Skip to Main Content

Hadassah Medical Center: Saada Reisch Ann

Last updated September 2023 - Hadassah Medical Center

List of Publications

1.

Hazan R, Lintzer D, Ziv T, Das K, Rosenhek-Goldian I, Porat Z, et al. Mitochondrial-derived vesicles retain membrane potential and contain a functional ATP synthase. EMBO Reports [Internet]. 2023;24(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150787522&doi=10.15252%252fembr.202256114&partnerID=40&md5=7232f85be9a2ab2b82bca3356bc2411c

2.

Sweetat S, Nitzan K, Suissa N, Haimovich Y, Lichtenstein M, Zabit S, et al. The Beneficial Effect of Mitochondrial Transfer Therapy in 5XFAD Mice via Liver–Serum–Brain Response. Cells [Internet]. 2023;12(7). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152343015&doi=10.3390%252fcells12071006&partnerID=40&md5=1ee1606a18c9fbdada876e99d8018d61

3.

Daas S, Abu Salah N, Anikster Y, Barel O, Damseh NS, Dumin E, et al. Addition of galactose-1-phosphate measurement enhances newborn screening for classical galactosemia. Journal of Inherited Metabolic Disease [Internet]. 2023;46(2):232–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144312720&doi=10.1002%252fjimd.12580&partnerID=40&md5=6c0d1359ea757e4d3e96fdc03034e9df

4.

McCormick EM, Keller K, Taylor JP, Coffey AJ, Shen L, Krotoski D, et al. Expert Panel Curation of 113 Primary Mitochondrial Disease Genes for the Leigh Syndrome Spectrum. Annals of Neurology [Internet]. 2023; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167712822&doi=10.1002%252fana.26716&partnerID=40&md5=fe47a3ac189e65f20ebe6602b1f086dd

5.

Zighan M, Arkadir D, Douiev L, Keller G, Miller C, Saada A. Variable effects of omaveloxolone (RTA408) on primary fibroblasts with mitochondrial defects. Frontiers in Molecular Biosciences [Internet]. 2022;9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137002591&doi=10.3389%252ffmolb.2022.890653&partnerID=40&md5=085a7d1adffd903bd376301040f79d77

6.

Douiev L, Miller C, Keller G, Benyamini H, Abu‐libdeh B, Saada A. Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4‐1 Deficiency. International Journal of Molecular Sciences [Internet]. 2022;23(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127730979&doi=10.3390%252fijms23084149&partnerID=40&md5=cdbe6be64f7233e61a4beb05677efa9c

7.

Aharon-Hananel G, Romero-Afrima L, Saada A, Mantzur C, Raz I, Weksler-Zangen S. Cytochrome c Oxidase Activity as a Metabolic Regulator in Pancreatic Beta-Cells. Cells [Internet]. 2022;11(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127027150&doi=10.3390%252fcells11060929&partnerID=40&md5=7b01f3372c43d4af2dbc70cc3dc75680

8.

Ezer S, Daana M, Park JH, Yanovsky-Dagan S, Nordstrom U, Basal A, et al. Infantile SOD1 deficiency syndrome caused by a homozygous SOD1 variant with absence of enzyme activity. Brain [Internet]. 2022;145(3):872–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129780082&doi=10.1093%252fbrain%252fawab416&partnerID=40&md5=a158d93aa7dd96180e628c456e0f6f1a

9.

Mishra K, Péter M, Nardiello AM, Keller G, Llado V, Fernandez-Garcia P, et al. Multifaceted Analyses of Isolated Mitochondria Establish the Anticancer Drug 2-Hydroxyoleic Acid as an Inhibitor of Substrate Oxidation and an Activator of Complex IV-Dependent State 3 Respiration. Cells [Internet]. 2022;11(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124012087&doi=10.3390%252fcells11030578&partnerID=40&md5=bffaea41e324346a6d14d1865c612b58

10.

Liber S, Staretz-Chacham O, Kishon M, Pode-Shakked B, Chorin O, Kneller K, et al. What Can We Learn from the Parents of Children Affected with Mucopolysaccharidosis Type III-A in Israel? Molecular Syndromology [Internet]. 2022;13(1):45–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121543312&doi=10.1159%252f000519099&partnerID=40&md5=fa92200554dd0cffebe53063541d320d

11.

Binyamin O, Frid K, Keller G, Saada A, Gabizon R. Comparing anti–aging hallmark activities of Metformin and Nano-PSO in a mouse model of genetic Creutzfeldt-Jakob Disease. Neurobiology of Aging [Internet]. 2022;110:77–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120616965&doi=10.1016%252fj.neurobiolaging.2021.11.001&partnerID=40&md5=4b0165bb1f2eb3335e940dff278a56cc

12.

