Last updated September 2024 - Hadassah Medical Center
1. Halstuk, O. et al. Low prevalence of SCA27B in adult-onset cerebellar ataxia cohort of Jewish ancestry. Park. Relat. Disord. 126, (2024).
2. Hilander, T. et al. Supernumerary proteins of the human mitochondrial ribosomal small subunit are integral for assembly and translation. iScience 27, (2024).
3. Higazi, A. A.-R. et al. Characterization of metabolic alterations in the lean metabolically unhealthy alpha defensin transgenic mice. iScience 27, (2024).
4. Kakhlon, O., Saada, A. & Escriba, P. V. Corrigendum: Editorial: Metabolic modulation of cellular function (Front. Cell Dev. Biol., (2024), 12, 1395922, 10.3389/fcell.2024.1395922). Front. Cell Dev. Biol. 12, (2024).
5. Kakhlon, O., Saada, A. & Escriba, P. V. Editorial: Metabolic modulation of cellular function. Front. Cell Dev. Biol. 12, (2024).
6. Hazan, R., Pines, O. & Saada, A. Mitochondrial derived vesicles- Quo Vadis? FEBS J. (2024) doi:10.1111/febs.17103.
7. Arroum, T. et al. High Sucrose Diet-Induced Subunit I Tyrosine 304 Phosphorylation of Cytochrome c Oxidase Leads to Liver Mitochondrial Respiratory Dysfunction in the Cohen Diabetic Rat Model. Antioxidants 13, (2024).
8. Sweetat, S. et al. Ovariectomy and High Fat-Sugar-Salt Diet Induced Alzheimer’s Disease/Vascular Dementia Features in Mice. Aging Dis. 15, 2284–2300 (2024).
9. McCormick, E. M. et al. Expert Panel Curation of 113 Primary Mitochondrial Disease Genes for the Leigh Syndrome Spectrum. Ann. Neurol. 94, 696–712 (2023).
10. Goldman, O. et al. Early Infiltration of Innate Immune Cells to the Liver Depletes HNF4α and Promotes Extrahepatic Carcinogenesis. Cancer Discov. 13, 1616–1635 (2023).
11. Hazan, R. et al. Mitochondrial-derived vesicles retain membrane potential and contain a functional ATP synthase. EMBO Rep. 24, (2023).
12. Daas, S. et al. Addition of galactose-1-phosphate measurement enhances newborn screening for classical galactosemia. J. Inherit. Metab. Dis. 46, 232–242 (2023).
13. Sweetat, S. et al. The Beneficial Effect of Mitochondrial Transfer Therapy in 5XFAD Mice via Liver–Serum–Brain Response. Cells 12, (2023).
14. Zighan, M. et al. Variable effects of omaveloxolone (RTA408) on primary fibroblasts with mitochondrial defects. Front. Mol. Biosci. 9, (2022).
15. Douiev, L. et al. Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4‐1 Deficiency. Int. J. Mol. Sci. 23, (2022).
16. Aharon-Hananel, G. et al. Cytochrome c Oxidase Activity as a Metabolic Regulator in Pancreatic Beta-Cells. Cells 11, (2022).
17. Ezer, S. et al. Infantile SOD1 deficiency syndrome caused by a homozygous SOD1 variant with absence of enzyme activity. Brain 145, 872–878 (2022).
18. Mishra, K. et al. Multifaceted Analyses of Isolated Mitochondria Establish the Anticancer Drug 2-Hydroxyoleic Acid as an Inhibitor of Substrate Oxidation and an Activator of Complex IV-Dependent State 3 Respiration. Cells 11, (2022).
19. Liber, S. et al. What Can We Learn from the Parents of Children Affected with Mucopolysaccharidosis Type III-A in Israel? Mol. Syndromol. 13, 45–49 (2022).
20. Binyamin, O., Frid, K., Keller, G., Saada, A. & Gabizon, R. Comparing anti–aging hallmark activities of Metformin and Nano-PSO in a mouse model of genetic Creutzfeldt-Jakob Disease. Neurobiol. Aging 110, 77–87 (2022).
21. Staretz-Chacham, O. et al. Multiple acyl-coa dehydrogenase deficiency with variable presentation due to a homozygous mutation in a bedouin tribe. Genes (Basel). 12, (2021).
