Skip to Main Content

Hadassah Medical Center: Melloul Danielle

Last updated September 2023 - Hadassah Medical Center

List of Publications

1.

Srivastava R, Horwitz M, Hershko-Moshe A, Bronstein S, Ben-Dov IZ, Melloul D. Posttranscriptional regulation of the prostaglandin E receptor spliced-isoform EP3-γ and its implication in pancreatic β-cell failure. FASEB Journal [Internet]. 2023;37(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159740962&doi=10.1096%252ffj.202201984R&partnerID=40&md5=810e84ee83d7249a33207e4c40407602

2.

Sever D, Hershko-Moshe A, Srivastava R, Eldor R, Hibsher D, Keren-Shaul H, et al. NF-κB activity during pancreas development regulates adult β-cell mass by modulating neonatal β-cell proliferation and apoptosis. Cell Death Discovery [Internet]. 2021;7(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098863249&doi=10.1038%252fs41420-020-00386-9&partnerID=40&md5=7ec584f58747b0c9db3f1ec6f498bdf3

3.

Amior L, Srivastava R, Nano R, Bertuzzi F, Melloul D. The role of Cox-2 and prostaglandin E2 receptor EP3 in pancreatic b-cell death. FASEB Journal [Internet]. 2019;33(4):4975–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064115157&doi=10.1096%252ffj.201801823R&partnerID=40&md5=54fe87508db83720192e3faa66191f22

4.

Ntimbane T, Mailhot G, Spahis S, Rabasa-Lhoret R, Kleme ML, Melloul D, et al. CFTR silencing in pancreaticβ-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response. American Journal of Physiology - Endocrinology and Metabolism [Internet]. 2016;310(3):E200–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84956927652&doi=10.1152%252fajpendo.00333.2015&partnerID=40&md5=1c1249f8acfe7f42220cf3b03a930d47

5.

Eldor R, Abel R, Sever D, Sadoun G, Peled A, Sionov R, et al. Inhibition of Nuclear Factor-κB Activation in Pancreatic β-Cells Has a Protective Effect on Allogeneic Pancreatic Islet Graft Survival. PLoS ONE [Internet]. 2013;8(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874338134&doi=10.1371%252fjournal.pone.0056924&partnerID=40&md5=6fd749c55e43c23c6e0fe089faa6b8e6

6.

Reich E, Tamary A, Vogt Sionov R, Melloul D. Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death. Diabetologia [Internet]. 2012;55(4):1048–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862579644&doi=10.1007%252fs00125-011-2422-z&partnerID=40&md5=eef6e04cf4e1a1f86233c0f54cccf21e

7.

Sever D, Eldor R, Sadoun G, Amior L, Dubois D, Boitard C, et al. Evaluation of impaired β-cell function in nonobese-diabetic (NOD) mouse model using bioluminescence imaging. FASEB Journal [Internet]. 2011;25(2):676–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79551635096&doi=10.1096%252ffj.10-158121&partnerID=40&md5=3eb24806419e1ebe8a9e5a879729c5ff

8.

Eldor R, Baum K, Abel R, Sever D, Melloul D. The ToI-β transgenic mouse: a model to study the specific role of NF-κB in β-cells. Diabetes Research and Clinical Practice [Internet]. 2009;86(SUPLL.1):S7–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-72049109962&doi=10.1016%2fS0168-8227%2809%2970003-8&partnerID=40&md5=dcc97918f706c13bb26f267cb26585a3

9.

Melloul D. Role of NF-κB in β-cell death. Biochemical Society Transactions [Internet]. 2008;36(3):334–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-45249090859&doi=10.1042%252fBST0360334&partnerID=40&md5=7d1f4710242aeaec6073a7085f400992

10.

Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2006;103(13):5072–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645518035&doi=10.1073%252fpnas.0508166103&partnerID=40&md5=01e2bb2a3e17b5968ee9cb96b6a0bee4

11.

Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2005;102(13):4807–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-20144389645&doi=10.1073%252fpnas.0409177102&partnerID=40&md5=283e1ba951e6aa413730d8a160f9d7ea

12.

Melloul D. Transcription factors in islet development and physiology: Role of PDX-1 in beta-cell function. Annals of the New York Academy of Sciences [Internet]. 2004;1014:28–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-2342608007&doi=10.1196%252fannals.1294.003&partnerID=40&md5=b646ff8d8b4d69acaffc6868097920cb

13.