Staretz-Chacham O, Amar S, Almashanu S, Pode-Shakked B, Saada A, Wormser O, et al. Multiple acyl-coa dehydrogenase deficiency with variable presentation due to a homozygous mutation in a bedouin tribe. Genes [Internet]. 2021;12(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111747081&doi=10.3390%252fgenes12081140&partnerID=40&md5=044f987a2c1850d8c6eb29f5f1f66f9e

13.

Nasca A, Di Meo I, Fellig Y, Saada A, Elpeleg O, Ghezzi D, et al. A novel homozygous MSTO1 mutation in Ashkenazi Jewish siblings with ataxia and myopathy. Journal of Human Genetics [Internet]. 2021;66(8):835–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101282801&doi=10.1038%252fs10038-020-00897-4&partnerID=40&md5=947c8ccd94a2718cae4673afce1d906f

14.

Staretz-Chacham O, Daas S, Ulanovsky I, Blau A, Rostami N, Saraf-Levy T, et al. The role of orotic acid measurement in routine newborn screening for urea cycle disorders. Journal of Inherited Metabolic Disease [Internet]. 2021;44(3):606–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096927181&doi=10.1002%252fjimd.12331&partnerID=40&md5=822163c53f21a5fd865647d87ba3c180

15.

Zehavi Y, Saada A, Jabaly-Habib H, Dessau M, Shaag A, Elpeleg O, et al. A novel de novo heterozygous pathogenic variant in the SDHA gene results in childhood onset bilateral optic atrophy and cognitive impairment. Metabolic Brain Disease [Internet]. 2021;36(4):581–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100088294&doi=10.1007%252fs11011-021-00671-1&partnerID=40&md5=36ee76582076813bf7cdcd182e7b6d71

16.

Hershkovitz T, Kurolap A, Tal G, Paperna T, Mory A, Staples J, et al. A recurring NFS1 pathogenic variant causes a mitochondrial disorder with variable intra-familial patient outcomes. Molecular Genetics and Metabolism Reports [Internet]. 2021;26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098594211&doi=10.1016%252fj.ymgmr.2020.100699&partnerID=40&md5=bd74761eb03a9a054a3dfa707a336a01

17.

Douiev L, Miller C, Ruppo S, Benyamini H, Abu-Libdeh B, Saada A. Upregulation of cox4-2 via hif-1α in mitochondrial cox4-1 deficiency. Cells [Internet]. 2021;10(2):1–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102607330&doi=10.3390%252fcells10020452&partnerID=40&md5=4c3072668f7fb77d08f9218ae65223b9

18.

Mor-Shaked H, Paz-Ebstein E, Basal A, Ben-Haim S, Grobe H, Heymann S, et al. Levodopa-responsive dystonia caused by biallelic PRKN exon inversion invisible to exome sequencing. Brain Communications [Internet]. 2021;3(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133870706&doi=10.1093%252fbraincomms%252ffcab197&partnerID=40&md5=555785dddbe1f1637322d6d2e016dc3c

19.

Ferreira CR, Rahman S, Keller M, Zschocke J, Abdenur J, Ali H, et al. An international classification of inherited metabolic disorders (ICIMD). Journal of Inherited Metabolic Disease [Internet]. 2021;44(1):164–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101896221&doi=10.1002%252fjimd.12348&partnerID=40&md5=01c3cb9ad98b88e632122f59ae529ae8

20.

Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. Erratum: Correction for Erental et al., “Apoptosis-Like Death, an Extreme SOS Response in Escherichia coli” (mBio (2014) 5 4 (e01426-e01414) PII: e03040-20). mBio [Internet]. 2020;11(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098533823&doi=10.1128%252fmBio.03040-20&partnerID=40&md5=1d9ffb7238be72edb1e30ed0eea12e14

21.

Mreisat A, Kanaani H, Saada A, Horowitz M. Heat acclimation mediated cardioprotection is controlled by mitochondrial metabolic remodeling involving HIF-1α. Journal of Thermal Biology [Internet]. 2020;93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090559858&doi=10.1016%252fj.jtherbio.2020.102691&partnerID=40&md5=5cdb4483149f930a4e6d2c894e1f31d1

22.

Douiev L, Sheffer R, Horvath G, Saada A. Bezafibrate Improves Mitochondrial Fission and Function in DNM1L-Deficient Patient Cells. Cells [Internet]. 2020;9(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094834642&doi=10.3390%252fcells9020301&partnerID=40&md5=487abd0272dbdf945a7505f586d0fdc2

23.