22. Nasca, A. et al. A novel homozygous MSTO1 mutation in Ashkenazi Jewish siblings with ataxia and myopathy. J. Hum. Genet. 66, 835–840 (2021).
23. Staretz-Chacham, O. et al. The role of orotic acid measurement in routine newborn screening for urea cycle disorders. J. Inherit. Metab. Dis. 44, 606–617 (2021).
24. Zehavi, Y. et al. A novel de novo heterozygous pathogenic variant in the SDHA gene results in childhood onset bilateral optic atrophy and cognitive impairment. Metab. Brain Dis. 36, 581–588 (2021).
25. Hershkovitz, T. et al. A recurring NFS1 pathogenic variant causes a mitochondrial disorder with variable intra-familial patient outcomes. Mol. Genet. Metab. Reports 26, (2021).
26. Douiev, L. et al. Upregulation of cox4-2 via hif-1α in mitochondrial cox4-1 deficiency. Cells 10, 1–16 (2021).
27. Mor-Shaked, H. et al. Levodopa-responsive dystonia caused by biallelic PRKN exon inversion invisible to exome sequencing. Brain Commun. 3, (2021).
28. Ferreira, C. R. et al. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 44, 164–177 (2021).
29. Erental, A., Kalderon, Z., Saada, A., Smith, Y. & Engelberg-Kulka, H. Erratum: Correction for Erental et al., ‘Apoptosis-Like Death, an Extreme SOS Response in Escherichia coli’ (mBio (2014) 5 4 (e01426-e01414) PII: e03040-20). MBio 11, (2020).
30. Douiev, L., Sheffer, R., Horvath, G. & Saada, A. Bezafibrate improves mitochondrial fission and function in DNM1L-deficient patient cells. Cells 9, (2020).
31. Bennett, M. J., Sheng, F. & Saada, A. Biochemical assays of TCA cycle and β-oxidation metabolites. Methods in Cell Biology vol. 155 83–120 (2020).
32. Mreisat, A., Kanaani, H., Saada, A. & Horowitz, M. Heat acclimation mediated cardioprotection is controlled by mitochondrial metabolic remodeling involving HIF-1α. J. Therm. Biol. 93, (2020).
33. Tarailo-Graovac, M. et al. De novo pathogenic DNM1L variant in a patient diagnosed with atypical hereditary sensory and autonomic neuropathy. Mol. Genet. Genomic Med. 7, (2019).
34. Shalata, A. et al. Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochem. Res. 44, 2372–2384 (2019).
35. Saada, A. Insights into deoxyribonucleoside therapy for mitochondrial TK2 deficient mtDNA depletion. EBioMedicine 47, 14–15 (2019).
36. Hershkovitz, T. et al. A novel TUFM homozygous variant in a child with mitochondrial cardiomyopathy expands the phenotype of combined oxidative phosphorylation deficiency 4. J. Hum. Genet. 64, 589–595 (2019).
37. Zehavi, Y. et al. Severe infantile epileptic encephalopathy associated with D-glyceric aciduria: report of a novel case and review. Metab. Brain Dis. 34, 557–563 (2019).
38. Keller, G., Binyamin, O., Frid, K., Saada, A. & Gabizon, R. Mitochondrial dysfunction in preclinical genetic prion disease: A target for preventive treatment? Neurobiol. Dis. 124, 57–66 (2019).
39. Saada, A. Sea squirt alternative oxidase bypasses fatal mitochondrial heart disease. EMBO Mol. Med. 11, (2019).
40. Nitzan, K. et al. Mitochondrial Transfer Ameliorates Cognitive Deficits, Neuronal Loss, and Gliosis in Alzheimer’s Disease Mice. J. Alzheimers. Dis. 72, 587–604 (2019).
41. Friederich, M. W. et al. Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nat. Commun. 9, (2018).
42. Brzezinski, A., Saada, A., Miller, H., Brzezinski-Sinai, N. & Ben-Meir, A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J. Ovarian Res. 11, (2018).
43. Shufaro, Y. et al. The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reprod. Toxicol. 81, 246–252 (2018).
44. Douiev, L. & Saada, A. The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. Biochim. Biophys. Acta - Bioenerg. 1859, 893–900 (2018).
45. Khateb, S. et al. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genet. Med. 20, 1004–1012 (2018).
46. Israeli, T. et al. Opposing effects of intracellular versus extracellular adenine nucleotides on autophagy: Implications for β-cell function. J. Cell Sci. 131, (2018).
