Last updated December 2025 - Hadassah Medical Center
1. Shalata A, Saada A, Mahroum M, et al. Sengers syndrome caused by biallelic TIMM29 variants and RNAi silencing in Drosophila orthologue recapitulates the human phenotype. Hum Genomics. 2025;19(1). doi:10.1186/s40246-025-00723-y
2. Angel M, Kleinberg Y, Newaz T, et al. Using chanarin-dorfman syndrome patient fibroblasts to explore disease mechanisms and new treatment avenues. Orphanet J Rare Dis. 2025;20(1). doi:10.1186/s13023-025-03711-6
3. Ezer S, Ronin N, Yanovsky-Dagan S, et al. Transcriptome analysis of atad3-null zebrafish embryos elucidates possible disease mechanisms. Orphanet J Rare Dis. 2025;20(1). doi:10.1186/s13023-025-03709-0
4. Simchoni M, Avraham L, Derazne E, et al. Protein kinase C epsilon activation improves early survival in an acute porcine model of controlled hemorrhage. Sci Rep. 2025;15(1). doi:10.1038/s41598-025-92310-3
5. Ezer S, Sido T, Rips J, et al. Exploring the unique characteristics of genes with dual autosomal dominant and recessive inheritance: mechanisms, phenotypes and candidate identification. J Med Genet. 2025;62(11):682-692. doi:10.1136/jmg-2025-110872
6. Morelli AM, Saada A, Scholkmann F. Myelin: A possible proton capacitor for energy storage during sleep and energy supply during wakefulness. Prog Biophys Mol Biol. 2025;196:91-101. doi:10.1016/j.pbiomolbio.2025.03.001
7. Morelli AM, Saada A, Scholkmann F. Extra-mitochondrial ATP synthesis, proton dynamics at the membrane, and mitochondria-derived vesicles: Current findings and considerations. Mitochondrial Commun. 2025;3:47-51. doi:10.1016/j.mitoco.2025.06.002
8. Hazan R, Pines O, Saada A. Mitochondrial derived vesicles- Quo Vadis? FEBS J. 2024;291(21):4660-4669. doi:10.1111/febs.17103
9. Halstuk O, Dayan R, Silverstein S, et al. Low prevalence of SCA27B in adult-onset cerebellar ataxia cohort of Jewish ancestry. Park Relat Disord. 2024;126. doi:10.1016/j.parkreldis.2024.107067
10. Hilander T, Awadhpersad R, Monteuuis G, et al. Supernumerary proteins of the human mitochondrial ribosomal small subunit are integral for assembly and translation. iScience. 2024;27(7). doi:10.1016/j.isci.2024.110185
11. Higazi AA-R, Maraga E, Baraghithy S, et al. Characterization of metabolic alterations in the lean metabolically unhealthy alpha defensin transgenic mice. iScience. 2024;27(2). doi:10.1016/j.isci.2024.108802
12. Kakhlon O, Saada A, Escribá P V. Corrigendum: Editorial: Metabolic modulation of cellular function (Front. Cell Dev. Biol., (2024), 12, 1395922, 10.3389/fcell.2024.1395922). Front Cell Dev Biol. 2024;12. doi:10.3389/fcell.2024.1403128
13. Kakhlon O, Saada A, Escribá P V. Editorial: Metabolic modulation of cellular function. Front Cell Dev Biol. 2024;12. doi:10.3389/fcell.2024.1395922
14. Arroum T, Pham L, Raisanen TE, et al. High Sucrose Diet-Induced Subunit I Tyrosine 304 Phosphorylation of Cytochrome c Oxidase Leads to Liver Mitochondrial Respiratory Dysfunction in the Cohen Diabetic Rat Model. Antioxidants. 2024;13(1). doi:10.3390/antiox13010019
15. McCormick EM, Keller K, Taylor JP, et al. Expert Panel Curation of 113 Primary Mitochondrial Disease Genes for the Leigh Syndrome Spectrum. Ann Neurol. 2023;94(4):696-712. doi:10.1002/ana.26716
16. Goldman O, Adler LN, Hajaj E, et al. Early Infiltration of Innate Immune Cells to the Liver Depletes HNF4α and Promotes Extrahepatic Carcinogenesis. Cancer Discov. 2023;13(7):1616-1635. doi:10.1158/2159-8290.CD-22-1062
17. Hazan R, Lintzer D, Ziv T, et al. Mitochondrial-derived vesicles retain membrane potential and contain a functional ATP synthase. EMBO Rep. 2023;24(5). doi:10.15252/embr.202256114
18. Daas S, Abu-Salah N, Anikster Y, et al. Addition of galactose-1-phosphate measurement enhances newborn screening for classical galactosemia. J Inherit Metab Dis. 2023;46(2):232-242. doi:10.1002/jimd.12580
19. Zighan M, Arkadir D, Douiev L, Keller G, Miller C, Saada A. Variable effects of omaveloxolone (RTA408) on primary fibroblasts with mitochondrial defects. Front Mol Biosci. 2022;9. doi:10.3389/fmolb.2022.890653
20. Douiev L, Miller C, Keller G, Benyamini H, Abu-Libdeh B, Saada A. Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4‐1 Deficiency. Int J Mol Sci. 2022;23(8). doi:10.3390/ijms23084149
21. Aharon-Hananel G, Romero-Afrima L, Saada A, Mantzur C, Raz I, Weksler-Zangen S. Cytochrome c Oxidase Activity as a Metabolic Regulator in Pancreatic Beta-Cells. Cells. 2022;11(6). doi:10.3390/cells11060929
22. Ezer S, Daana M, Park JH, et al. Infantile SOD1 deficiency syndrome caused by a homozygous SOD1 variant with absence of enzyme activity. Brain. 2022;145(3):872-878. doi:10.1093/brain/awab416
23. Mishra K, Péter M, Nardiello AM, et al. Multifaceted Analyses of Isolated Mitochondria Establish the Anticancer Drug 2-Hydroxyoleic Acid as an Inhibitor of Substrate Oxidation and an Activator of Complex IV-Dependent State 3 Respiration. Cells. 2022;11(3). doi:10.3390/cells11030578
