Last updated September 2024 - Hadassah Medical Center
1. Saba, E. et al. Oral bacteria accelerate pancreatic cancer development in mice. Gut 73, 770–786 (2024).
2. Nahmias-Blank, D. et al. Excess body weight and postmenopausal breast cancer: Emerging molecular mechanisms and perspectives. Semin. Cancer Biol. 96, 26–35 (2023).
3. Abecassis, A. et al. Radiation-Induced Nephropathy in the Murine Model Is Ameliorated by Targeting Heparanase. Biomedicines 11, (2023).
4. Abecassis, A. et al. Heparanase contributes to pancreatic carcinoma progression through insulin-dependent glucose uptake. Front. Cell Dev. Biol. 11, (2023).
5. Nahmias Blank, D. et al. Macrophages Upregulate Estrogen Receptor Expression in the Model of Obesity-Associated Breast Carcinoma. Cells 11, (2022).
6. Zahavi, T. et al. Heparanase: a potential marker of worse prognosis in estrogen receptor-positive breast cancer. npj Breast Cancer 7, (2021).
7. Hermano, E. et al. Dichotomic role of heparanase in a murine model of metabolic syndrome. Cell. Mol. Life Sci. 78, 2771–2780 (2021).
8. Gnanasekaran, J. et al. Intracellular Porphyromonas gingivalis promotes the tumorigenic behavior of pancreatic carcinoma cells. Cancers (Basel). 12, 1–14 (2020).
9. Visochek, L. et al. Erratum: Exclusive destruction of mitotic spindles in human cancer cells (Oncotarget (2017) 8 (20813-20824) DOI: 10.18632/oncotarget.15343). Oncotarget 11, 1290–1291 (2020).
10. Elkin, M. Role of Heparanase in Macrophage Activation. Advances in Experimental Medicine and Biology vol. 1221 445–460 (2020).
11. Goldberg, R. et al. Regulation of Heparanase in Diabetes-Associated Pancreatic Carcinoma. Front. Oncol. 9, (2019).
12. Hermano, E. et al. Heparanase accelerates obesity-associated breast cancer progression. Cancer Res. 79, 5342–5354 (2019).
13. Rabelink, T. J. et al. Heparanase: Roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat. Rev. Nephrol. 13, 201–212 (2017).
14. Gallimidi, A. B. et al. Syndecan-1 deficiency promotes tumor growth in a murine model of colitis-induced colon carcinoma. PLoS One 12, (2017).
15. Visochek, L. et al. Exclusive destruction of mitotic spindles in human cancer cells. Oncotarget 8, 20813–20824 (2017).
16. Goldberg, R. et al. Heparanase augments insulin receptor signaling in breast carcinoma. Oncotarget 8, 19403–19412 (2017).
17. Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N. & Vlodavsky, I. Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J. 284, 42–55 (2017).
18. Vlodavsky, I. et al. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist. Updat. 29, 54–75 (2016).
19. Garsen, M. et al. Heparanase is essential for the development of acute experimental glomerulonephritis. Am. J. Pathol. 186, 805–815 (2016).
20. Gallimidi, A. B. et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 6, 22613–22623 (2015).
21. Hermano, E. et al. Macrophage polarization in pancreatic carcinoma: Role of heparanase enzyme. J. Natl. Cancer Inst. 106, (2014).
22. Goldberg, R. et al. Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes 63, 4302–4313 (2014).
23. Lerner, I. et al. Heparanase is preferentially expressed in human psoriatic lesions and induces development of psoriasiform skin inflammation in mice. Cell. Mol. Life Sci. 71, 2347–2357 (2014).
24. Hirshoren, N. et al. Induction of heparanase by HPV E6 oncogene in head and neck squamous cell carcinoma. J. Cell. Mol. Med. 18, 181–186 (2014).
25. Goldberg, R. et al. Versatile role of heparanase in inflammation. Matrix Biol. 32, 234–240 (2013).
26. Meirovitz, A. et al. Heparanase in inflammation and inflammation-associated cancer. FEBS J. 280, 2307–2319 (2013).
27. Vlodavsky, I. et al. Heparanase, a multifaceted protein involved in cancer, chronic inflammation, and kidney dysfunction. in Extracellular Matrix: Pathobiology and Signaling 824–854 (De Gruyter, 2012).
28. Vlodavsky, I. et al. Significance of heparanase in cancer and inflammation. Cancer Microenviron. 5, 115–132 (2012).
29. Hermano, E., Lerner, I. & Elkin, M. Heparanase enzyme in chronic inflammatory bowel disease and colon cancer. Cell. Mol. Life Sci. 69, 2501–2513 (2012).
30. Gil, N. et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 61, 208–216 (2012).
31. Lerner, I. et al. Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J. Clin. Invest. 121, 1709–1721 (2011).
32. Meirovitz, A. et al. Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res. 71, 2772–2780 (2011).
33. Ilan, N., Fux, L., Elkin, M. & Vlodavsky, I. Molecular and cellular aspects of heparanase. in Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy 247–272 (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-33177-3_14.
34. Vlodavsky, I. et al. Heparanase: One molecule with multiple functions in cancer progression. Connect. Tissue Res. 49, 207–210 (2008).