47. Bigelman, E. et al. Pathological presentation of cardiac mitochondria in a rat model for chronic kidney disease. PLoS One 13, (2018).
48. Witters, P. et al. Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genet. Med. 20, 444–451 (2018).
49. Douiev, L., Abu-Libdeh, B. & Saada, A. Cytochrome c oxidase deficiency, oxidative stress, possible antioxidant therapy and link to nuclear DNA damage. Eur. J. Hum. Genet. 26, 579–581 (2018).
50. Cohen, I. et al. A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion. Am. J. Med. Genet. Part A 176, 330–336 (2018).
51. Abu-Libdeh, B. et al. Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. Eur. J. Hum. Genet. 25, 1142–11146 (2017).
52. Yu-Wai-Man, P., Soiferman, D., Moore, D. G., Burté, F. & Saada, A. Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy. Mitochondrion 36, 36–42 (2017).
53. Shahrour, M. A. et al. Mitochondrial epileptic encephalopathy, 3-methylglutaconic aciduria and variable complex V deficiency associated with TIMM50 mutations. Clin. Genet. 91, 690–696 (2017).
54. Volpert, G. et al. Oxidative stress elicited by modifying the ceramide acyl chain length reduces the rate of clathrin-mediated endocytosis. J. Cell Sci. 130, 1486–1493 (2017).
55. Alban, C., Fatale, E., Joulani, A., Ilin, P. & Saada, A. The relationship between mitochondrial respiratory chain activities in muscle and metabolites in plasma and urine: A retrospective study. J. Clin. Med. 6, (2017).
56. Douiev, L., Soiferman, D., Alban, C. & Saada, A. The effects of ascorbate, N-acetylcysteine, and resveratrol on fibroblasts from patients with mitochondrial disorders. J. Clin. Med. 6, (2017).
57. Spiegel, R. et al. Novel homozygous missense mutation in spg20 gene results in troyer syndrome associated with mitochondrial cytochrome c oxidase deficiency. JIMD Reports vol. 33 55–60 (2017).
58. Thompson, K. et al. Erratum: Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number (American Journal of Human Genetics (2016) 99(4) (860–876) (S0002929716303391) (10.1016/j.ajhg.2016.08.014)). Am. J. Hum. Genet. 99, 1405 (2016).
59. Zeharia, A. et al. Mitochondrial hepato-encephalopathy due to deficiency of QIL1/MIC13 (C19orf70), a MICOS complex subunit. Eur. J. Hum. Genet. 24, 1778–1782 (2016).
60. Thompson, K. et al. Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. Am. J. Hum. Genet. 99, 860–876 (2016).
61. Kacso, G. et al. Two transgenic mouse models for beta subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochem. J. 473, 3463–3485 (2016).
62. Kogot-Levin, A. et al. Upregulation of mitochondrial content in cytochrome c oxidase deficient fibroblasts. PLoS One 11, (2016).
63. Yoffe, Y. et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev. 30, 1991–2004 (2016).
64. Sheffer, R. et al. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am. J. Med. Genet. Part A 170, 1603–1607 (2016).
65. Kesner, E. E., Saada-Reich, A. & Lorberboum-Galski, H. Characteristics of Mitochondrial Transformation into Human Cells. Sci. Rep. 6, (2016).
66. Imagawa, E. et al. Homozygous p.V116∗ mutation in C12orf65 results in Leigh syndrome. J. Neurol. Neurosurg. Psychiatry 87, 212–216 (2016).
67. Edvardson, S. & Reisch, A. S. Complex II Deficiency: Leukoencephalopathy Due to Mutated SDHAF1. in Mitochondrial Case Studies: Underlying Mechanisms and Diagnosis 265–272 (Elsevier Inc., 2016). doi:10.1016/B978-0-12-800877-5.00030-9.
68. Spiegel, R. et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. J. Med. Genet. 53, 127–131 (2016).
69. Soiferman, D. & Saada, A. The Use of Fibroblasts from Patients with Inherited Mitochondrial Disorders for Pathomechanistic Studies and Evaluation of Therapies. in The Functions, Disease-Related Dysfunctions, and Therapeutic Targeting of Neuronal Mitochondria 378–398 (wiley, 2015). doi:10.1002/9781119017127.ch18.