24. Liber S, Staretz-Chacham O, Kishon M, et al. What Can We Learn from the Parents of Children Affected with Mucopolysaccharidosis Type III-A in Israel? Mol Syndromol. 2022;13(1):45-49. doi:10.1159/000519099
25. Binyamin O, Frid K, Keller G, Saada A, Gabizon R. Comparing anti–aging hallmark activities of Metformin and Nano-PSO in a mouse model of genetic Creutzfeldt-Jakob Disease. Neurobiol Aging. 2022;110:77-87. doi:10.1016/j.neurobiolaging.2021.11.001
26. Staretz-Chacham O, Amar S, Almashanu S, et al. Multiple acyl-coa dehydrogenase deficiency with variable presentation due to a homozygous mutation in a bedouin tribe. Genes (Basel). 2021;12(8). doi:10.3390/genes12081140
27. Nasca A, Di Meo I, Fellig Y, et al. A novel homozygous MSTO1 mutation in Ashkenazi Jewish siblings with ataxia and myopathy. J Hum Genet. 2021;66(8):835-840. doi:10.1038/s10038-020-00897-4
28. Staretz-Chacham O, Daas S, Ulanovsky I, et al. The role of orotic acid measurement in routine newborn screening for urea cycle disorders. J Inherit Metab Dis. 2021;44(3):606-617. doi:10.1002/jimd.12331
29. Zehavi Y, Saada A, Jabaly-Habib H, et al. A novel de novo heterozygous pathogenic variant in the SDHA gene results in childhood onset bilateral optic atrophy and cognitive impairment. Metab Brain Dis. 2021;36(4):581-588. doi:10.1007/s11011-021-00671-1
30. Hershkovitz T, Kurolap A, Tal G, et al. A recurring NFS1 pathogenic variant causes a mitochondrial disorder with variable intra-familial patient outcomes. Mol Genet Metab Reports. 2021;26. doi:10.1016/j.ymgmr.2020.100699
31. Douiev L, Miller C, Ruppo S, Benyamini H, Abu-Libdeh B, Saada A. Upregulation of cox4-2 via hif-1α in mitochondrial cox4-1 deficiency. Cells. 2021;10(2):1-16. doi:10.3390/cells10020452
32. Mor-Shaked H, Paz-Ebstein E, Basal A, et al. Levodopa-responsive dystonia caused by biallelic PRKN exon inversion invisible to exome sequencing. Brain Commun. 2021;3(3). doi:10.1093/braincomms/fcab197
33. Ferreira CR, Rahman S, Keller M, et al. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis. 2021;44(1):164-177. doi:10.1002/jimd.12348
34. Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. Erratum: Correction for Erental et al., “Apoptosis-Like Death, an Extreme SOS Response in Escherichia coli” (mBio (2014) 5 4 (e01426-e01414) PII: e03040-20). MBio. 2020;11(6). doi:10.1128/mbio.03040-20
35. Mreisat A, Kanaani H, Saada A, Horowitz M. Heat acclimation mediated cardioprotection is controlled by mitochondrial metabolic remodeling involving HIF-1α. J Therm Biol. 2020;93. doi:10.1016/j.jtherbio.2020.102691
36. Douiev L, Sheffer R, Horvath G, Saada A. Bezafibrate improves mitochondrial fission and function in DNM1L-deficient patient cells. Cells. 2020;9(2). doi:10.3390/cells9020301
37. Bennett MJ, Sheng F, Saada A. Biochemical assays of TCA cycle and β-oxidation metabolites. In: Pon LA, Schon EA, eds. Methods in Cell Biology. Vol 155. Academic Press Inc.; 2020:83-120. doi:10.1016/bs.mcb.2019.11.021
38. Tarailo-Graovac M, Zahir FR, Zivkovic I, et al. De novo pathogenic DNM1L variant in a patient diagnosed with atypical hereditary sensory and autonomic neuropathy. Mol Genet Genomic Med. 2019;7(10). doi:10.1002/mgg3.961
39. Shalata A, Edery M, Habib C, et al. Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochem Res. 2019;44(10):2372-2384. doi:10.1007/s11064-019-02786-5
40. Saada A. Insights into deoxyribonucleoside therapy for mitochondrial TK2 deficient mtDNA depletion. eBioMedicine. 2019;47:14-15. doi:10.1016/j.ebiom.2019.08.005
41. Hershkovitz T, Kurolap A, Gonzaga-Jauregui C, et al. A novel TUFM homozygous variant in a child with mitochondrial cardiomyopathy expands the phenotype of combined oxidative phosphorylation deficiency 4. J Hum Genet. 2019;64(6):589-595. doi:10.1038/s10038-019-0592-6
42. Zehavi Y, Mandel H, Eran A, et al. Severe infantile epileptic encephalopathy associated with D-glyceric aciduria: report of a novel case and review. Metab Brain Dis. 2019;34(2):557-563. doi:10.1007/s11011-019-0384-x
43. Keller G, Binyamin O, Frid K, Saada A, Gabizon R. Mitochondrial dysfunction in preclinical genetic prion disease: A target for preventive treatment? Neurobiol Dis. 2019;124:57-66. doi:10.1016/j.nbd.2018.11.003
44. Saada A. Sea squirt alternative oxidase bypasses fatal mitochondrial heart disease. EMBO Mol Med. 2019;11(1). doi:10.15252/emmm.201809962
45. Friederich MW, Timal S, Powell CA, et al. Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nat Commun. 2018;9(1). doi:10.1038/s41467-018-06250-w
46. Brzezinski A, Saada A, Miller H, Brzezinski-Sinai N, Ben-Meir A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J Ovarian Res. 2018;11(1). doi:10.1186/s13048-018-0471-3
47. Shufaro Y, Saada A, Simeonov M, et al. The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reprod Toxicol. 2018;81:246-252. doi:10.1016/j.reprotox.2018.08.020
