Last updated May 2025- Hadassah Medical Center
1. Ben Cohen G, Yaacov A, Ben Zvi Y, et al. Graph convolution networks model identifies and quantifies gene and cancer specific transcriptome signatures of cancer driver events. Comput Biol Med. 2025;185. doi:10.1016/j.compbiomed.2024.109491
2. Yaacov A, Lazarian G, Pandzic T, et al. Cancer associated variant enrichment CAVE, a gene agnostic approach to identify low burden variants in chronic lymphocytic leukemia. Sci Rep. 2024;14(1). doi:10.1038/s41598-024-73027-1
3. Yaacov A, Ben Cohen G, Landau J, Hope T, Simon I, Rosenberg S. Cancer mutational signatures identification in clinical assays using neural embedding-based representations. Cell Reports Med. 2024;5(6). doi:10.1016/j.xcrm.2024.101608
4. Falick Michaeli T, Granit Mizrahi A, Azria B, et al. Tumor analysis of BRCA carriers reveals genomic similarities although separated by time. Discov Oncol. 2024;15(1). doi:10.1007/s12672-024-01577-x
5. Loutati R, Ben-Yehuda A, Rosenberg S, Rottenberg Y. Multimodal Machine Learning for Prediction of 30-Day Readmission Risk in Elderly Population. Am J Med. 2024;137(7):617-628. doi:10.1016/j.amjmed.2024.04.002
6. Landau J, Tsaban L, Yaacov A, Cohen GB, Rosenberg S. Shared Cancer Dataset Analysis Identifies and Predicts the Quantitative Effects of Pan-Cancer Somatic Driver Variants. Cancer Res. 2023;83(1):74-88. doi:10.1158/0008-5472.CAN-22-1038
7. Vardi-Yaacov O, Yaacov A, Rosenberg S, Simon I. Both cell autonomous and non-autonomous processes modulate the association between replication timing and mutation rate. Sci Rep. 2023;13(1). doi:10.1038/s41598-023-39463-1
8. Rosenberg S, Devir M, Kaduri L, et al. Distinct breast cancer phenotypes in BRCA 1/2 carriers based on ER status. Breast Cancer Res Treat. 2023;198(2):197-205. doi:10.1007/s10549-022-06851-6
9. Yaacov A, Rosenberg S, Simon I. Mutational signatures association with replication timing in normal cells reveals similarities and differences with matched cancer tissues. Sci Rep. 2023;13(1). doi:10.1038/s41598-023-34631-9
10. Rosenberg S, Ben Cohen G, Kato S, Okamura R, Lippman SM, Kurzrock R. Concordance between cancer gene alterations in tumor and circulating tumor DNA correlates with poor survival in a real-world precision-medicine population. Mol Oncol. 2023;17(9):1844-1856. doi:10.1002/1878-0261.13383
11. Cohen-Aharonov LA, Rebibo-Sabbah A, Yaacov A, et al. High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing. PLoS One. 2022;17(6 June). doi:10.1371/journal.pone.0253404
12. Ben-Cohen G, Doffe F, Devir M, Leroy B, Soussi T, Rosenberg S. TP53_PROF: A machine learning model to predict impact of missense mutations in TP53. Brief Bioinform. 2022;23(2). doi:10.1093/bib/bbab524
13. Lebel E, Goldschmidt N, Siegal T, et al. Rituximab, methotrexate, procarbazine and lomustine (R-MPL) for the treatment of primary Central nervous system lymphoma. Leuk Lymphoma. 2022;63(9):2102-2108. doi:10.1080/10428194.2022.2064996
14. Yaacov A, Vardi O, Blumenfeld B, et al. Cancer Mutational Processes Vary in Their Association with Replication Timing and Chromatin Accessibility. Cancer Res. 2021;81(24):6106-6116. doi:10.1158/0008-5472.CAN-21-2039
15. Carbonnier V, Leroy B, Rosenberg S, Soussi T. Comprehensive assessment of TP53 loss of function using multiple combinatorial mutagenesis libraries. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-74892-2