Bennett MJ, Sheng F, Saada A. Biochemical assays of TCA cycle and β-oxidation metabolites. Methods in Cell Biology [Internet]. 2020;155:83–120. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078624004&doi=10.1016%252fbs.mcb.2019.11.021&partnerID=40&md5=2a0755605f2fdc72e98b9b52a8d278ac

24.

Tarailo-Graovac M, Zahir FR, Zivkovic I, Moksa M, Selby K, Sinha S, et al. De novo pathogenic DNM1L variant in a patient diagnosed with atypical hereditary sensory and autonomic neuropathy. Molecular Genetics and Genomic Medicine [Internet]. 2019;7(10). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071494574&doi=10.1002%252fmgg3.961&partnerID=40&md5=4ca0ab34e48c8aaaca6d1b98ff3c4793

25.

Shalata A, Edery M, Habib C, Genizi J, Mahroum M, Khalaily L, et al. Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochemical Research [Internet]. 2019;44(10):2372–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064346921&doi=10.1007%252fs11064-019-02786-5&partnerID=40&md5=0ebd7c651881e2212a4bbe4c59537bcb

26.

Saada A. Insights into deoxyribonucleoside therapy for mitochondrial TK2 deficient mtDNA depletion. EBioMedicine [Internet]. 2019;47:14–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070185897&doi=10.1016%252fj.ebiom.2019.08.005&partnerID=40&md5=cdfd273a60668c56e7219f62f6517f9b

27.

Hershkovitz T, Kurolap A, Gonzaga-Jauregui C, Paperna T, Mory A, Wolf SE, et al. A novel TUFM homozygous variant in a child with mitochondrial cardiomyopathy expands the phenotype of combined oxidative phosphorylation deficiency 4. Journal of Human Genetics [Internet]. 2019;64(6):589–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063398066&doi=10.1038%252fs10038-019-0592-6&partnerID=40&md5=1492dd3807910172be340af3d8f4b4f4

28.

Zehavi Y, Mandel H, Eran A, Ravid S, Abu Rashid M, Jansen EEW, et al. Severe infantile epileptic encephalopathy associated with D-glyceric aciduria: report of a novel case and review. Metabolic Brain Disease [Internet]. 2019;34(2):557–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060086548&doi=10.1007%252fs11011-019-0384-x&partnerID=40&md5=04b3e8bcea9f3068dfc766f1e69150e6

29.

Keller G, Binyamin O, Frid K, Saada A, Gabizon R. Mitochondrial dysfunction in preclinical genetic prion disease: A target for preventive treatment? Neurobiology of Disease [Internet]. 2019;124:57–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056595323&doi=10.1016%252fj.nbd.2018.11.003&partnerID=40&md5=718b7ac0f02b156e22a3ad17c621ec73

30.

Nitzan K, Benhamron S, Valitsky M, Kesner EE, Lichtenstein M, Ben-Zvi A, et al. Mitochondrial Transfer Ameliorates Cognitive Deficits, Neuronal Loss, and Gliosis in Alzheimer’s Disease Mice. Journal of Alzheimer’s disease : JAD [Internet]. 2019;72(2):587–604. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075812542&doi=10.3233%252fJAD-190853&partnerID=40&md5=2b4b969bdbd98efcb1dddabc2cd36955

31.

Saada A. Sea squirt alternative oxidase bypasses fatal mitochondrial heart disease. EMBO Molecular Medicine [Internet]. 2019;11(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058323714&doi=10.15252%252femmm.201809962&partnerID=40&md5=90cf69a4c6c5f18ec25ed370130f84f0

32.

Friederich MW, Timal S, Powell CA, Dallabona C, Kurolap A, Palacios-Zambrano S, et al. Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nature Communications [Internet]. 2018;9(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054370449&doi=10.1038%252fs41467-018-06250-w&partnerID=40&md5=7902b5ba8ab5c03465c31c5760906e1f

33.

Brzezinski A, Saada A, Miller H, Brzezinski-Sinai N, Ben-Meir A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. Journal of Ovarian Research [Internet]. 2018;11(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056932382&doi=10.1186%252fs13048-018-0471-3&partnerID=40&md5=b7c2921bacbced01f2254f206e73d35f

34.

Shufaro Y, Saada A, Simeonov M, Tsuberi BZ, Alban C, Kogot-Levin A, et al. The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reproductive Toxicology [Internet]. 2018;81:246–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052875263&doi=10.1016%252fj.reprotox.2018.08.020&partnerID=40&md5=735dbc87903795d6315ec335f85c652c

35.