48. Douiev L, Saada A. The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. Biochim Biophys Acta - Bioenerg. 2018;1859(9):893-900. doi:10.1016/j.bbabio.2018.06.004
49. Khateb S, Kowalewski B, Bedoni N, et al. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genet Med. 2018;20(9):1004-1012. doi:10.1038/gim.2017.227
50. Israeli T, Riahi Y, Saada A, et al. Opposing effects of intracellular versus extracellular adenine nucleotides on autophagy: Implications for β-cell function. J Cell Sci. 2018;131(15). doi:10.1242/jcs.212969
51. Bigelman E, Cohen L, Aharon-Hananel G, et al. Pathological presentation of cardiac mitochondria in a rat model for chronic kidney disease. PLoS One. 2018;13(6). doi:10.1371/journal.pone.0198196
52. Witters P, Saada A, Honzík T, et al. Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genet Med. 2018;20(4):444-451. doi:10.1038/gim.2017.125
53. Douiev L, Abu-Libdeh B, Saada A. Cytochrome c oxidase deficiency, oxidative stress, possible antioxidant therapy and link to nuclear DNA damage. Eur J Hum Genet. 2018;26(4):579-581. doi:10.1038/s41431-017-0047-5
54. Cohen I, Staretz-Chacham O, Wormser O, et al. A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion. Am J Med Genet Part A. 2018;176(2):330-336. doi:10.1002/ajmg.a.38574
55. Abu-Libdeh B, Douiev L, Amro S, et al. Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. Eur J Hum Genet. 2017;25(10):1142-11146. doi:10.1038/ejhg.2017.112
56. Yu-Wai-Man P, Soiferman D, Moore DG, Burté F, Saada A. Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy. Mitochondrion. 2017;36:36-42. doi:10.1016/j.mito.2017.01.004
57. Shahrour M, Staretz-Chacham O, Dayan D, et al. Mitochondrial epileptic encephalopathy, 3-methylglutaconic aciduria and variable complex V deficiency associated with TIMM50 mutations. Clin Genet. 2017;91(5):690-696. doi:10.1111/cge.12855
58. Volpert G, Ben-Dor S, Tarcic O, et al. Oxidative stress elicited by modifying the ceramide acyl chain length reduces the rate of clathrin-mediated endocytosis. J Cell Sci. 2017;130(8):1486-1493. doi:10.1242/jcs.199968
59. Alban C, Fatale E, Joulani A, Ilin P, Saada A. The relationship between mitochondrial respiratory chain activities in muscle and metabolites in plasma and urine: A retrospective study. J Clin Med. 2017;6(3). doi:10.3390/jcm6030031
60. Douiev L, Soiferman D, Alban C, Saada A. The effects of ascorbate, N-acetylcysteine, and resveratrol on fibroblasts from patients with mitochondrial disorders. J Clin Med. 2017;6(1). doi:10.3390/jcm6010001
61. Spiegel R, Soiferman D, Shaag A, Shalev SA, Elpeleg O, Saada A. Novel homozygous missense mutation in spg20 gene results in troyer syndrome associated with mitochondrial cytochrome c oxidase deficiency. In: JIMD Reports. Vol 33. Springer; 2017:55-60. doi:10.1007/8904_2016_580
62. Thompson K, Majd H, Dallabona C, et al. Erratum: Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number (American Journal of Human Genetics (2016) 99(4) (860–876) (S0002929716303391) (10.1016/j.ajhg.2016.08.014)). Am J Hum Genet. 2016;99(6):1405. doi:10.1016/j.ajhg.2016.11.001
63. Zeharia A, Friedman JR, Tobar A, et al. Mitochondrial hepato-encephalopathy due to deficiency of QIL1/MIC13 (C19orf70), a MICOS complex subunit. Eur J Hum Genet. 2016;24(12):1778-1782. doi:10.1038/ejhg.2016.83
64. Thompson K, Majd H, Dallabona C, et al. Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. Am J Hum Genet. 2016;99(4):860-876. doi:10.1016/j.ajhg.2016.08.014
65. Kacsó G, Ravasz D, Dóczi J, et al. Two transgenic mouse models for beta subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochem J. 2016;473(20):3463-3485. doi:10.1042/BCJ20160594
66. Kogot-Levin A, Saada A, Leibowitz G, et al. Upregulation of mitochondrial content in cytochrome c oxidase deficient fibroblasts. PLoS One. 2016;11(10). doi:10.1371/journal.pone.0165417
67. Yoffe Y, David M, Kalaora R, et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev. 2016;30(17):1991-2004. doi:10.1101/gad.285239.116
68. Sheffer R, Douiev L, Edvardson S, et al. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am J Med Genet Part A. 2016;170(6):1603-1607. doi:10.1002/ajmg.a.37624
69. Kesner EE, Saada A, Lorberboum-Galski H. Characteristics of Mitochondrial Transformation into Human Cells. Sci Rep. 2016;6. doi:10.1038/srep26057
70. Imagawa E, Fattal-Valevski A, Eyal O, et al. Homozygous p.V116∗ mutation in C12orf65 results in Leigh syndrome. J Neurol Neurosurg Psychiatry. 2016;87(2):212-216. doi:10.1136/jnnp-2014-310084
71. Edvardson S, Saada A. Complex II Deficiency: Leukoencephalopathy Due to Mutated SDHAF1. In: Elsevier Inc.; 2016:265-272. doi:10.1016/B978-0-12-800877-5.00030-9
72. Spiegel R, Saada A, Flannery PJ, et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. J Med Genet. 2016;53(2):127-131. doi:10.1136/jmedgenet-2015-103361