16. Rosenberg S, Okamura R, Kato S, Soussi T, Kurzrock R. Survival implications of the relationship between tissue versus circulating tumor DNA TP53 mutations — A perspective from a real-world precision medicine cohort. Mol Cancer Ther. 2020;19(12):2612-2620. doi:10.1158/1535-7163.MCT-20-0097
17. Sarig I, Ratzon NZ, Rosenberg S, Rottenberg Y. UNEMPLOYMENT RISK AND INCOME CHANGE FOLLOWING A BRAIN TUMOR DIAGNOSIS: A POPULATION-BASED STUDY OF LONG-TERM SURVIVORS. J Cancer Rehabil. 2019;2:30-35. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180511741&partnerID=40&md5=bed1008d6d0e3e64f4f46ac7e799b20a
18. Soussi T, Leroy B, Devir M, Rosenberg S. High prevalence of cancer-associated TP53 variants in the gnomAD database: A word of caution concerning the use of variant filtering. Hum Mutat. 2019;40(5):516-524. doi:10.1002/humu.23717
19. Fellner A, Makranz C, Lotem M, et al. Neurologic complications of immune checkpoint inhibitors. J Neurooncol. 2018;137(3):601-609. doi:10.1007/s11060-018-2752-5
20. Grinshpun A, Gavert N, Granit RZ, et al. Ev vivo organ culture as potential prioritization tool for breast cancer targeted therapy. Cancer Biol Ther. 2018;19(8):645-648. doi:10.1080/15384047.2018.1450114
21. Dréan A, Rosenberg S, Lejeune F-X, et al. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma. J Neurooncol. 2018;138(3):479-486. doi:10.1007/s11060-018-2819-3
22. Rosenberg S, Ducray F, Alentorn A, et al. Machine Learning for Better Prognostic Stratification and Driver Gene Identification Using Somatic Copy Number Variations in Anaplastic Oligodendroglioma. Oncologist. 2018;23(12):1500-1510. doi:10.1634/theoncologist.2017-0495
23. Dréan A, Rosenberg S, Lejeune F-X, et al. Correction to: ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma (Journal of Neuro-Oncology, (2018), 138, 3, (479-486), 10.1007/s11060-018-2819-3). J Neurooncol. 2018;138(3):487. doi:10.1007/s11060-018-2830-8
24. Rosenberg S, Simeonova I, Bielle F, et al. A recurrent point mutation in PRKCA is a hallmark of chordoid gliomas. Nat Commun. 2018;9(1). doi:10.1038/s41467-018-04622-w
25. Euskirchen P, Bielle F, Labreche K, et al. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol. 2017;134(5):691-703. doi:10.1007/s00401-017-1743-5
26. Bielle F, Ducray F, Mokhtari K, et al. Tumor cells with neuronal intermediate progenitor features define a subgroup of 1p/19q co-deleted anaplastic gliomas. Brain Pathol. 2017;27(5):567-579. doi:10.1111/bpa.12434
27. Rosenberg S, Verreault M, Schmitt C, et al. Multi-omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular features of parental tumors. Neuro Oncol. 2017;19(2):219-228. doi:10.1093/neuonc/now160
28. Zick A, Peretz T, Lotem M, et al. Treatment inferred from mutations identified using massive parallel sequencing leads to clinical benefit in some heavily pretreated cancer patients. Med (United States). 2017;96(20). doi:10.1097/MD.0000000000006931
29. Maoz A, Rosenberg S, Leker RR. Increased High-Sensitivity Troponin-T Levels Are Associated with Mortality After Ischemic Stroke. J Mol Neurosci. 2015;57(2):160-165. doi:10.1007/s12031-015-0593-7
30. Rosenberg S, Gomori JM, Reches A, Gotkine M. Cameraman’s foot. Isr Med Assoc J. 2015;17(12):789. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955123829&partnerID=40&md5=8e036dbdc58ae80e994309b8de224edc