70. Edvardson, S. et al. Hypomyelination and developmental delay associated with VPS11 mutation in Ashkenazi-Jewish patients. J. Med. Genet. 52, 749–753 (2015).
71. Haziza, S. et al. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function. PLoS Genet. 11, (2015).
72. Park, W.-J. et al. Development of pheochromocytoma in ceramide synthase 2 null mice. Endocr. Relat. Cancer 22, 623–632 (2015).
73. Stolovich-Rain, M. et al. Erratum to Weaning Triggers a Maturation Step of Pancreatic β Cells [Developmental Cell 32 (2015) 535-545] DOI: 10.1016/j.devcel.2015.04.003. Dev. Cell 33, 238–239 (2015).
74. Stolovich-Rain, M. et al. Weaning Triggers a Maturation Step of Pancreatic β Cells. Dev. Cell 32, 535–545 (2015).
75. Abdulhag, U. N. et al. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur. J. Hum. Genet. 23, 159–164 (2015).
76. Ben-Meir, A. et al. Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertil. Steril. 104, 724–727 (2015).
77. Kopajtich, R. et al. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am. J. Hum. Genet. 95, 708–720 (2014).
78. Vainer, G. W. et al. PF-4708671 activates AMPK independently of p70S6K1 inhibition. PLoS One 9, (2014).
79. Erental, A., Kalderon, Z., Saada, A., Smith, Y. & Engelberg-Kulka, H. Apoptosis-Like Death, An extreme SOS response in Escherichia Coli. MBio 5, (2014).
80. Weksler-Zangen, S. et al. IL-1β hampers glucose-stimulated insulin secretion in Cohen diabetic rat islets through mitochondrial cytochrome c oxidase inhibition by nitric oxide. Am. J. Physiol. - Endocrinol. Metab. 306, E648–E657 (2014).
81. Haviv, R., Zeharia, A., Belaiche, C., Haimi Cohen, Y. & Saada, A. Elevated plasma citrulline: Look for dihydrolipoamide dehydrogenase deficiency. Eur. J. Pediatr. 173, 243–245 (2014).
82. Tornovsky-Babeay, S. et al. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells. Cell Metab. 19, 109–121 (2014).
83. Almagor, Y., Eventov-Friedman, S., Nir, A., Sror, A. & Saada, A. Measurement of troponin-T in dried blood spots and dried plasma spots: A pilot study. J. Pediatr. Biochem. 4, 153–157 (2014).
84. Spiegel, R. et al. Delineation of C12orf65-related phenotypes: A genotype-phenotype relationship. Eur. J. Hum. Genet. 22, 1019–1025 (2014).
85. Spiegel, R. et al. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Eur. J. Hum. Genet. 22, 902–906 (2014).
86. Van Scherpenzeel, M. et al. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain 137, 1030–1038 (2014).
87. Soiferman, D., Ayalon, O., Weissman, S. & Saada, A. The effect of small molecules on nuclear-encoded translation diseases. Biochimie 100, 184–191 (2014).
88. Kogot-Levin, A. & Saada, A. Ceramide and the mitochondrial respiratory chain. Biochimie 100, 88–94 (2014).
89. Saada, A. Mitochondria: Mitochondrial OXPHOS (dys) function ex vivo - The use of primary fibroblasts. Int. J. Biochem. Cell Biol. 48, 60–65 (2014).
90. Erlich, T. H. et al. Mitochondrial STAT3 plays a major role in IgE-antigen-mediated mast cell exocytosis. J. Allergy Clin. Immunol. 134, 460-469.e10 (2014).
91. Negari, S. B. H. et al. Mitochondrial OXPHOS function is unaffected by chronic azithromycin treatment. J. Cyst. Fibros. 12, 682–687 (2013).
92. Park, W.-J. et al. Protection of a ceramide synthase 2 null mouse from drug-induced liver injury role of gap junction dysfunction and connexin 32 mislocalization. J. Biol. Chem. 288, 30904–30916 (2013).
93. Sarig, O. et al. Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-Methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and leigh-Like Syndrome) caused by novel mutations in SERAC1. Am. J. Med. Genet. Part A 161, 2204–2215 (2013).
94. Chowers, I., Kerrison, J. B. & Reisch, A. S. Mitochondrial and peroxisomal disorders. in Pediatric Retina: Second Edition (Wolters Kluwer Health, 2013).