Douiev L, Saada A. The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage. Biochimica et Biophysica Acta - Bioenergetics [Internet]. 2018;1859(9):893–900. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048513669&doi=10.1016%252fj.bbabio.2018.06.004&partnerID=40&md5=5a21097b49e8eb976bf8adefdc6945b5

36.

Khateb S, Kowalewski B, Bedoni N, Damme M, Pollack N, Saada A, et al. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genetics in Medicine [Internet]. 2018;20(9):1004–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042758889&doi=10.1038%252fgim.2017.227&partnerID=40&md5=aba98eb86cece27643ce044a7d48cc02

37.

Israeli T, Riahi Y, Saada A, Yefet D, Cerasi E, Tirosh B, et al. Opposing effects of intracellular versus extracellular adenine nucleotides on autophagy: Implications for β-cell function. Journal of Cell Science [Internet]. 2018;131(15). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051602415&doi=10.1242%252fjcs.212969&partnerID=40&md5=945405579322f05c0b79b5c18e310714

38.

Bigelman E, Cohen L, Aharon-Hananel G, Levy R, Rozenbaum Z, Saada A, et al. Pathological presentation of cardiac mitochondria in a rat model for chronic kidney disease. PLoS ONE [Internet]. 2018;13(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048346804&doi=10.1371%252fjournal.pone.0198196&partnerID=40&md5=9d67203ea197aacb536f0f2e57eccb09

39.

Witters P, Saada A, Honzik T, Tesarova M, Kleinle S, Horvath R, et al. Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genetics in Medicine [Internet]. 2018;20(4):444–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045209287&doi=10.1038%252fgim.2017.125&partnerID=40&md5=e661c0a4a39ee538c57731e785d3b183

40.

Douiev L, Abu-Libdeh B, Saada A. Cytochrome c oxidase deficiency, oxidative stress, possible antioxidant therapy and link to nuclear DNA damage. European Journal of Human Genetics [Internet]. 2018;26(4):579–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041603175&doi=10.1038%252fs41431-017-0047-5&partnerID=40&md5=d5c880a4e004777e458a8f20366a6e4b

41.

Cohen I, Staretz-Chacham O, Wormser O, Perez Y, Saada A, Kadir R, et al. A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion. American Journal of Medical Genetics, Part A [Internet]. 2018;176(2):330–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040731996&doi=10.1002%252fajmg.a.38574&partnerID=40&md5=e43c5caab7c55a86a8e074c0399c7c11

42.

Abu-Libdeh B, Douiev L, Amro S, Shahrour M, Ta-Shma A, Miller C, et al. Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. European Journal of Human Genetics [Internet]. 2017;25(10):1142–11146. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034018971&doi=10.1038%252fejhg.2017.112&partnerID=40&md5=d9de5eee67ee2f8f0c541a50216539b3

43.

Yu-Wai-Man P, Soiferman D, Moore DG, Burté F, Saada A. Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy. Mitochondrion [Internet]. 2017;36:36–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010206571&doi=10.1016%252fj.mito.2017.01.004&partnerID=40&md5=3f5aef85ad8e8bcd0f3abfb93e85e2fa

44.

Shahrour MA, Staretz-Chacham O, Dayan D, Stephen J, Weech A, Damseh N, et al. Mitochondrial epileptic encephalopathy, 3-methylglutaconic aciduria and variable complex V deficiency associated with TIMM50 mutations. Clinical Genetics [Internet]. 2017;91(5):690–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991238507&doi=10.1111%252fcge.12855&partnerID=40&md5=0e5753fe0035534a3a80fbbe930450a5

45.

Volpert G, Ben-Dor S, Tarcic O, Duan J, Saada A, Merrill Jr AH, et al. Oxidative stress elicited by modifying the ceramide acyl chain length reduces the rate of clathrin-mediated endocytosis. Journal of Cell Science [Internet]. 2017;130(8):1486–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017533975&doi=10.1242%252fjcs.199968&partnerID=40&md5=a5b24c0a891274d57e71c04c998ca053

46.

Alban C, Fatale E, Joulani A, Ilin P, Saada A. The relationship between mitochondrial respiratory chain activities in muscle and metabolites in plasma and urine: A retrospective study. Journal of Clinical Medicine [Internet]. 2017;6(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034110722&doi=10.3390%252fjcm6030031&partnerID=40&md5=d2332ab4c16cdf20326e9834cee77b78

47.

Douiev L, Soiferman D, Alban C, Saada A. The effects of ascorbate, N-acetylcysteine, and resveratrol on fibroblasts from patients with mitochondrial disorders. Journal of Clinical Medicine [Internet]. 2017;6(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067220151&doi=10.3390%252fjcm6010001&partnerID=40&md5=21c677b2a926468979dd52bed44f264f

48.