31. Sandoval-Sus JD, Sandoval-Leon AC, Chapman JR, et al. Rosai-dorfman disease of the central nervous system: Report of 6 cases and review of the literature. Med (United States). 2014;93(3):165-175. doi:10.1097/MD.0000000000000030
32. Cohen JE, Gomori M, Rajz G, et al. Emergent stent-assisted angioplasty of extracranial internal carotid artery and intracranial stent-based thrombectomy in acute tandem occlusive disease: Technical considerations. J Neurointerv Surg. 2013;5(5):440-446. doi:10.1136/neurintsurg-2012-010340
33. Sarig O, Bercovici S, Zoller L, et al. Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. J Invest Dermatol. 2012;132(7):1798-1805. doi:10.1038/jid.2012.46
34. Cohen JE, Leker RR, Rosenberg S, Arkadir D, Itshayek E. Stent-Assisted thrombolysis in acute tandem carotid and middle cerebral arteries occlusion. Isr Med Assoc J. 2010;12(12):767-769. https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651400649&partnerID=40&md5=b7b9cdcb9deb5e30b04450d2798169bd
35. Rosenberg S, Templeton AR, Feigin PD, et al. The association of DNA sequence variation at the MAOA genetic locus with quantitative behavioural traits in normal males. Hum Genet. 2006;120(4):447-459. doi:10.1007/s00439-006-0198-x
36. Burbea Z, Nakhoul F, Rosenberg S, et al. Role of haptoglobin phenotype in end-stage kidney disease. Nephron - Exp Nephrol. 2004;97(2):e71-e76. doi:10.1159/000078408
37. Gilad Y, Rosenberg S, Przeworski M, Lancet D, Skorecki K. Evidence for positive selection and population structure at the human MAO-A gene. Proc Natl Acad Sci U S A. 2002;99(2):862-867. doi:10.1073/pnas.0226147991. Appasamy P, Nag JK, Malka H, Bar-Shavit R. PAR2 Serves an Indispensable Role in Controlling PAR4 Oncogenicity: The β-Catenin-p53 Axis. Int J Mol Sci. 2025;26(6). doi:10.3390/ijms26062780
2. Nag JK, Appasamy P, Malka H, Sedley S, Bar-Shavit R. New Target(s) for RNF43 Regulation: Implications for Therapeutic Strategies. Int J Mol Sci. 2024;25(15). doi:10.3390/ijms25158083
3. Nag JK, Grisaru-Granovsky S, Armon S, Rudina T, Appasamy P, Bar-Shavit R. Involvement of Protease-Activated Receptor2 Pleckstrin Homology Binding Domain in Ovarian Cancer: Expression in Fallopian Tubes and Drug Design. Biomedicines. 2024;12(1). doi:10.3390/biomedicines12010246
4. Nag JK, Appasamy P, Sedley S, Malka H, Rudina T, Bar-Shavit R. RNF43 induces the turnover of protease-activated receptor 2 in colon cancer. FASEB J. 2023;37(1). doi:10.1096/fj.202200858RR
5. Nag JK, Malka H, Sedley S, et al. PH-Binding Motif in PAR4 Oncogene: From Molecular Mechanism to Drug Design. Mol Cancer Ther. 2022;21(9):1415-1429. doi:10.1158/1535-7163.MCT-21-0946
6. Sedley S, Nag JK, Rudina T, Bar-Shavit R. PAR-Induced Harnessing of EZH2 to β-Catenin: Implications for Colorectal Cancer. Int J Mol Sci. 2022;23(15). doi:10.3390/ijms23158758
7. Nag JK, Malka H, Appasamy P, Sedley S, Bar-Shavit R. Gpcr partners as cancer driver genes: Association with ph-signal proteins in a distinctive signaling network. Int J Mol Sci. 2021;22(16). doi:10.3390/ijms22168985
8. Grisaru-Granovsky S, Kumar Nag J, Zakar L, et al. PAR1&2 driven placenta EVT invasion act via LRP5/6 as coreceptors. FASEB J. 2020;34(12):15701-15717. doi:10.1096/fj.202000306R
9. Nag JK, Rudina T, Maoz M, Grisaru-Granovsky S, Uziely B, Bar-Shavit R. Correction to: Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction (Cancer and Metastasis Reviews, (2018), 37, 1, (147-157), 10.1007/s10555-017-9711-z). Cancer Metastasis Rev. 2018;37(1):197. doi:10.1007/s10555-017-9721-x