35. Lerner, I. et al. Function of heparanase in prostate tumorigenesis: Potential for therapy. Clin. Cancer Res. 14, 668–676 (2008).
36. Patel, V. N. et al. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134, 4177–4186 (2007).
37. Cohen, I. et al. Tamoxifen induces heparanase expression in estrogen receptor - Positive breast cancer. Clin. Cancer Res. 13, 4069–4077 (2007).
38. Philp, D. et al. Thymosin beta 4 induces hair growth via stem cell migration and differentiation. Annals of the New York Academy of Sciences vol. 1112 95–103 (2007).
39. Cid, M. C. et al. Association between increased CCL2 (MCP-1) expression in lesions and persistence of disease activity in giant-cell arteritis. Rheumatology 45, 1356–1363 (2006).
40. Ilan, N., Elkin, M. & Vlodavsky, I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int. J. Biochem. Cell Biol. 38, 2018–2039 (2006).
41. Baraz, L., Haupt, Y., Elkin, M., Peretz, T. & Vlodavsky, I. Tumor suppressor p53 regulates heparanase gene expression. Oncogene 25, 3939–3947 (2006).
42. Vlodavsky, I. et al. The impact of heparanase and heparin on cancer metastasis and angiogenesis. Pathophysiol. Haemost. Thromb. 35, P116–P127 (2006).
43. Edovitsky, E. et al. Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107, 3609–3616 (2006).
44. Cohen, I. et al. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int. J. Cancer 118, 1609–1617 (2006).
45. Zcharia, E. et al. Heparanase regulates murine hair growth. Am. J. Pathol. 166, 999–1008 (2005).
46. Edovitsky, E., Elkin, M., Zcharia, E., Peretz, T. & Vlodavsky, I. Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J. Natl. Cancer Inst. 96, 1219–1230 (2004).
47. Elkin, M., Orgel, A. & Kleinman, H. K. An angiogenic switch in breast cancer involves estrogen and soluble vascular endothelial growth factor receptor 1. J. Natl. Cancer Inst. 96, 875–878 (2004).
48. Zcharia, E. et al. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J. 18, 252–263 (2004).
49. Philp, D. et al. Thymosin beta4 increases hair growth by activation of hair follicle stem cells. FASEB J. 18, 385–387 (2004).
50. Elkin, M. et al. Regulation of Heparanase Gene Expression by Estrogen in Breast Cancer. Cancer Res. 63, 8821–8826 (2003).
51. Vlodavsky, I. et al. Mammalian heparanase: Involvement in cancer metastasis, angiogenesis and normal development. Semin. Cancer Biol. 12, 121–129 (2002).
52. Zcharia, E. et al. Molecular properties and involvement of heparanase in cancer progression and mammary gland morphogenesis. J. Mammary Gland Biol. Neoplasia 6, 311–322 (2001).
53. Song Gho, Y., Kim, P. N., Li, H.-C., Elkin, M. & Kleinman, H. K. Stimulation of tumor growth by human soluble intercellular adhesion molecule-1. Cancer Res. 61, 4253–4257 (2001).
54. Elkin, M. & Vlodavsky, I. Tail vein assay of cancer metastasis. Curr. Protoc. Cell Biol. Chapter 19, (2001).
55. Elkin, M. et al. Heparanase as mediator of angiogenesis: mode of action. FASEB J. 15, 1661–1663 (2001).
56. Vlodavsky, I. et al. Mammalian heparanase as mediator of tumor metastasis and angiogenesis. Isr. Med. Assoc. J. 2, 37–45 (2000).
57. Elkin, M. et al. Halofuginone: A potent inhibitor of critical steps in angiogenesis progression. FASEB J. 14, 2477–2485 (2000).
58. Miao, H.-Q. et al. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int. J. Cancer 83, 424–431 (1999).
59. Elkin, M. et al. Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. Cancer Res. 59, 4111–4118 (1999).
60. Elkin, M. et al. Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone. Clin. Cancer Res. 5, 1982–1988 (1999).
61. Vlodavsky, I. et al. Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis. Nat. Med. 5, 793–802 (1999).
62. Elkin, M. et al. The dynamics of the imprinted H19 gene expression in the mouse model of bladder carcinoma induced by N-butyl-N-(4-hydroxybutyl)nitrosamine. Carcinogenesis 19, 2095–2099 (1998).
63. Rachmilewitz, J. et al. Characterization of the imprinted IPW gene: Allelic expression in normal and tumorigenic human tissues. Oncogene 13, 1687–1692 (1996).
64. Goshen, R. et al. Purification and characterization of placental heparanase and its expression by cultured cytotrophoblasts. Mol. Hum. Reprod. 2, 679–684 (1996).
65. Elkin, M. et al. The expression of the imprinted H19 and IGF-2 genes in human bladder carcinoma. FEBS Lett. 374, 57–61 (1995).
66. Rachmilewitz, J. et al. H19 expression and tumorigenicity of choriocarcinoma derived cell lines. Oncogene 11, 863–870 (1995).
67. Rachmilewitz, J. et al. The interaction between cytotrophoblasts and their derived tumor cells. Gynecol. Oncol. 57, 356–365 (1995).
68. Ariel, I. et al. Relaxation of Imprinting in Trophoblastic Disease. Gynecol. Oncol. 53, 212–219 (1994).