73. Soiferman D, Saada A. The Use of Fibroblasts from Patients with Inherited Mitochondrial Disorders for Pathomechanistic Studies and Evaluation of Therapies. In: wiley; 2015:378-398. doi:10.1002/9781119017127.ch18
74. Ben-Meir A, Yahalomi S, Moshe B, Shufaro Y, Reubinoff B, Saada A. Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertil Steril. 2015;104(3):724-727. doi:10.1016/j.fertnstert.2015.05.023
75. Edvardson S, Gerhard F, Jalas C, et al. Hypomyelination and developmental delay associated with VPS11 mutation in Ashkenazi-Jewish patients. J Med Genet. 2015;52(11):749-753. doi:10.1136/jmedgenet-2015-103239
76. Haziza S, Magnani R, Lan D, et al. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function. PLOS Genet. 2015;11(8). doi:10.1371/journal.pgen.1005388
77. Park W-J, Brenner O, Kogot-Levin A, et al. Development of pheochromocytoma in ceramide synthase 2 null mice. Endocr Relat Cancer. 2015;22(4):623-632. doi:10.1530/ERC-15-0058
78. Stolovich-Rain M, Enk J, Vikeså J, et al. Erratum to Weaning Triggers a Maturation Step of Pancreatic β Cells [Developmental Cell 32 (2015) 535-545] DOI: 10.1016/j.devcel.2015.04.003. Dev Cell. 2015;33(2):238-239. doi:10.1016/j.devcel.2015.04.003
79. Stolovich-Rain M, Enk J, Vikeså J, et al. Weaning Triggers a Maturation Step of Pancreatic β Cells. Dev Cell. 2015;32(5):535-545. doi:10.1016/j.devcel.2015.01.002
80. Abdulhag UN, Soiferman D, Schuler-Furman O, et al. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur J Hum Genet. 2015;23(2):159-164. doi:10.1038/ejhg.2014.85
81. Kopajtich R, Nicholls TJ, Rorbach J, et al. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet. 2014;95(6):708-720. doi:10.1016/j.ajhg.2014.10.017
82. Vainer GW, Saada A, Kania-Almog J, Amartely A, Bar-Tana J, Hertz R. PF-4708671 activates AMPK independently of p70S6K1 inhibition. PLoS One. 2014;9(9). doi:10.1371/journal.pone.0107364
83. Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. Apoptosis-Like Death, An extreme SOS response in Escherichia Coli. MBio. 2014;5(4). doi:10.1128/mBio.01426-14
84. Weksler-Zangen S, Aharon-Hananel G, Mantzur C, et al. IL-1β hampers glucose-stimulated insulin secretion in Cohen diabetic rat islets through mitochondrial cytochrome c oxidase inhibition by nitric oxide. Am J Physiol - Endocrinol Metab. 2014;306(6):E648-E657. doi:10.1152/ajpendo.00451.2013
85. Haviv R, Zeharia A, Belaiche C, Haimi-Cohen Y, Saada A. Elevated plasma citrulline: Look for dihydrolipoamide dehydrogenase deficiency. Eur J Pediatr. 2014;173(2):243-245. doi:10.1007/s00431-013-2153-x
86. Tornovsky-Babeay S, Dadon D, Ziv O, et al. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells. Cell Metab. 2014;19(1):109-121. doi:10.1016/j.cmet.2013.11.007
87. Almagor Y, Eventov-Friedman S, Nir A, Sror A, Saada A. Measurement of troponin-T in dried blood spots and dried plasma spots: A pilot study. J Pediatr Biochem. 2014;4(3):153-157. doi:10.3233/JPB-140120
88. Erlich-Hadad TH, Yagil Z, Kay G, et al. Mitochondrial STAT3 plays a major role in IgE-antigen-mediated mast cell exocytosis. J Allergy Clin Immunol. 2014;134(2):460-e10. doi:10.1016/j.jaci.2013.12.1075
89. Spiegel R, Mandel H, Saada A, et al. Delineation of C12orf65-related phenotypes: A genotype-phenotype relationship. Eur J Hum Genet. 2014;22(8):1019-1025. doi:10.1038/ejhg.2013.284
90. Spiegel R, Saada A, Halvardson J, et al. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Eur J Hum Genet. 2014;22(7):902-906. doi:10.1038/ejhg.2013.269
91. van Scherpenzeel M, Timal S, Rymen D, et al. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain. 2014;137(4):1030-1038. doi:10.1093/brain/awu019
92. Soiferman D, Ayalon O, Weissman S, Saada A. The effect of small molecules on nuclear-encoded translation diseases. Biochimie. 2014;100(1):184-191. doi:10.1016/j.biochi.2013.08.024
93. Kogot-Levin A, Saada A. Ceramide and the mitochondrial respiratory chain. Biochimie. 2014;100(1):88-94. doi:10.1016/j.biochi.2013.07.027
94. Saada A. Mitochondria: Mitochondrial OXPHOS (dys) function ex vivo - The use of primary fibroblasts. Int J Biochem Cell Biol. 2014;48(1):60-65. doi:10.1016/j.biocel.2013.12.010
95. Negari SBH, Aouizerat T, Tenenbaum A, et al. Mitochondrial OXPHOS function is unaffected by chronic azithromycin treatment. J Cyst Fibros. 2013;12(6):682-687. doi:10.1016/j.jcf.2013.04.006
96. Park W-J, Park J-W, Erez-Roman R, et al. Protection of a ceramide synthase 2 null mouse from drug-induced liver injury role of gap junction dysfunction and connexin 32 mislocalization. J Biol Chem. 2013;288(43):30904-30916. doi:10.1074/jbc.M112.448852
97. Sarig O, Goldsher D, Nousbeck J, et al. Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-Methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and leigh-Like Syndrome) caused by novel mutations in SERAC1. Am J Med Genet Part A. 2013;161(9):2204-2215. doi:10.1002/ajmg.a.36059
98. Stepensky P, Saada A, Cowan M, et al. The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood. 2013;121(25):5078-5087. doi:10.1182/blood-2012-12-475566