Spiegel R, Soiferman D, Shaag A, Shalev S, Elpeleg O, Saada A. Novel homozygous missense mutation in spg20 gene results in troyer syndrome associated with mitochondrial cytochrome c oxidase deficiency. JIMD Reports [Internet]. 2017;33:55–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034202499&doi=10.1007%252f8904_2016_580&partnerID=40&md5=c013f0c06ad9797e05ca93f343044e7e

49.

Thompson K, Majd H, Dallabona C, Reinson K, King MS, Alston CL, et al. Erratum: Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number (American Journal of Human Genetics (2016) 99(4) (860–876) (S0002929716303391) (10.1016/j.ajhg.2016.08.014)). American Journal of Human Genetics [Internet]. 2016;99(6):1405. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85003955358&doi=10.1016%252fj.ajhg.2016.11.001&partnerID=40&md5=d32ae6388960f14545123b9fb4bcfced

50.

Zeharia A, Friedman JR, Tobar A, Saada A, Konen O, Fellig Y, et al. Mitochondrial hepato-encephalopathy due to deficiency of QIL1/MIC13 (C19orf70), a MICOS complex subunit. European Journal of Human Genetics [Internet]. 2016;24(12):1778–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84980319593&doi=10.1038%252fejhg.2016.83&partnerID=40&md5=88cb5ebf78c800a41799bd5c414e0450

51.

Thompson K, Majd H, Dallabona C, Reinson K, King MS, Alston CL, et al. Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. American Journal of Human Genetics [Internet]. 2016;99(4):860–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991735971&doi=10.1016%252fj.ajhg.2016.08.014&partnerID=40&md5=9d866e01f448a2d70b05e264e67bf5b5

52.

Kacso G, Ravasz D, Doczi J, Németh B, Madgar O, Saada A, et al. Two transgenic mouse models for beta subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochemical Journal [Internet]. 2016;473(20):3463–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992561377&doi=10.1042%252fBCJ20160594&partnerID=40&md5=a1a1beee41255b21bc0de76e816d263d

53.

Kogot-Levin A, Saada A, Leibowitz G, Soiferman D, Douiev L, Raz I, et al. Upregulation of mitochondrial content in cytochrome c oxidase deficient fibroblasts. PLoS ONE [Internet]. 2016;11(10). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992366073&doi=10.1371%252fjournal.pone.0165417&partnerID=40&md5=91409610e93f9fcb01157dc8f939b08b

54.

Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, et al. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes and Development [Internet]. 2016;30(17):1991–2004. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988882789&doi=10.1101%252fgad.285239.116&partnerID=40&md5=34dc6799740c01ebc0f0d7b96a560b76

55.

Sheffer R, Douiev L, Edvardson S, Shaag A, Tamimi K, Soiferman D, et al. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. American Journal of Medical Genetics, Part A [Internet]. 2016;170(6):1603–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961282095&doi=10.1002%252fajmg.a.37624&partnerID=40&md5=252229d01d3aba6febba0d8c405eac5d

56.

Kesner EE, Saada-Reich A, Lorberboum-Galski H. Characteristics of Mitochondrial Transformation into Human Cells. Scientific Reports [Internet]. 2016;6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969131757&doi=10.1038%252fsrep26057&partnerID=40&md5=23917440e27656fa8fd4921ace3e3c74

57.

Imagawa E, Fattal-Valevski A, Eyal O, Miyatake S, Saada A, Nakashima M, et al. Homozygous p.V116∗ mutation in C12orf65 results in Leigh syndrome. Journal of Neurology, Neurosurgery and Psychiatry [Internet]. 2016;87(2):212–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958875263&doi=10.1136%252fjnnp-2014-310084&partnerID=40&md5=701eb144bc2d3087e5a3834cf0a9c3e6

58.

Edvardson S, Reisch AS. Complex II Deficiency: Leukoencephalopathy Due to Mutated SDHAF1 [Internet]. Mitochondrial Case Studies: Underlying Mechanisms and Diagnosis. 2016. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960834485&doi=10.1016%252fB978-0-12-800877-5.00030-9&partnerID=40&md5=bcfde0fc1fada88b50eb5ef1cf7bb88d

59.

Spiegel R, Saada A, Flannery PJ, Burté F, Soiferman D, Khayat M, et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. Journal of Medical Genetics [Internet]. 2016;53(2):127–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958964739&doi=10.1136%252fjmedgenet-2015-103361&partnerID=40&md5=7cc735e695a8fbe2b7bcba58420fbc28

60.