95. Stepensky, P. et al. The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood 121, 5078–5087 (2013).
96. Marcus, D., Lichtenstein, M., Saada, A. & Lorberboum-Galski, H. Replacement of the C6oRF66 assembly factor (NDUFAF4) restores complex I activity in patient cells. Mol. Med. 19, 124–134 (2013).
97. Weksler-Zangen, S. et al. Dietary copper supplementation restores β-cell function of Cohen diabetic rats: A link between mitochondrial function and glucose-stimulated insulin secretion. Am. J. Physiol. - Endocrinol. Metab. 304, E1023–E1034 (2013).
98. Saada, A. Complex subunits and assembly genes: Complex i. in Mitochondrial Disorders Caused by Nuclear Genes vol. 9781461437222 185–202 (Springer New York, 2013).
99. Zigdon, H. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J. Biol. Chem. 288, 4947–4956 (2013).
100. Edvardson, S. et al. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J. Med. Genet. 50, 240–245 (2013).
101. Shwartz, R., Sheffer, R. N., Mangisto, G. & Saada, A. Quantitative measurement of urinary glycosaminoglycans using a modified DMB method facilitates the diagnosis and monitoring of mucopolysaccharidoses. J. Pediatr. Biochem. 2, 163–167 (2012).
102. Ohlenbusch, A. et al. Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency. Orphanet J. Rare Dis. 7, (2012).
103. Spiegel, R. et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am. J. Hum. Genet. 90, 518–523 (2012).
104. Galmiche, L. et al. Toward genotype phenotype correlations in GFM1 mutations. Mitochondrion 12, 242–247 (2012).
105. Shwartz, R., Sheffer, R. N., Mangisto, G. & Saada, A. Quantitative measurement of urinary glycosaminoglycans using a modified DMB method facilitates the diagnosis and monitoring of mucopolysaccharidoses. J. Pediatr. Biochem. 2, 163–167 (2012).
106. Kurian, G. A., Berenshtein, E., Saada, A. & Chevion, M. Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell. Physiol. Biochem. 30, 83–94 (2012).
107. Saada, A. et al. Combined OXPHOS complex i and IV defect, due to mutated complex i assembly factor C20ORF7. J. Inherit. Metab. Dis. 35, 125–131 (2012).
108. Shufaro, Y. et al. Human granulosa luteal cell oxidative phosphorylation function is not affected by age or ovarian response. Fertil. Steril. 98, 166-172.e2 (2012).
109. Assayag, M. et al. Mitochondrial performance in heat acclimation-A lesson from ischemia/reperfusion and calcium overload insults in the heart. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 303, R870–R881 (2012).
110. Berger, I. et al. Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol. Genet. Metab. 104, 517–520 (2011).
111. Golubitzky, A. et al. Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS One 6, (2011).
112. Saada, A. The use of individual patient’s fibroblasts in the search for personalized treatment of nuclear encoded OXPHOS diseases. Mol. Genet. Metab. 104, 39–47 (2011).
113. Dan, P., Edvardson, S., Bielawski, J., Hama, H. & Saada, A. 2-hydroxylated sphingomyelin profiles in cells from patients with mutated fatty acid 2-hydroxylase. Lipids Health Dis. 10, (2011).
114. Miller, C., Wang, L., Ostergaard, E., Dan, P. & Saada, A. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochim. Biophys. Acta - Mol. Basis Dis. 1812, 625–629 (2011).
115. Porat, S. et al. Control of pancreatic β cell regeneration by glucose metabolism. Cell Metab. 13, 440–449 (2011).
116. Smits, P. et al. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur. J. Hum. Genet. 19, 394–399 (2011).
117. Spiegel, R. et al. TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: Further delineation of a new syndrome. J. Med. Genet. 48, 177–182 (2011).
118. Levitas, A. et al. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur. J. Hum. Genet. 18, 1160–1165 (2010).
119. Lakhal, B. et al. Cytogenetic analyses of premature ovarian failure using karyotyping and interphase fluorescence in situ hybridization (FISH) in a group of 1000 patients. Clin. Genet. 78, 181–185 (2010).
120. Berger, I., Segal, I., Shmueli, D. & Saada, A. The effect of antiepileptic drugs on mitochondrial activity: A pilot study. J. Child Neurol. 25, 541–545 (2010).