Melloul D, Stoffel M. Regulation of transcriptional coactivator PGC-1alpha. Science of aging knowledge environment : SAGE KE [Internet]. 2004;2004(9):pe9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-2342557365&partnerID=40&md5=941b6ba280b34459a46fd89f9b75d43f

14.

Schwitzgebel VM, Mamin A, Brun T, Ritz-Laser B, Zaiko M, Maret A, et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. Journal of Clinical Endocrinology and Metabolism [Internet]. 2003;88(9):4398–406. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0141787919&doi=10.1210%252fjc.2003-030046&partnerID=40&md5=65043a9b9aa4f469014839e717ab2c66

15.

Melloul D, Marshak S, Cerasi E. Regulation of pdx-1 gene expression. Diabetes [Internet]. 2002;51(SUPPL. 3):S320–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036895372&doi=10.2337%252fdiabetes.51.2007.s320&partnerID=40&md5=d9cf7bf58baa757a9273c117f198f9d3

16.

Melloul D, Marshak S, Cerasi E. Regulation of insulin gene transcription. Diabetologia [Internet]. 2002;45(3):309–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036210550&doi=10.1007%252fs00125-001-0728-y&partnerID=40&md5=39190866757a355e7e29c11f1db382bb

17.

Melloul D, Tsur A, Zangen D. Pancreatic Duodenal Homeobox (PDX-1) in health and disease. Journal of Pediatric Endocrinology and Metabolism [Internet]. 2002;15(9):1461–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036913834&doi=10.1515%252fJPEM.2002.15.9.1461&partnerID=40&md5=85993c574a3f6d79187473ac619f9e39

18.

Ben-Shushan E, Marshak S, Shoshkes M, Cerasi E, Melloul D. A Pancreatic β-Cell-specific Enhancer in the Human PDX-1 Gene Is Regulated by Hepatocyte Nuclear Factor 3β (HNF-3β), HNF-1α, and SPs Transcription Factors. Journal of Biological Chemistry [Internet]. 2001;276(20):17533–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035907378&doi=10.1074%252fjbc.M009088200&partnerID=40&md5=c619b1f52e074c3ba12244a779a0b086

19.

Leibowitz G, Ferber S, Apelqvist Å, Edlund H, Gross DJ, Cerasi E, et al. IPF1/PDX1 Deficiency and β-Cell Dysfunction in Psammomys obesus, an Animal with Type 2 Diabetes. Diabetes [Internet]. 2001;50(8):1799–806. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035431017&doi=10.2337%252fdiabetes.50.8.1799&partnerID=40&md5=77a210d687f26a5ec8729102bacce826

20.

Marshak S, Benshushan E, Shoshkes M, Leibovitz G, Kaiser N, Gross D, et al. β-cell-specific expression of insulin and PDX-1 genes. Diabetes [Internet]. 2001;50(SUPPL. 1):S131–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035128921&doi=10.2337%252fdiabetes.50.2007.s131&partnerID=40&md5=447ae6fa78f7716ae3b01f40bab7fea4

21.

Leibowitz G, Yuli M, Donath MY, Nesher R, Melloul D, Cerasi E, et al. β-cell glucotoxicity in the Psammomys obesus model of type 2 diabetes. Diabetes [Internet]. 2001;50(SUPPL. 1):S113–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035124998&doi=10.2337%252fdiabetes.50.2007.s113&partnerID=40&md5=e23e32133a9c3e7ef77ccec07237a243

22.

Marshak S, Leibowitz G, Bertuzzi F, Socci C, Kaiser N, Gross DJ, et al. Impaired β-cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose. Diabetes [Internet]. 2000;48(6):1230–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344258475&doi=10.2337%252fdiabetes.48.6.1230&partnerID=40&md5=7e8d023ddf1b99277e3d78a38d48e2e2

23.

Melloul D, Kaiser N, Cerasi E. Chronic exposure to high glucose impairs multiple β-cell functions in cultured human pancreatic islets. Current Opinion in Endocrinology and Diabetes [Internet]. 2000;7(1):44–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034050838&doi=10.1097%252f00060793-200002000-00007&partnerID=40&md5=bb258c8bbeaee169f26f06d651aaf99f

24.