99. Marcus D, Lichtenstein M, Saada A, Lorberboum-Galski H. Replacement of the C6oRF66 assembly factor (NDUFAF4) restores complex I activity in patient cells. Mol Med. 2013;19(1):124-134. doi:10.2119/molmed.2012.00343
100. Weksler-Zangen S, Jörns A, Tarsi-Chen L, et al. Dietary copper supplementation restores β-cell function of Cohen diabetic rats: A link between mitochondrial function and glucose-stimulated insulin secretion. Am J Physiol - Endocrinol Metab. 2013;304(10):E1023-E1034. doi:10.1152/ajpendo.00036.2013
101. Saada A. Complex subunits and assembly genes: Complex i. In: Vol 9781461437222. Springer New York; 2013:185-202. doi:10.1007/978-1-4614-3722-2_12
102. Zigdon H, Kogot-Levin A, Park J-W, et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288(7):4947-4956. doi:10.1074/jbc.M112.402719
103. Edvardson S, Porcelli V, Jalas C, et al. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J Med Genet. 2013;50(4):240-245. doi:10.1136/jmedgenet-2012-101485
104. Shwartz R, Sheffer R, Mangisto G, Saada A. Quantitative measurement of urinary glycosaminoglycans using a modified DMB method facilitates the diagnosis and monitoring of mucopolysaccharidoses. J Pediatr Biochem. 2012;2(3):163-167. doi:10.3233/JPB-2012-00054
105. Assayag M, Saada A, Gerstenblith G, Canaana H, Shlomai R, Horowitz M. Mitochondrial performance in heat acclimation-A lesson from ischemia/reperfusion and calcium overload insults in the heart. Am J Physiol - Regul Integr Comp Physiol. 2012;303(8):R870-R881. doi:10.1152/ajpregu.00155.2012
106. Ohlenbusch A, Edvardson S, Skorpen J, et al. Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency. Orphanet J Rare Dis. 2012;7(1). doi:10.1186/1750-1172-7-69
107. Spiegel R, Pines O, Ta-Shma A, et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet. 2012;90(3):518-523. doi:10.1016/j.ajhg.2012.01.009
108. Galmiche L, Serre V, Beinat M, et al. Toward genotype phenotype correlations in GFM1 mutations. Mitochondrion. 2012;12(2):242-247. doi:10.1016/j.mito.2011.09.007
109. Shwartz R, Sheffer R, Mangisto G, Saada A. Quantitative measurement of urinary glycosaminoglycans using a modified DMB method facilitates the diagnosis and monitoring of mucopolysaccharidoses. J Pediatr Biochem. 2012;2(3):163-167. doi:10.1055/s-0036-1586409
110. Kurian GA, Berenshtein E, Saada A, Chevion M. Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell Physiol Biochem. 2012;30(1):83-94. doi:10.1159/000339043
111. Saada A, Edvardson S, Shaag A, et al. Combined OXPHOS complex i and IV defect, due to mutated complex i assembly factor C20ORF7. J Inherit Metab Dis. 2012;35(1):125-131. doi:10.1007/s10545-011-9348-y
112. Shufaro Y, Lebovich M, Aizenman E, et al. Human granulosa luteal cell oxidative phosphorylation function is not affected by age or ovarian response. Fertil Steril. 2012;98(1):166-172.e2. doi:10.1016/j.fertnstert.2012.03.051
113. Berger I, Ben-Neriah Z, Dor-Wolman T, et al. Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol Genet Metab. 2011;104(4):517-520. doi:10.1016/j.ymgme.2011.09.020
114. Golubitzky A, Dan P, Weissman S, Link G, Wikström JD, Saada A. Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS One. 2011;6(10). doi:10.1371/journal.pone.0026883
115. Saada A. The use of individual patient’s fibroblasts in the search for personalized treatment of nuclear encoded OXPHOS diseases. Mol Genet Metab. 2011;104(1-2):39-47. doi:10.1016/j.ymgme.2011.07.016
116. Dan P, Edvardson S, Bielawski J, Hama H, Saada A. 2-hydroxylated sphingomyelin profiles in cells from patients with mutated fatty acid 2-hydroxylase. Lipids Health Dis. 2011;10. doi:10.1186/1476-511X-10-84
117. Miller C, Wang L, Østergaard E, Dan P, Saada A. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochim Biophys Acta - Mol Basis Dis. 2011;1812(5):625-629. doi:10.1016/j.bbadis.2011.01.013
118. Porat S, Weinberg-Corem N, Tornovsky-Babaey S, et al. Control of pancreatic β cell regeneration by glucose metabolism. Cell Metab. 2011;13(4):440-449. doi:10.1016/j.cmet.2011.02.012
119. Smits P, Saada A, Wortmann SB, et al. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur J Hum Genet. 2011;19(4):394-399. doi:10.1038/ejhg.2010.214
120. Spiegel R, Khayat M, Shalev SA, et al. TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: Further delineation of a new syndrome. J Med Genet. 2011;48(3):177-182. doi:10.1136/jmg.2010.084608
121. Edvardson S, Korman SH, Livne A, et al. L-arginine:glycine amidinotransferase (AGAT) deficiency: Clinical presentation and response to treatment in two patients with a novel mutation. Mol Genet Metab. 2010;101(2-3):228-232. doi:10.1016/j.ymgme.2010.06.021
122. Levitas A, Muhammad E, Harel G, et al. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur J Hum Genet. 2010;18(10):1160-1165. doi:10.1038/ejhg.2010.83