121. Leshinsky-Silver, E. et al. Leigh disease presenting in utero due to a novel missense mutation in the mitochondrial DNA-ND3. Mol. Genet. Metab. 100, 65–70 (2010).
122. Loeb, V., Yakunin, E., Saada, A. & Sharon, R. The transgenic overexpression of α-synuclein and not its related pathology associates with complex I inhibition. J. Biol. Chem. 285, 7334–7343 (2010).
123. Yakunin, E. et al. α-synuclein abnormalities in mouse models of peroxisome biogenesis disorders. J. Neurosci. Res. 88, 866–876 (2010).
124. Zeharia, A. et al. Acute Infantile Liver Failure Due to Mutations in the TRMU Gene (DOI:10.1016/j.ajhg.2009.08.004). Am. J. Hum. Genet. 86, 295 (2010).
125. Edvardson, S. et al. L-arginine:glycine amidinotransferase (AGAT) deficiency: Clinical presentation and response to treatment in two patients with a novel mutation. Mol. Genet. Metab. 101, 228–232 (2010).
126. Jones, C. N., Miller, C., Tenenbaum, A., Spremulli, L. L. & Saada, A. Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion 9, 429–437 (2009).
127. Belaiche, C., Holt, A. & Saada, A. Nonylphenol ethoxylate plastic additives inhibit mitochondrial respiratory chain complex I. Clin. Chem. 55, 1883–1884 (2009).
128. Saada, A. Fishing in the (deoxyribonucleotide) pool. Biochem. J. 422, e3–e6 (2009).
129. Zeharia, A. et al. Acute Infantile Liver Failure Due to Mutations in the TRMU Gene. Am. J. Hum. Genet. 85, 401–407 (2009).
130. Leshinsky-Silver, E. et al. NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Mol. Genet. Metab. 97, 185–189 (2009).
131. Saada, A. et al. Mutations in NDUFAF3 (C3ORF60), Encoding an NDUFAF4 (C6ORF66)-Interacting Complex I Assembly Protein, Cause Fatal Neonatal Mitochondrial Disease. Am. J. Hum. Genet. 84, 718–727 (2009).
132. Ruvinsky, I. et al. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS One 4, (2009).
133. Shteyer, E. et al. Exocrine Pancreatic Insufficiency, Dyserythropoeitic Anemia, and Calvarial Hyperostosis Are Caused by a Mutation in the COX4I2 Gene. Am. J. Hum. Genet. 84, 412–417 (2009).
134. Spiegel, R. et al. Mutated NDUFS6 is the cause of fatal neonatal lactic acidemia in Caucasus Jews. Eur. J. Hum. Genet. 17, 1200–1203 (2009).
135. Zeharia, A. et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood (DOI:10.1016/j.ajhg.2008.09.002). Am. J. Hum. Genet. 84, 95 (2009).
136. Edvardson, S. et al. Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated with Leukodystrophy with Spastic Paraparesis and Dystonia. Am. J. Hum. Genet. 83, 643–648 (2008).
137. Saada, A. Mitochondrial deoxyribonucleotide pools in deoxyguanosine kinase deficiency. Mol. Genet. Metab. 95, 169–173 (2008).
138. Zeharia, A. et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood. Am. J. Hum. Genet. 83, 489–494 (2008).
139. Ghezzi, D. et al. FASTKD2 Nonsense Mutation in an Infantile Mitochondrial Encephalomyopathy Associated with Cytochrome C Oxidase Deficiency. Am. J. Hum. Genet. 83, 415–423 (2008).
140. Kohler, J. J. et al. Cardiac-targeted transgenic mutant mitochondrial enzymes: mtDNA defects, antiretroviral toxicity and cardiomyopathy. Cardiovasc. Toxicol. 8, 57–69 (2008).
141. Emdadul Haque, M., Grasso, D., Miller, C., Spremulli, L. L. & Saada, A. The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion 8, 254–261 (2008).
142. Barel, O. et al. Mitochondrial Complex III Deficiency Associated with a Homozygous Mutation in UQCRQ. Am. J. Hum. Genet. 82, 1211–1216 (2008).
