976–980 (1986).

74.          Bar-Shavit, R., Kahn, A. J., Mann, K. G. & Wilner, G. D. Growth-promoting effects of esterolytically inactive thrombin on macrophages. J. Cell. Biochem. 32, 261–272 (1986).

75.          Bar-Shavit, R. & Wilner, G. D. Biologic activities of nonenzymatic thrombin: Elucidation of a macrophage interactive domain. Semin. Thromb. Hemost. 12, 244–249 (1986).

76.          Bar-Shavit, R. & Wilner, G. D. Mediation of cellular events by thrombin. Int. Rev. Exp. Pathol. Vol. 29, 213–241 (1986).

77.          BAR‐SHAVIT, R., HRUSKA, K. A., KAHN, A. J. & WILNER, G. D. Hormone‐Like Activity of Human Thrombin. Annals of the New York Academy of Sciences vol. 485 335–348 (1986).

78.          Bar-Shavit, R. et al. Localization of a Chemotactic Domain in Human Thrombin. Biochemistry 23, 397–400 (1984).

79.          Shainberg, A., Brik, H., Bar Shavit, R. & Sampson, S. R. Inhibition of acetylcholine receptor synthesis by thyroid hormones. J. Endocrinol. 101, 141–147 (1984).

80.          Bar Shavit, R., Kahn, A., Fenton II, J. W. & Wilner, G. D. Receptor-mediated chemotactic response of a macrophage cell line (J774) to thrombin. Lab. Investig. 49, 702–707 (1983).

81.          Bar-Shavit, R., Kahn, A., Fenton II, J. W. & Wilner, G. D. Chemotactic response of monocytes to thrombin. J. Cell Biol. 96, 282–285 (1983).

82.          Bar-Shavit, R., Kahn, A., Wilner, G. D. & Fenton II, J. W. Monocyte chemotaxis: Stimulation by specific exosite region in thrombin. Science (80-. ). 220, 728–731 (1983).

83.          Bar Shavit, R., Kahn, A., Fenton II, J. W. & Wilner, G. D. Chemotactic response of monocytes to thrombin. Clin. Res. 30, (1982).

84.          DePamphilis, M. L. et al. Replication and structure of simian virus 40 chromosomes. Cold Spring Harb. Symp. Quant. Biol. 43, 679–692 (1979).

85.          Kaufmann, G., Bar-Shavit, R. & Depamphilis, M. L. Okazaki pieces grow opposite to the replication fork direction during simian virus 40 DNA replication. Nucleic Acids Res. 5, 2535–2546 (1978).

86.          Bar-Shavit, R., Laub, O. & Aloni, Y. The Frequencies of Transcription from the E- and L-Strands of Polyoma DNA. J. Gen. Virol. 39, 357–360 (1978).