Soiferman D, Saada A. The Use of Fibroblasts from Patients with Inherited Mitochondrial Disorders for Pathomechanistic Studies and Evaluation of Therapies [Internet]. The Functions, Disease-Related Dysfunctions, and Therapeutic Targeting of Neuronal Mitochondria. 2015. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017365599&doi=10.1002%252f9781119017127.ch18&partnerID=40&md5=cb86181f9d6abd5ec8356e789318c72f

61.

Ben-Meir A, Yahalomi S, Moshe B, Shufaro Y, Reubinoff B, Saada A. Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertility and Sterility [Internet]. 2015;104(3):724–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940725346&doi=10.1016%252fj.fertnstert.2015.05.023&partnerID=40&md5=3d31a10e52c08affb5aec3d2b3e03c13

62.

Edvardson S, Gerhard F, Jalas C, Lachmann J, Golan D, Saada A, et al. Hypomyelination and developmental delay associated with VPS11 mutation in Ashkenazi-Jewish patients. Journal of Medical Genetics [Internet]. 2015;52(11):749–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954378852&doi=10.1136%252fjmedgenet-2015-103239&partnerID=40&md5=60ef4a13598879bc643ef7183101b6e3

63.

Haziza S, Magnani R, Lan D, Keinan O, Saada A, Hershkovitz E, et al. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function. PLoS Genetics [Internet]. 2015;11(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940739271&doi=10.1371%252fjournal.pgen.1005388&partnerID=40&md5=5bb1d5e725d871555c75109bd7d7d2b6

64.

Park WJ, Brenner O, Kogot-Levin A, Saada A, Merrill Jr AH, Pewzner-Jung Y, et al. Development of pheochromocytoma in ceramide synthase 2 null mice. Endocrine-Related Cancer [Internet]. 2015;22(4):623–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940105531&doi=10.1530%252fERC-15-0058&partnerID=40&md5=5cebab66d9cf3f363e8b04e71431d93c

65.

Stolovich-Rain M, Enk J, Vikesa J, Nielsen FC, Saada A, Glaser B, et al. Erratum to Weaning Triggers a Maturation Step of Pancreatic β Cells [Developmental Cell 32 (2015) 535-545] DOI: 10.1016/j.devcel.2015.04.003. Developmental Cell [Internet]. 2015;33(2):238–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928035610&doi=10.1016%252fj.devcel.2015.04.003&partnerID=40&md5=68d9338e13ee912493708b00dbacb413

66.

Stolovich-Rain M, Enk J, Vikesa J, Nielsen F, Saada A, Glaser B, et al. Weaning Triggers a Maturation Step of Pancreatic β Cells. Developmental Cell [Internet]. 2015;32(5):535–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924314941&doi=10.1016%252fj.devcel.2015.01.002&partnerID=40&md5=a2bcf682efe521756bc30cbf4ee69fa4

67.

Abdulhag UN, Soiferman D, Schueler-Furman O, Miller C, Shaag A, Elpeleg O, et al. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. European Journal of Human Genetics [Internet]. 2015;23(2):159–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921405736&doi=10.1038%252fejhg.2014.85&partnerID=40&md5=47a00290359c593c2c9088daf88e21b4

68.

Kopajtich R, Nicholls TJ, Rorbach J, Metodiev MD, Freisinger P, Mandel H, et al. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. American Journal of Human Genetics [Internet]. 2014;95(6):708–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919678076&doi=10.1016%252fj.ajhg.2014.10.017&partnerID=40&md5=71ceaadffb90432134011aa3419fec43

69.

Vainer GW, Saada A, Kania-Almog J, Amartely A, Bar-Tana J, Hertz R. PF-4708671 activates AMPK independently of p70S6K1 inhibition. PLoS ONE [Internet]. 2014;9(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929941964&doi=10.1371%252fjournal.pone.0107364&partnerID=40&md5=4f9f193786149cdd08213e2536015b3b

70.

Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. Apoptosis-Like Death, An extreme SOS response in Escherichia Coli. mBio [Internet]. 2014;5(4). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908288865&doi=10.1128%252fmBio.01426-14&partnerID=40&md5=9985fe7b647b45192a0936a293e393e7

71.

Weksler-Zangen S, Aharon-Hananel G, Mantzur C, Aouizerat T, Gurgul-Convey E, Raz I, et al. IL-1β hampers glucose-stimulated insulin secretion in Cohen diabetic rat islets through mitochondrial cytochrome c oxidase inhibition by nitric oxide. American Journal of Physiology - Endocrinology and Metabolism [Internet]. 2014;306(6):E648–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84900543282&doi=10.1152%252fajpendo.00451.2013&partnerID=40&md5=c84156f53bdffe2bb04e17d6346b327d

72.