10. Nag JK, Bar-Shavit R. Transcriptional landscape of pars in epithelial malignancies. Int J Mol Sci. 2018;19(11). doi:10.3390/ijms19113451
11. Nag JK, Rudina T, Maoz M, Grisaru-Granovsky S, Uziely B, Bar-Shavit R. Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction. Cancer Metastasis Rev. 2018;37(1):147-157. doi:10.1007/s10555-017-9711-z
12. Nag JK, Kancharla A, Maoz M, et al. Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated β-catenin stabilization. Oncotarget. 2017;8(24):38650-38667. doi:10.18632/oncotarget.16246
13. Jaber M, Maoz M, Kancharla A, et al. Erratum to: Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer (Cellular and Molecular Life Sciences, (2014), 71, 13, (2517-2533), 10.1007/s00018-013-1498-7). Cell Mol Life Sci. 2017;74(3):571-577. doi:10.1007/s00018-016-2424-6
14. Bar-Shavit R, Nag JK, Grisaru-Granovsky S, Uziely B. G-protein coupled receptor PAR1 is overexpressed in glioma progenitor cells. Transl Cancer Res. 2016;5:S1185-S1188. doi:10.21037/tcr.2016.11.14
15. Bar-Shavit R, Maoz M, Kancharla A, et al. G protein-coupled receptors in cancer. Int J Mol Sci. 2016;17(8). doi:10.3390/ijms17081320
16. Bar-Shavit R, Maoz M, Kancharla A, et al. Protease-activated receptors (PARs) in cancer: Novel biased signaling and targets for therapy. A.K. S, ed. Methods Cell Biol. 2016;132:341-358. doi:10.1016/bs.mcb.2015.11.006
17. Bar-Shavit R, Grisaru-Granovsky S, Uziely B. PH-domains as central modulators driving tumor growth. Cell Cycle. 2016;15(5):615-616. doi:10.1080/15384101.2016.1147112
18. Kancharla A, Maoz M, Jaber M, et al. PH motifs in PAR1&2 endow breast cancer growth. Nat Commun. 2015;6. doi:10.1038/ncomms9853
19. Grisaru-Granovsky S, Salah Z, Maoz M, et al. Protease-activated-receptor 1 polymorphisms correlate with risk for unexplained recurrent pregnancy loss: A pilot study querying an association beyond coagulation. Eur J Obstet Gynecol Reprod Biol. 2015;185:13-18. doi:10.1016/j.ejogrb.2014.11.021
20. Jaber M, Maoz M, Kancharla A, et al. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cell Mol Life Sci. 2014;71(13):2517-2533. doi:10.1007/s00018-013-1498-7
21. Grisaru-Granovsky S, Maoz M, Turm H, Bar-Shavit R. Emerging tasks of PAR1 and PAR2 in the placenta trophoblast anchoring to the uterus deciduas. In: The Placenta: Development, Function and Diseases. Nova Science Publishers, Inc.; 2013:31-42. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84895352052&partnerID=40&md5=934d681f69fe9716446406ffa64a4bab
22. Salah Z, Uziely B, Jaber M, et al. Regulation of human protease-activated receptor 1 (hPar1) gene expression in breast cancer by estrogen. FASEB J. 2012;26(5):2031-2042. doi:10.1096/fj.11-194704
23. Uziely B, Maoz M, Salah Z, et al. Emerging tasks of thrombin and its receptors in epithelial tumor development. In: Thrombin: Function and Pathophysiology. Nova Science Publishers, Inc.; 2012:199-213. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84895251334&partnerID=40&md5=4e04ba0c02ad419f1e2002cc586dd05a
24. Bar-Shavit R, Turm H, Salah Z, et al. PAR1 plays a role in epithelial malignancies: Transcriptional regulation and novel signaling pathway. IUBMB Life. 2011;63(6):397-402. doi:10.1002/iub.452
25. Turm H, Maoz M, Katz V, Yin Y-J, Offermanns S, Bar-Shavit R. Protease-activated receptor-1 (PAR1) acts via a novel Gα 13-dishevelled axis to stabilize β-catenin levels. J Biol Chem. 2010;285(20):15137-15148. doi:10.1074/jbc.M109.072843