143. Barghuti, F. et al. The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Mol. Genet. Metab. 94, 78–82 (2008).
144. Berger, I. et al. Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Ann. Neurol. 63, 405–408 (2008).
145. Saada, A. et al. C6ORF66 Is an Assembly Factor of Mitochondrial Complex I. Am. J. Hum. Genet. 82, 32–38 (2008).
146. Rapoport, M., Saada, A., Elpeleg, O. & Lorberboum-Galski, H. TAT-mediated delivery of LAD restores pyruvate dehydrogenase complex activity in the mitochondria of patients with LAD deficiency. Mol. Ther. 16, 691–697 (2008).
147. Saada, A. et al. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J. Med. Genet. 44, 784–786 (2007).
148. Reisch, A. S. & Elpeleg, O. Biochemical Assays for Mitochondrial Activity: Assays of TCA Cycle Enzymes and PDHc. Methods in Cell Biology vol. 80 199–222 (2007).
149. Ciliberti, N. et al. Novel selective human mitochondrial kinase inhibitors: Design, synthesis and enzymatic activity. Bioorganic Med. Chem. 15, 3065–3081 (2007).
150. Edvardson, S. et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am. J. Hum. Genet. 81, 857–862 (2007).
151. Spiegel, R. et al. Severe infantile type of carnitine palmitoyltransferase II (CPT II) deficiency due to homozygous R503C mutation. J. Inherit. Metab. Dis. 30, 266 (2007).
152. Smeitink, J. A. M. et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am. J. Hum. Genet. 79, 869–877 (2006).
153. Leshinsky-Silver, E. et al. Fulminant neurological deterioration in a neonate with Leigh syndrome due to a maternally transmitted missense mutation in the mitochondrial ND3 gene. Biochem. Biophys. Res. Commun. 334, 582–587 (2005).
154. Bahat-Stroomza, M. et al. A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson’s disease. Eur. J. Neurosci. 21, 637–646 (2005).
155. Elpeleg, O. et al. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am. J. Hum. Genet. 76, 1081–1086 (2005).
156. Saada-Reisch, A. Deoxyribonucleoside kinases in mitochondrial DNA depletion. Nucleosides, Nucleotides and Nucleic Acids 23, 1205–1215 (2004).
157. Saada, A., Bar-Meir, M., Belaiche, C., Miller, C. & Elpeleg, O. Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Anal. Biochem. 335, 66–72 (2004).
158. Saada, A. Deoxyribonucleotides and disorders of mitochondrial DNA integrity. DNA Cell Biol. 23, 797–806 (2004).
159. Miller, C. et al. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann. Neurol. 56, 734–738 (2004).
160. Lamont, P. J. et al. Nemaline rods and complex I deficiency in three infants with hypotonia, motor delay and failure to thrive. Neuropediatrics 35, 302–306 (2004).
161. Saada, A. et al. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency. Biochem. Biophys. Res. Commun. 310, 963–966 (2003).
162. Saada, A., Shaag, A. & Elpeleg, O. mtDNA depletion myopathy: Elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency. Mol. Genet. Metab. 79, 1–5 (2003).
163. Wang, L., Saada, A. & Eriksson, S. Kinetic properties of mutant human thymidine kinase 2 suggest a mechanism for mitochondrial DNA depletion myopathy. J. Biol. Chem. 278, 6963–6968 (2003).
164. Lev, D. et al. Reversible fulminant lactic acidosis and liver failure in an infant with hepatic cytochrome-c oxidase deficiency. J. Inherit. Metab. Dis. 25, 371–377 (2002).
165. Elpeleg, O., Mandel, H. & Saada, A. Depletion of the other genome-mitochondrial DNA depletion syndromes in humans. J. Mol. Med. 80, 389–396 (2002).
166. Nevo, Y. et al. Clinical characteristics and muscle pathology in myopathic mitochondrial DNA depletion. J. Child Neurol. 17, 499–504 (2002).
167. Mandel, H. et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat. Genet. 29, 337–341 (2001).
168. Saada, A. et al. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat. Genet. 29, 342–344 (2001).
169. Elpeleg, O. N., Hammerman, C., Saada, A., Shaag, A. & Golzand, E. Antenatal presentation of carnitine palmitoyltransferase II deficiency. Am. J. Med. Genet. 102, 183–187 (2001).
170. Mandel, H. et al. Erratum: The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA (Journal of Vascular Technology (2001) 29 (337-341)). Nat. Genet. 29, 491 (2001).