123. Lakhal B, Braham R, Berguigua R, et al. Cytogenetic analyses of premature ovarian failure using karyotyping and interphase fluorescence in situ hybridization (FISH) in a group of 1000 patients. Clin Genet. 2010;78(2):181-185. doi:10.1111/j.1399-0004.2009.01359.x
124. Berger I, Segal I, Shmueli D, Saada A. The effect of antiepileptic drugs on mitochondrial activity: A pilot study. J Child Neurol. 2010;25(5):541-545. doi:10.1177/0883073809352888
125. Leshinsky-Silver E, Lev D, Malinger G, et al. Leigh disease presenting in utero due to a novel missense mutation in the mitochondrial DNA-ND3. Mol Genet Metab. 2010;100(1):65-70. doi:10.1016/j.ymgme.2010.02.002
126. Loeb V, Yakunin E, Saada A, Sharon R. The transgenic overexpression of α-synuclein and not its related pathology associates with complex I inhibition. J Biol Chem. 2010;285(10):7334-7343. doi:10.1074/jbc.M109.061051
127. Yakunin E, Moser A, Loeb V, et al. α-synuclein abnormalities in mouse models of peroxisome biogenesis disorders. J Neurosci Res. 2010;88(4):866-876. doi:10.1002/jnr.22246
128. Zeharia A, Shaag A, Pappo O, et al. Acute Infantile Liver Failure Due to Mutations in the TRMU Gene (DOI:10.1016/j.ajhg.2009.08.004). Am J Hum Genet. 2010;86(2):295. doi:10.1016/j.ajhg.2010.01.020
129. Jones CN, Miller C, Tenenbaum A, Spremulli LL, Saada A. Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion. 2009;9(6):429-437. doi:10.1016/j.mito.2009.08.001
130. Belaiche C, Holt A, Saada A. Nonylphenol ethoxylate plastic additives inhibit mitochondrial respiratory chain complex I. Clin Chem. 2009;55(10):1883-1884. doi:10.1373/clinchem.2009.130054
131. Saada A. Fishing in the (deoxyribonucleotide) pool. Biochem J. 2009;422(3):e3-e6. doi:10.1042/BJ20091194
132. Zeharia A, Shaag A, Pappo O, et al. Acute Infantile Liver Failure Due to Mutations in the TRMU Gene. Am J Hum Genet. 2009;85(3):401-407. doi:10.1016/j.ajhg.2009.08.004
133. Leshinsky-Silver E, Lèbre A-S, Minai L, et al. NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Mol Genet Metab. 2009;97(3):185-189. doi:10.1016/j.ymgme.2009.03.002
134. Saada A, Vogel RO, Hoefs SJ, et al. Mutations in NDUFAF3 (C3ORF60), Encoding an NDUFAF4 (C6ORF66)-Interacting Complex I Assembly Protein, Cause Fatal Neonatal Mitochondrial Disease. Am J Hum Genet. 2009;84(6):718-727. doi:10.1016/j.ajhg.2009.04.020
135. Ruvinsky I, Katz M, Dreazen A, et al. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS One. 2009;4(5). doi:10.1371/journal.pone.0005618
136. Shteyer E, Saada A, Shaag A, et al. Exocrine Pancreatic Insufficiency, Dyserythropoeitic Anemia, and Calvarial Hyperostosis Are Caused by a Mutation in the COX4I2 Gene. Am J Hum Genet. 2009;84(3):412-417. doi:10.1016/j.ajhg.2009.02.006
137. Spiegel R, Shaag A, Mandel H, et al. Mutated NDUFS6 is the cause of fatal neonatal lactic acidemia in Caucasus Jews. Eur J Hum Genet. 2009;17(9):1200-1203. doi:10.1038/ejhg.2009.24
138. Zeharia A, Shaag A, Houtkooper RH, et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood (DOI:10.1016/j.ajhg.2008.09.002). Am J Hum Genet. 2009;84(1):95. doi:10.1016/j.ajhg.2008.12.003
139. Edvardson S, Hama H, Shaag A, et al. Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated with Leukodystrophy with Spastic Paraparesis and Dystonia. Am J Hum Genet. 2008;83(5):643-648. doi:10.1016/j.ajhg.2008.10.010
140. Saada A. Mitochondrial deoxyribonucleotide pools in deoxyguanosine kinase deficiency. Mol Genet Metab. 2008;95(3):169-173. doi:10.1016/j.ymgme.2008.07.007
141. Zeharia A, Shaag A, Houtkooper RH, et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood. Am J Hum Genet. 2008;83(4):489-494. doi:10.1016/j.ajhg.2008.09.002
142. Ghezzi D, Saada A, d’Adamo P, et al. FASTKD2 Nonsense Mutation in an Infantile Mitochondrial Encephalomyopathy Associated with Cytochrome C Oxidase Deficiency. Am J Hum Genet. 2008;83(3):415-423. doi:10.1016/j.ajhg.2008.08.009
143. Kohler JJ, Hosseini SH, Green E, et al. Cardiac-targeted transgenic mutant mitochondrial enzymes: mtDNA defects, antiretroviral toxicity and cardiomyopathy. Cardiovasc Toxicol. 2008;8(2):57-69. doi:10.1007/s12012-008-9015-1
144. Emdadul Haque M, Grasso D, Miller C, Spremulli LL, Saada A. The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion. 2008;8(3):254-261. doi:10.1016/j.mito.2008.04.004
145. Barel O, Shorer Z, Flusser H, et al. Mitochondrial Complex III Deficiency Associated with a Homozygous Mutation in UQCRQ. Am J Hum Genet. 2008;82(5):1211-1216. doi:10.1016/j.ajhg.2008.03.020
146. Barghuti F, Elian K, Gomori JM, et al. The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Mol Genet Metab. 2008;94(1):78-82. doi:10.1016/j.ymgme.2007.11.013
147. Berger I, Hershkovitz E, Shaag A, Edvardson S, Saada A, Elpeleg O. Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Ann Neurol. 2008;63(3):405-408. doi:10.1002/ana.21332
148. Saada A, Edvardson S, Rapoport M, et al. C6ORF66 Is an Assembly Factor of Mitochondrial Complex I. Am J Hum Genet. 2008;82(1):32-38. doi:10.1016/j.ajhg.2007.08.003