26. Turm H, Grisaru-Granvosky S, Maoz M, Offermanns S, Bar-Shavit R. DVL as a scaffold protein capturing classical GPCRs. Commun Integr Biol. 2010;3(6):495-498. doi:10.4161/cib.3.6.12979
27. Cohen I, Maoz M, Turm H, et al. Etk/Bmx regulates proteinase-activated-receptor1 (PAR1) in breast cancer invasion: Signaling partners, hierarchy and physiological significance. PLoS One. 2010;5(6). doi:10.1371/journal.pone.0011135
28. Grisaru-Granovsky S, Maoz M, Barzilay O, Yin Y-J, Prus D, Bar-Shavit R. Protease Activated Receptor-1, PAR1, promotes placenta trophoblast invasion and β-catenin stabilization. J Cell Physiol. 2009;218(3):512-521. doi:10.1002/jcp.21625
29. Salah Z, Grisaru-Granovsky S, Maoz M, et al. The role of thrombin and its receptors in epithelial malignancies: Lessons from a transgenic mouse model and transcriptional regulation. In: Thrombin: Physiology and Disease. Springer US; 2009:173-188. doi:10.1007/978-0-387-09637-7_10
30. Salah Z, Haupt S, Maoz M, et al. p53 controls hPar1 function and expression. Oncogene. 2008;27(54):6866-6874. doi:10.1038/onc.2008.324
31. Shavit E, Beilin O, Korczyn AD, et al. Thrombin receptor PAR-1 on myelin at the node of Ranvier: A new anatomy and physiology of conduction block. Brain. 2008;131(4):1113-1122. doi:10.1093/brain/awn005
32. Salah Z, Maoz M, Pokroy E, Lotem M, Bar-Shavit R, Uziely B. Protease-activated receptor-1 (hPar1), a survival factor eliciting tumor progression. Mol Cancer Res. 2007;5(3):229-240. doi:10.1158/1541-7786.MCR-06-0261
33. Grisaru-Granovsky S, Tevet A, Bar-Shavit R, et al. Association study of protease activated receptor 1 gene polymorphisms and adverse pregnancy outcomes: Results of a pilot study in Israel. Am J Med Genet Part A. 2007;143(21):2557-2563. doi:10.1002/ajmg.a.31985
34. Salah Z, Maoz M, Pizov G, Bar-Shavit R. Transcriptional regulation of human protease-activated receptor 1: A role for the early growth response-1 protein in prostate cancer. Cancer Res. 2007;67(20):9835-9843. doi:10.1158/0008-5472.CAN-07-1886
35. Yin Y-J, Katz V, Salah Z, et al. Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to β-catenin stabilization. Cancer Res. 2006;66(10):5224-5233. doi:10.1158/0008-5472.CAN-05-4234
36. Cohen I, Pappo O, Elkin M, et al. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer. 2006;118(7):1609-1617. doi:10.1002/ijc.21552
37. Granovsky-Grisaru S, Zaidoun S, Grisaru D, et al. The pattern of Protease Activated Receptor 1 (PAR1) expression in endometrial carcinoma. Gynecol Oncol. 2006;103(3):802-806. doi:10.1016/j.ygyno.2006.05.048
38. Salah Z, Maoz M, Cohen I, et al. Identification of a novel functional androgen response element within hPar1 promoter: Implications to prostate cancer progression. FASEB J. 2005;19(1):62-72. doi:10.1096/fj.04-2386com
39. Grisaru-Granovsky S, Salah Z, Maoz M, Pruss D, Beller U, Bar-Shavit R. Differential expression of Protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int J Cancer. 2005;113(3):372-378. doi:10.1002/ijc.20607
40. Even-Ram SC, Grisaru-Granovsky S, Pruss D, et al. The pattern of expression of protease-activated receptors (PARs) during early trophoblast development. J Pathol. 2003;200(1):47-52. doi:10.1002/path.1338
41. Yin Y-J, Salah Z, Maoz M, et al. Oncogenic transformation induces tumor angiogenesis: A role for PAR1 activation. FASEB J. 2003;17(2):163-174. doi:10.1096/fj.02-0316com