171. Bar-Meir, M., Elpeleg, O. N. & Saada, A. Effect of various agents on adenosine triphosphate synthesis in mitochondrial complex I deficiency. J. Pediatr. 139, 868–870 (2001).
172. Saada, A., Aptowitzer, I., Link, G. & Elpeleg, O. N. ATP synthesis in lipoamide dehydrogenase deficiency. Biochem. Biophys. Res. Commun. 269, 382–386 (2000).
173. Shany, E. et al. Lipoamide dehydrogenase deficiency due to a novel mutation in the interface domain. Biochem. Biophys. Res. Commun. 262, 163–166 (1999).
174. Shaag, A. et al. Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am. J. Med. Genet. 82, 177–182 (1999).
175. Link, G., Saada, A., Pinson, A., Konijn, A. M. & Hershko, C. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J. Lab. Clin. Med. 131, 466–474 (1998).
176. Cohen, O. et al. Mitochondrial myopathy with atypical subacute presentation [6]. J. Neurol. Neurosurg. Psychiatry 64, 410–411 (1998).
177. Be’eri, H., Reichert, F., Saada, A. & Rotshenker, S. The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. Eur. J. Neurosci. 10, 2707–2713 (1998).
178. Elpeleg, O. N. et al. Lipoamide dehydrogenase deficiency in ashkenazi jews: An insertion mutation in the mitochondrial leader sequence. Hum. Mutat. 10, 256–257 (1997).
179. Aptowitzer, I., Saada, A., Faber, J., Kleid, D. & Elpeleg, O. N. Liver disease in the Ashkenazi-Jewish lipoamide dehydrogenase deficiency. J. Pediatr. Gastroenterol. Nutr. 24, 599–601 (1997).
180. Shaag, A., Saada, A., Steinberg, A., Navon, P. & Elpeleg, O. N. Mitochondrial encephalomyopathy associated with a novel mutation in the mitochondrial tRNA(leu(UUR)) gene (A3243T). Biochem. Biophys. Res. Commun. 233, 637–639 (1997).
181. Elpeleg, O. N. et al. Lipoamide dehydrogenase deficiency: A new cause for recurrent myoglobinuria. Muscle and Nerve 20, 238–240 (1997).
182. Berger, I., Elpeleg, O. N. & Saada, A. Lipoamide dehydrogenase activity in lymphocytes. Clin. Chim. Acta 256, 197–201 (1996).
183. Saada, A., Reichert, F. & Rotshenker, S. Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J. Cell Biol. 133, 159–167 (1996).
184. Saada, A., Dunaevsky-Hutt, A., Aamar, A., Reichert, F. & Rotshenker, S. Fibroblasts that reside in mouse and frog injured peripheral nerves produce apolipoproteins. J. Neurochem. 64, 1996–2003 (1995).
185. Reichert, F., Saada, A. & Rotshenker, S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2. J. Neurosci. 14, 3231–3245 (1994).
186. Aamar, S., Saada, A. & Rotshenker, S. Lesion‐Induced Changes in the Production of Newly Synthesized and Secreted Apo‐E and Other Molecules Are Independent of the Concomitant Recruitment of Blood‐Borne Macrophages into Injured Peripheral Nerves. J. Neurochem. 59, 1287–1292 (1992).
187. Saada, A.-B., Terespolski, Y., Adoni, A. & Kahane, I. Adherence of Ureaplasma urealyticum to human erythrocytes. Infect. Immun. 59, 467–469 (1991).
188. Kahane, I., Reisch-Saada, A., Almagor, M., Abeliuck, P. & Yatziv, S. Glycosidase Activities of Mycoplasmas. Zentralblatt fur Bakteriol. 273, 300–305 (1990).
189. Saada, A.-B., Deutsch, V. & Kahane, I. Interaction of a monoclonal antibody with the urease of Ureaplasma urealyticum. FEMS Microbiol. Lett. 55, 187–190 (1988).
190. Saada, A.-B. & Kahane, I. Purification and characterization of urease from Ureaplasma urealyticum. Zentralblatt fur Bakteriol. Mikrobiol. und Hyg. - Abt. 1 Orig. A 269, 160–167 (1988).
191. Kahane, I., Granek, J. & Reisch-Saada, A. The adhesins of Mycoplasma gallisepticum and M. Pneumoniae. Ann. l’Institut Pasteur Microbiol. 135, 25–32 (1984).