149. Rapoport M, Saada A, Elpeleg O, Lorberboum-Galski H. TAT-mediated delivery of LAD restores pyruvate dehydrogenase complex activity in the mitochondria of patients with LAD deficiency. Mol Ther. 2008;16(4):691-697. doi:10.1038/mt.2008.4
150. Saada A, Shaag A, Arnon S, et al. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J Med Genet. 2007;44(12):784-786. doi:10.1136/jmg.2007.053116
151. Saada A, Elpeleg O. Biochemical Assays for Mitochondrial Activity: Assays of TCA Cycle Enzymes and PDHc. Pon LA, Schon EA, eds. Methods Cell Biol. 2007;80:199-222. doi:10.1016/S0091-679X(06)80010-5
152. Ciliberti N, Manfredini S, Angusti A, et al. Novel selective human mitochondrial kinase inhibitors: Design, synthesis and enzymatic activity. Bioorganic Med Chem. 2007;15(8):3065-3081. doi:10.1016/j.bmc.2007.01.049
153. Edvardson S, Shaag A, Kolesnikova O, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;81(4):857-862. doi:10.1086/521227
154. Spiegel R, Shaag A, Gutman A, et al. Severe infantile type of carnitine palmitoyltransferase II (CPT II) deficiency due to homozygous R503C mutation. J Inherit Metab Dis. 2007;30(2):266. doi:10.1007/s10545-007-0536-8
155. Smeitink J, Elpeleg O, Antonická H, et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet. 2006;79(5):869-877. doi:10.1086/508434
156. Leshinsky-Silver E, Lev D, Tzofi-Berman Z, et al. Fulminant neurological deterioration in a neonate with Leigh syndrome due to a maternally transmitted missense mutation in the mitochondrial ND3 gene. Biochem Biophys Res Commun. 2005;334(2):582-587. doi:10.1016/j.bbrc.2005.06.134
157. Bahat-Stroomza M, Gilgun-Sherki Y, Offen D, et al. A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson’s disease. Eur J Neurosci. 2005;21(3):637-646. doi:10.1111/j.1460-9568.2005.03889.x
158. Elpeleg O, Miller C, Hershkovitz E, et al. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet. 2005;76(6):1081-1086. doi:10.1086/430843
159. Saada A. Deoxyribonucleoside kinases in mitochondrial DNA depletion. In: Nucleosides, Nucleotides and Nucleic Acids. Vol 23. ; 2004:1205-1215. doi:10.1081/NCN-200027480
160. Saada A, Bar-Meir M, Belaiche C, Miller C, Elpeleg O. Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Anal Biochem. 2004;335(1):66-72. doi:10.1016/j.ab.2004.08.015
161. Saada A. Deoxyribonucleotides and disorders of mitochondrial DNA integrity. DNA Cell Biol. 2004;23(12):797-806. doi:10.1089/dna.2004.23.797
162. Miller C, Saada A, Shaul N, et al. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol. 2004;56(5):734-738. doi:10.1002/ana.20282
163. Lamont PJ, Thorburn D, Fabian V, et al. Nemaline rods and complex I deficiency in three infants with hypotonia, motor delay and failure to thrive. Neuropediatrics. 2004;35(5):302-306. doi:10.1055/s-2004-821243
164. Saada A, Ben-Shalom E, Zyslin R, Miller C, Mandel H, Elpeleg O. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency. Biochem Biophys Res Commun. 2003;310(3):963-966. doi:10.1016/j.bbrc.2003.09.104
165. Saada A, Shaag A, Elpeleg O. mtDNA depletion myopathy: Elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency. Mol Genet Metab. 2003;79(1):1-5. doi:10.1016/S1096-7192(03)00063-5
166. Wang L, Saada A, Eriksson S. Kinetic properties of mutant human thymidine kinase 2 suggest a mechanism for mitochondrial DNA depletion myopathy. J Biol Chem. 2003;278(9):6963-6968. doi:10.1074/jbc.M206143200
167. Lev D, Gilad E, Leshinsky-Silver E, et al. Reversible fulminant lactic acidosis and liver failure in an infant with hepatic cytochrome-c oxidase deficiency. J Inherit Metab Dis. 2002;25(5):371-377. doi:10.1023/A:1020195616081
168. Elpeleg O, Mandel H, Saada A. Depletion of the other genome-mitochondrial DNA depletion syndromes in humans. J Mol Med. 2002;80(7):389-396. doi:10.1007/s00109-002-0343-5
169. Nevo Y, Soffer D, Kutai M, et al. Clinical characteristics and muscle pathology in myopathic mitochondrial DNA depletion. J Child Neurol. 2002;17(7):499-504. doi:10.1177/088307380201700705
170. Mandel H, Szargel R, Labay V, et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet. 2001;29(3):337-341. doi:10.1038/ng746
171. Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet. 2001;29(3):342-344. doi:10.1038/ng751
172. Elpeleg O, Hammerman C, Saada A, Shaag A, Golzand E. Antenatal presentation of carnitine palmitoyltransferase II deficiency. Am J Med Genet. 2001;102(2):183-187. doi:10.1002/ajmg.1457
173. Mandel H, Szargel R, Labay V, et al. Erratum: The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA (Journal of Vascular Technology (2001) 29 (337-341)). Nat Genet. 2001;29(4):491. doi:10.1038/ng1201-491a
174. Bar-Meir M, Elpeleg O, Saada A. Effect of various agents on adenosine triphosphate synthesis in mitochondrial complex I deficiency. J Pediatr. 2001;139(6):868-870. doi:10.1067/mpd.2001.118885
175. Saada A, Aptowitzer I, Link G, Elpeleg O. ATP synthesis in lipoamide dehydrogenase deficiency. Biochem Biophys Res Commun. 2000;269(2):382-386. doi:10.1006/bbrc.2000.2310