42. Yin Y-J, Salah Z, Grisaru-Granovsky S, et al. Human protease-activated receptor 1 expression in malignant epithelia: A role in invasiveness. Arterioscler Thromb Vasc Biol. 2003;23(6):940-944. doi:10.1161/01.ATV.0000066878.27340.22
43. Bar-Shavit R, Maoz M, Yongjun Y, Groysman M, Dekel I, Katzav S. Signalling pathways induced by protease-activated receptors and integrins in T cells. Immunology. 2002;105(1):35-46. doi:10.1046/j.0019-2805.2001.01351.x
44. Nassar T, Akkawi S, Bar-Shavit R, et al. Human α-defensin regulates smooth muscle cell contraction: A role for low-density lipoprotein receptor-related protein/α2-macroglobulin receptor. Blood. 2002;100(12):4026-4032. doi:10.1182/blood-2002-04-1080
45. Schiffenbauer YS, Meir G, Maoz M, Even-Ram SC, Bar-Shavit R, Neeman M. Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell adhesion mediated by CD44 and by αv-integrin. Gynecol Oncol. 2002;84(2):296-302. doi:10.1006/gyno.2001.6512
46. Even-Ram SC, Maoz M, Pokroy E, et al. Tumor Cell Invasion Is Promoted by Activation of Protease Activated Receptor-1 in Cooperation with the αvβ5 Integrin. J Biol Chem. 2001;276(14):10952-10962. doi:10.1074/jbc.M007027200
47. Landau E, Tirosh R, Pinson A, et al. Protection of thrombin receptor expression under hypoxia. J Biol Chem. 2000;275(4):2281-2287. doi:10.1074/jbc.275.4.2281
48. Even-Ram S, Uziely B, Cohen P, et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med. 1998;4(8):909-914. doi:10.1038/nm0898-909
49. Bar-Shavit R, Maoz M, Ginzburg Y, Vlodavsky I. Specific involvement of glypican in thrombin adhesive properties. J Cell Biochem. 1996;61(2):278-291. doi:10.1002/(SICI)1097-4644(19960501)61:2<278::AID-JCB11>3.0.CO;2-I
50. Bar-Shavit R, Maoz M, Ginzburg Y, Vlodavsky I. Erratum: Specific involvement of Glypican in thrombin adhesive properties (Journal of Cell Biochemistry (1996) 61 (278-291)). J Cell Biochem. 1996;62(1):144. doi:10.1002/(SICI)1097-4644(199607)62:1<144::AID-JCB17>3.0.CO;2-N
51. Bitan M, Mohsen M, Levi E, et al. Structural requirements for inhibition of melanoma lung colonization by heparanase inhibiting species of heparin. Isr J Med Sci. 1995;31(2-3):106-118. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029053106&partnerID=40&md5=e7e067879208a647a66e344c17da032f
52. Bar-Shavit R, Ginzburg Y, Maoz M, Vlodavsky I, Peretz T. The involvement of thrombin RGD in metastasis: Characterization of a cryptic adhesive site. Isr J Med Sci. 1995;31(2-3):86-94. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029000246&partnerID=40&md5=d284ee9b0e1e5ddda4a3c46e559518f1
53. Vlodavsky I, Miao H-Q, Atzmon R, et al. Control of cell proliferation by heparan sulfate and heparin-binding growth factors. In: Thrombosis and Haemostasis. Vol 74. Schattauer GmbH; 1995:534-540. doi:10.1055/s-0038-1642735
54. Herbert J-M, Dupuy E, Laplace M-C, Zini J-M, Bar Shavit R, Tobelem G. Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway. Biochem J. 1994;303(1):227-231. doi:10.1042/bj3030227
55. Benezra M, Ben-Sasson SA, Regan J, Chang M, Bar-Shavit R, Vlodavsky I. Antiproliferative activity to vascular smooth muscle cells and receptor binding of heparin-mimicking polyaromatic anionic compounds. Arterioscler Thromb Vasc Biol. 1994;14(12):1992-1999. doi:10.1161/01.ATV.14.12.1992