Haviv R, Zeharia A, Belaiche C, Haimi Cohen Y, Saada A. Elevated plasma citrulline: Look for dihydrolipoamide dehydrogenase deficiency. European Journal of Pediatrics [Internet]. 2014;173(2):243–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897589003&doi=10.1007%252fs00431-013-2153-x&partnerID=40&md5=4e7c765003a02a67bbce7c50f876316a

73.

Tornovsky-Babeay S, Dadon D, Ziv O, Tzipilevich E, Kadosh T, Schyr-Ben Haroush R, et al. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells. Cell Metabolism [Internet]. 2014;19(1):109–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891854946&doi=10.1016%252fj.cmet.2013.11.007&partnerID=40&md5=5a0ae7ec03729c269867e66184356a2c

74.

Almagor Y, Eventov-Friedman S, Nir A, Sror A, Saada A. Measurement of troponin-T in dried blood spots and dried plasma spots: A pilot study. Journal of Pediatric Biochemistry [Internet]. 2014;4(3):153–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907914559&doi=10.3233%252fJPB-140120&partnerID=40&md5=4fbbaacea8be3d54f12c0c7c3925923b

75.

Erlich TH, Yagil Z, Kay G, Peretz A, Migalovich-Sheikhet H, Tshori S, et al. Mitochondrial STAT3 plays a major role in IgE-antigen-mediated mast cell exocytosis. Journal of Allergy and Clinical Immunology [Internet]. 2014;134(2):460-469.e10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905568336&doi=10.1016%252fj.jaci.2013.12.1075&partnerID=40&md5=6ea0dd36375de5ba16867f053e91c496

76.

Spiegel R, Mandel H, Saada A, Lerer I, Burger A, Shaag A, et al. Delineation of C12orf65-related phenotypes: A genotype-phenotype relationship. European Journal of Human Genetics [Internet]. 2014;22(8):1019–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904676315&doi=10.1038%252fejhg.2013.284&partnerID=40&md5=2a048504b59fc68157e93b0f01cbb6f4

77.

Spiegel R, Saada A, Halvardson J, Soiferman D, Shaag A, Edvardson S, et al. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. European Journal of Human Genetics [Internet]. 2014;22(7):902–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902314403&doi=10.1038%252fejhg.2013.269&partnerID=40&md5=3708e9093f7538677e25a32cac232ccc

78.

Van Scherpenzeel M, Timal S, Rymen D, Hoischen A, Wuhrer M, Hipgrave-Ederveen A, et al. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain [Internet]. 2014;137(4):1030–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897585843&doi=10.1093%252fbrain%252fawu019&partnerID=40&md5=81fb028cfa8b2b5c0d1de35c77a0b302

79.

Soiferman D, Ayalon O, Weissman S, Saada A. The effect of small molecules on nuclear-encoded translation diseases. Biochimie [Internet]. 2014;100(1):184–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897059982&doi=10.1016%252fj.biochi.2013.08.024&partnerID=40&md5=29ec60112d2e49963877a63c2442adf8

80.

Kogot-Levin A, Saada A. Ceramide and the mitochondrial respiratory chain. Biochimie [Internet]. 2014;100(1):88–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897034027&doi=10.1016%252fj.biochi.2013.07.027&partnerID=40&md5=72f8cf3f6149b39fb0760022f69f898a

81.

Saada A. Mitochondria: Mitochondrial OXPHOS (dys) function ex vivo - The use of primary fibroblasts. International Journal of Biochemistry and Cell Biology [Internet]. 2014;48(1):60–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84892763383&doi=10.1016%252fj.biocel.2013.12.010&partnerID=40&md5=cc9ee1fde14a58e9a745cf09a48863c3

82.

Negari SBH, Aouizerat T, Tenenbaum A, Cohen-Cymberknoh M, Shoseyov D, Kerem E, et al. Mitochondrial OXPHOS function is unaffected by chronic azithromycin treatment. Journal of Cystic Fibrosis [Internet]. 2013;12(6):682–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888069681&doi=10.1016%252fj.jcf.2013.04.006&partnerID=40&md5=d09db617865c6b95e7e7da1fc7d185ae

83.

Park WJ, Park JW, Erez-Roman R, Kogot-Levin A, Bame JR, Tirosh B, et al. Protection of a ceramide synthase 2 null mouse from drug-induced liver injury role of gap junction dysfunction and connexin 32 mislocalization. Journal of Biological Chemistry [Internet]. 2013;288(43):30904–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886687848&doi=10.1074%252fjbc.M112.448852&partnerID=40&md5=98b5f3136807a2f86b74cd236be03a4e

84.