Marshak S, Benshushan E, Shoshkes M, Havin L, Cerasi E, Melloul D. Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3β transcription factors mediate β-cell-specific expression. Molecular and Cellular Biology [Internet]. 2000;20(20):7583–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033800896&doi=10.1128%252fMCB.20.20.7583-7590.2000&partnerID=40&md5=07865a3343ca6c44a3ad168bf54b58f0

25.

Shushan EB, Cerasi E, Melloul D. Regulation of the insulin gene by glucose: Stimulation of trans- activation potency of human PDX-1 N-terminal domain. DNA and Cell Biology [Internet]. 1999;18(6):471–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033050114&doi=10.1089%252f104454999315196&partnerID=40&md5=1cf3706c2355b7fb4ee81bca4b54c455

26.

Cerasi E, Marshak S, Totary H, Melloul D. 1997 Maurice Dérot. Transcriptional regulation of the insulin gene: a step toward gene therapy of diabetes [Prix Maurice Dérot 1997. Etudes sur la régulation transcriptionnelle du gène de l’insuline: un pas vers la thérapie génique du diabète.]. Journées annuelles de diabétologie de l’Hôtel-Dieu [Internet]. 1997;299–304. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030624122&partnerID=40&md5=e8fa7ad1253251329637ad0487a0502d

27.

Marshak S, Totary H, Cerasi E, Melloul D. Purification of the β-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1996;93(26):15057–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030447883&doi=10.1073%252fpnas.93.26.15057&partnerID=40&md5=6617347f45edcd205ee521ba09201ec8

28.

German M, Ashcroft S, Docherty K, Edlund H, Edlund T, Goodison S, et al. The insulin gene promoter: A simplified nomenclature. Diabetes [Internet]. 1995;44(8):1002–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029095353&doi=10.2337%252fdiab.44.8.1002&partnerID=40&md5=3a4c0684084d69fbaa2f210043c6dc42

29.

Zion M, Ben-Yehuda D, Avraham A, Cohen O, Wetzler M, Melloul D, et al. Progressive de novo DNA methylation at the bcr-abl locus in the course of chronic myelogenous leukemia. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1994;91(22):10722–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028035056&doi=10.1073%252fpnas.91.22.10722&partnerID=40&md5=59725b9426ff0f040dae3e9d0496fbb4

30.

Melloul D, Cerasi E. Transcription of the insulin gene: towards defining the glucosesensitive cis-element and trans-acting factors. Diabetologia [Internet]. 1994;37(2 Supplement):S3–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027981385&doi=10.1007%252fBF00400820&partnerID=40&md5=1c30756aa2038940efa109a33bce85db

31.

Sasson S, Ashhab Y, Melloul D, Cerasi E. Autoregulation of glucose transport: Effects of glucose on glucose transporter expression and cellular location in muscle. Advances in Experimental Medicine and Biology [Internet]. 1993;334:113–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027483683&doi=10.1007%252f978-1-4615-2910-1_9&partnerID=40&md5=04f58d5c51698e3f400dadbd6986a49e

32.

Melloul D, Ben-Neriah Y, Cerasi E. Glucose modulates the binding of an islet-specific factor to a conserved sequence within the rat I and the human insulin promoters. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1993;90(9):3865–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027154077&doi=10.1073%252fpnas.90.9.3865&partnerID=40&md5=00d10bb0058d63becccbfe1ecbc9f1eb

33.

Yisraeli J, Adelstein RS, Melloul D, Nudel U, Yaffe D, Cedar H. Muscle-specific activation of a methylated chimeric actin gene. Cell [Internet]. 1986;46(3):409–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022538380&doi=10.1016%2f0092-8674%2886%2990661-6&partnerID=40&md5=be2ca96db4580b720e07589a8d33ace0

34.

Yaffe D, Nudel U, Czosnek H, Melloul D, Aloni B. The chromosomal assignment of muscle-specific genes. Advances in experimental medicine and biology [Internet]. 1985;182:295–307. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021905991&doi=10.1007%252f978-1-4684-4907-5_27&partnerID=40&md5=4f4b69fc19f97d866c97fdf6b8e1031d

35.

Melloul D, Aloni B, Calvo J, Yaffe D, Nudel U. Developmentally regulated expression of chimeric genes containing muscle actin DNA sequences in transfected myogenic cells. The EMBO journal [Internet]. 1984;3(5):983–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021430821&doi=10.1002%252fj.1460-2075.1984.tb01917.x&partnerID=40&md5=c6b9f5af01e5d4e77ab058ab425b19d7