56. Vettel U, Brunner G, Bar‐Shavit R, Vlodavsky I, Kramer MD. Charge‐dependent binding of granzyme A (MTSP‐1) to basement membranes. Eur J Immunol. 1993;23(1):279-282. doi:10.1002/eji.1830230144
57. Benezra M, Vlodavsky I, Bar-Shavit R. Prothrombin conversion to thrombin by plasminogen activator residing in the subendothelial extracellular matrix. Semin Thromb Hemost. 1993;19(4):405-411. doi:10.1055/s-2007-993292
58. Benezra M, Vlodavsky I, Ishai-Michaeli R, Neufeld G, Bar-Shavit R. Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extracellular matrix. Blood. 1993;81(12):3324-3331. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027198859&partnerID=40&md5=54f2a377021ef8c601fbd0f660a12bcc
59. Bar-Shavit R, Eskohjido Y, Fenton II JW, Esko JD, Vlodavsky I. Thrombin adhesive properties: Induction by plasmin and heparan sulfate. J Cell Biol. 1993;123(5):1279-1287. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027508318&partnerID=40&md5=ec50640afc97356101f0cb63d933da26
60. Benezra M, Vlodavsky I, Bar-Shavit R. Thrombin enhances degradation of heparan sulfate in the extracellular matrix by tumor cell heparanase. Exp Cell Res. 1992;201(1):208-215. doi:10.1016/0014-4827(92)90365-F
61. Bar-Shavit R, Benezra M, Sabbah V, Bode W, Vlodavsky I. Thrombin as a multifunctional protein: induction of cell adhesion and proliferation. Am J Respir Cell Mol Biol. 1992;6(2):123-130. doi:10.1165/ajrcmb/6.2.123
62. Vlodavsky I, Ishai-Michaeli R, Mohsen M, et al. Modulation of neovascularization and metastasis by species of heparin. In: Advances in Experimental Medicine and Biology. Vol 313. ; 1992:317-327. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026655522&partnerID=40&md5=22048d5edb59e5bf00c642ccf2034bad
63. Vlodavsky I, Ishai‐Michaeli R, Bashkin P, et al. Extracellular matrix‐resident basic fibroblast growth factor: Implication for the control of angiogenesis. J Cell Biochem. 1991;45(2):167-176. doi:10.1002/jcb.240450208
64. Bar-Shavit R, Sabbah V, Lampugnani MG, et al. An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion. J Cell Biol. 1991;112(2):335-344. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026053766&partnerID=40&md5=2d1b6b45704aef5872d5f79ef520ee20
65. Vlodavsky I, Bar-Shavit R, Ishar-Michael R, Bashkin P, Fuks Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci. 1991;16(C):268-271. doi:10.1016/0968-0004(91)90102-2
66. VLOAVSKY I, BASHKIN P, ISHAI‐MICHAELI R, et al. Sequestration and Release of Basic Fibroblast Growth Factor. Ann N Y Acad Sci. 1991;638(1):207-220. doi:10.1111/j.1749-6632.1991.tb49032.x
67. Vettel U, Bar‐Shavit R, Simon MM, Brunner G, Vlodavsky I, Kramer MD. Coordinate secretion and functional synergism of T cell‐associated serine proteinase‐1 (MTSP‐1) and endoglycosidase(s) of activated T cells. Eur J Immunol. 1991;21(9):2247-2251. doi:10.1002/eji.1830210936
68. Chajek-Shaul T, Friedman G, Bengtsson-Olivecrona G, Vlodavsky I, Bar-Shavit R. Interaction of lipoprotein lipase with subendothelial extracellular matrix. Biochim Biophys Acta (BBA)/Lipids Lipid Metab. 1990;1042(2):168-175. doi:10.1016/0005-2760(90)90003-G
69. Bar-Shavit R, Benezra M, Eldor A, et al. Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: Nonenzymatic mode of action. Mol Biol Cell. 1990;1(6):453-463. doi:10.1091/mbc.1.6.453
70. Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. CANCER METASTASIS Rev. 1990;9(3):203-226. doi:10.1007/BF00046361