176. Shany E, Saada A, Landau D, Shaag A, Hershkovitz E, Elpeleg O. Lipoamide dehydrogenase deficiency due to a novel mutation in the interface domain. Biochem Biophys Res Commun. 1999;262(1):163-166. doi:10.1006/bbrc.1999.1133
177. Shaag A, Saada A, Berger I, et al. Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am J Med Genet. 1999;82(2):177-182. doi:10.1002/(SICI)1096-8628(19990115)82:2<177::AID-AJMG15>3.0.CO;2-9
178. Be’eri H, Reichert F, Saada A, Rotshenker S. The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci. 1998;10(8):2707-2713. doi:10.1046/j.1460-9568.1998.00277.x
179. Link G, Saada A, Pinson A, Konijn AM, Hershko C. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J Lab Clin Med. 1998;131(5):466-474. doi:10.1016/S0022-2143(98)90148-2
180. Cohen O, Steiner I, Argov Z, et al. Mitochondrial myopathy with atypical subacute presentation [6]. J Neurol Neurosurg Psychiatry. 1998;64(3):410-411. doi:10.1136/jnnp.64.3.410
181. Elpeleg O, Shaag A, Glustein JZ, Anikster Y, Joseph A, Saada A. Lipoamide dehydrogenase deficiency in ashkenazi jews: An insertion mutation in the mitochondrial leader sequence. Hum Mutat. 1997;10(3):256-257. doi:10.1002/(SICI)1098-1004(1997)10:3<256::AID-HUMU16>3.0.CO;2-Z
182. Aptowitzer I, Saada A, Faber J, Kleid D, Elpeleg O. Liver disease in the Ashkenazi-Jewish lipoamide dehydrogenase deficiency. J Pediatr Gastroenterol Nutr. 1997;24(5):599-601. doi:10.1097/00005176-199705000-00019
183. Shaag A, Saada A, Steinberg A, Navon P, Elpeleg O. Mitochondrial encephalomyopathy associated with a novel mutation in the mitochondrial tRNA(leu(UUR)) gene (A3243T). Biochem Biophys Res Commun. 1997;233(3):637-639. doi:10.1006/bbrc.1997.6496
184. Elpeleg O, Saada A, Shaag A, et al. Lipoamide dehydrogenase deficiency: A new cause for recurrent myoglobinuria. Muscle and Nerve. 1997;20(2):238-240. doi:10.1002/(SICI)1097-4598(199702)20:2<238::AID-MUS18>3.0.CO;2-Z
185. Berger I, Elpeleg O, Saada A. Lipoamide dehydrogenase activity in lymphocytes. Clin Chim Acta. 1996;256(2):197-201. doi:10.1016/S0009-8981(96)06420-0
186. Saada A, Reichert F, Rotshenker S. Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J Cell Biol. 1996;133(1):159-167. doi:10.1083/jcb.133.1.159
187. Chowers I, Kerrison JB, Saada A. Mitochondrial and peroxisomal disorders. In: Wolters Kluwer Health; 2013. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973863169&partnerID=40&md5=e2791c38dd38e52fdd43606ff7bdb97c
188. Saada A, Dunaevsky A, Aamar A, Reichert F, Rotshenker S. Fibroblasts that reside in mouse and frog injured peripheral nerves produce apolipoproteins. J Neurochem. 1995;64(5):1996-2003. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028930810&partnerID=40&md5=a74da5c92d85d47f060d2558a1748572
189. Reichert F, Saada A, Rotshenker S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2. J Neurosci. 1994;14(5 II):3231-3245. doi:10.1523/jneurosci.14-05-03231.1994
190. Aamar S, Saada A, Rotshenker S. Lesion‐Induced Changes in the Production of Newly Synthesized and Secreted Apo‐E and Other Molecules Are Independent of the Concomitant Recruitment of Blood‐Borne Macrophages into Injured Peripheral Nerves. J Neurochem. 1992;59(4):1287-1292. doi:10.1111/j.1471-4159.1992.tb08439.x
191. Saada A, Terespolski Y, Adoni A, Kahane I. Adherence of Ureaplasma urealyticum to human erythrocytes. Infect Immun. 1991;59(1):467-469. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026011202&partnerID=40&md5=9a285a2d04e563fed5df8aaad3393122
192. Kahane I, Saada A, Almagor M, Abeliuck P, Yatziv S. Glycosidase Activities of Mycoplasmas. Zentralblatt fur Bakteriol. 1990;273(3):300-305. doi:10.1016/S0934-8840(11)80432-9
193. Saada A, Deutsch V, Kahane I. Interaction of a monoclonal antibody with the urease of Ureaplasma urealyticum. FEMS Microbiol Lett. 1988;55(2):187-190. doi:10.1111/j.1574-6968.1988.tb13931.x
194. Saada A, Kahane I. Purification and characterization of urease from Ureaplasma urealyticum. Zentralbl Bakteriol Mikrobiol Hyg A. 1988;269(2):160-167. doi:10.1016/S0176-6724(88)80092-0
195. Kahane I, Granek J, Saada A. The adhesins of Mycoplasma gallisepticum and M. Pneumoniae. Ann l’Institut Pasteur Microbiol. 1984;135(1):25-32. doi:10.1016/S0769-2609(84)80055-1
196. Sweetat S, Shabat MB, Theotokis P, et al. Ovariectomy and High Fat-Sugar-Salt Diet Induced Alzheimer’s Disease/Vascular Dementia Features in Mice. Aging Dis. 2024;15(5):2284-2300. doi:10.14336/AD.2024.03110
197. Sweetat S, Nitzan K, Suissa N, et al. The Beneficial Effect of Mitochondrial Transfer Therapy in 5XFAD Mice via Liver–Serum–Brain Response. Cells. 2023;12(7). doi:10.3390/cells12071006
198. Nitzan K, Benhamron S, Valitsky M, et al. Mitochondrial Transfer Ameliorates Cognitive Deficits, Neuronal Loss, and Gliosis in Alzheimer’s Disease Mice. J Alzheimer’s Dis. 2019;72(2):587-604. doi:10.3233/JAD-190853