71. Bar-Shavit R, Eldor A, Vlodavsky I. Binding of thrombin to subendothelial extracellular matrix. Protection and expression of functional properties. J Clin Invest. 1989;84(4):1096-1104. doi:10.1172/JCI114272
72. Spira O, Atzmon R, Rahamim E, et al. Striated muscle fibers differentiate in primary cultures of adult anterior pituitary cells. Endocrinology. 1988;122(6):3002-3004. doi:10.1210/endo-122-6-3002
73. Bar‐Shavit R, Hruska KA, Kahn AJ, Wilner GD. Thrombin chemotactic stimulation of HL‐60 cells: Studies on thrombin responsiveness as a function of differentiation. J Cell Physiol. 1987;131(2):255-261. doi:10.1002/jcp.1041310216
74. Bar-Shavit R, Kahn AJ, Mann KG, Wilner GD. Growth-promoting effects of esterolytically inactive thrombin on macrophages. J Cell Biochem. 1986;32(4):261-272. doi:10.1002/jcb.240320403
75. Bar-Shavit R, Wilner GD. Mediation of cellular events by thrombin. Int Rev Exp Pathol. 1986;Vol. 29:213-241. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022931334&partnerID=40&md5=3808200f3ca4be6b9d83bae0312541da
76. Bar-Shavit R, Wilner GD. Biologic activities of nonenzymatic thrombin: Elucidation of a macrophage interactive domain. Semin Thromb Hemost. 1986;12(3):244-249. doi:10.1055/s-2007-1003561
77. Bar-Shavit R, Kahn AJ, Mann KG, Wilner GD. Identification of a thrombin sequence with growth factor activity on macrophages. Proc Natl Acad Sci U S A. 1986;83(4):976-980. doi:10.1073/pnas.83.4.976
78. BAR‐SHAVIT R, HRUSKA KA, KAHN AJ, WILNER GD. Hormone‐Like Activity of Human Thrombin. Ann N Y Acad Sci. 1986;485(1):335-348. doi:10.1111/j.1749-6632.1986.tb34595.x
79. Bar-Shavit R, Kahn A, Mudd MS, Wilner GD, Mann KG, Fenton JW. Localization of a Chemotactic Domain in Human Thrombin. Biochemistry. 1984;23(3):397-400. doi:10.1021/bi00298a001
80. Shainberg A, Brik H, Bar Shavit R, Sampson SR. Inhibition of acetylcholine receptor synthesis by thyroid hormones. J Endocrinol. 1984;101(2):141-147. doi:10.1677/joe.0.1010141
81. Bar Shavit R, Kahn A, Fenton II JW, Wilner GD. Receptor-mediated chemotactic response of a macrophage cell line (J774) to thrombin. Lab Investig. 1983;49(6):702-707. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021091174&partnerID=40&md5=24c1b92d904c12ac6b4ac513d1720ca1
82. Bar-Shavit R, Kahn A, Wilner GD, Fenton II JW. Monocyte chemotaxis: Stimulation by specific exosite region in thrombin. Science (80- ). 1983;220(4598):728-731. doi:10.1126/science.6836310
83. Bar-Shavit R, Kahn A, Fenton II JW, Wilner GD. Chemotactic response of monocytes to thrombin. J Cell Biol. 1983;96(1):282-285. doi:10.1083/jcb.96.1.282
84. Bar Shavit R, Kahn A, Fenton II JW, Wilner GD. Chemotactic response of monocytes to thrombin. Clin Res. 1982;30(4):729A. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020355298&partnerID=40&md5=a9246c80419920f127a2de2ffdbdfc5c
85. DePamphilis ML, Anderson S, Bar-Shavit R, et al. Replication and structure of simian virus 40 chromosomes. Cold Spring Harb Symp Quant Biol. 1979;43(2):679-692. doi:10.1101/sqb.1979.043.01.076
86. Bar-Shavit R, Laub O, Aloni Y. The Frequencies of Transcription from the E- and L-Strands of Polyoma DNA. J Gen Virol. 1978;39(2):357-360. doi:10.1099/0022-1317-39-2-357
87. Kaufmann G, Bar-Shavit R, Depamphilis ML. Okazaki pieces grow opposite to the replication fork direction during simian virus 40 DNA replication. Nucleic Acids Res. 1978;5(7):2535-2546. doi:10.1093/nar/5.7.2535