Sarig O, Goldsher D, Nousbeck J, Fuchs-Telem D, Cohen-Katsenelson K, Iancu TC, et al. Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-Methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and leigh-Like Syndrome) caused by novel mutations in SERAC1. American Journal of Medical Genetics, Part A [Internet]. 2013;161(9):2204–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881665541&doi=10.1002%252fajmg.a.36059&partnerID=40&md5=d3c71e2114f29b01e6ca307421f2c420

85.

Chowers I, Kerrison JB, Reisch AS. Mitochondrial and peroxisomal disorders [Internet]. Pediatric Retina: Second Edition. 2013. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973863169&partnerID=40&md5=e2791c38dd38e52fdd43606ff7bdb97c

86.

Stepensky P, Saada A, Cowan M, Tabib A, Fischer U, Berkun Y, et al. The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood [Internet]. 2013;121(25):5078–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84882432632&doi=10.1182%252fblood-2012-12-475566&partnerID=40&md5=378133105a172530b869baef9033c88c

87.

Marcus D, Lichtenstein M, Saada A, Lorberboum-Galski H. Replacement of the C6oRF66 assembly factor (NDUFAF4) restores complex I activity in patient cells. Molecular Medicine [Internet]. 2013;19(1):124–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878780818&doi=10.2119%252fmolmed.2012.00343&partnerID=40&md5=9faec8e616d2a39a39af0776f42f4829

88.

Weksler-Zangen S, Jörns A, Tarsi-Chen L, Vernea F, Aharon-Hananel G, Saada A, et al. Dietary copper supplementation restores β-cell function of Cohen diabetic rats: A link between mitochondrial function and glucose-stimulated insulin secretion. American Journal of Physiology - Endocrinology and Metabolism [Internet]. 2013;304(10):E1023–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878614383&doi=10.1152%252fajpendo.00036.2013&partnerID=40&md5=41583770ed609b5897b75de1b7575ce1

89.

Saada A. Complex subunits and assembly genes: Complex i [Internet]. Vol. 9781461437222, Mitochondrial Disorders Caused by Nuclear Genes. 2013. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84949180210&doi=10.1007%252f978-1-4614-3722-2_12&partnerID=40&md5=2b55293db3a72ef9144435e23b1369af

90.

Zigdon H, Kogot-Levin A, Park JW, Goldschmidt R, Kelly S, Merrill Jr. AH, et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. Journal of Biological Chemistry [Internet]. 2013;288(7):4947–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874086182&doi=10.1074%252fjbc.M112.402719&partnerID=40&md5=27fdd6e4a7acb43c227c365f55c0e0a0

91.

Edvardson S, Porcelli V, Jalas C, Soiferman D, Kellner Y, Shaag A, et al. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. Journal of Medical Genetics [Internet]. 2013;50(4):240–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878851926&doi=10.1136%252fjmedgenet-2012-101485&partnerID=40&md5=8849352b800591ee603e326034bc5ec4

92.

Assayag M, Saada A, Gerstenblith G, Canaana H, Shlomai R, Horowitz M. Mitochondrial performance in heat acclimation-A lesson from ischemia/reperfusion and calcium overload insults in the heart. American Journal of Physiology - Regulatory Integrative and Comparative Physiology [Internet]. 2012;303(8):R870–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867701235&doi=10.1152%252fajpregu.00155.2012&partnerID=40&md5=70b634691e645c05876893f1f4178eee

93.

Ohlenbusch A, Edvardson S, Skorpen J, Bjornstad A, Saada A, Elpeleg O, et al. Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency. Orphanet Journal of Rare Diseases [Internet]. 2012;7(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866497654&doi=10.1186%252f1750-1172-7-69&partnerID=40&md5=1d339d4b36b0539ac7ffafb97720dcd2

94.

Spiegel R, Pines O, Ta-Shma A, Burak E, Shaag A, Halvardson J, et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. American Journal of Human Genetics [Internet]. 2012;90(3):518–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858040979&doi=10.1016%252fj.ajhg.2012.01.009&partnerID=40&md5=16bf64f5d44f2465d39c4070f527a5ae

95.

Galmiche L, Serre V, Beinat M, Zossou R, Assouline Z, Lebre AS, et al. Toward genotype phenotype correlations in GFM1 mutations. Mitochondrion [Internet]. 2012;12(2):242–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858008885&doi=10.1016%252fj.mito.2011.09.007&partnerID=40&md5=fdb5c83f0442f9ede84126c5c50a9fae

96.

Shwartz R, Sheffer RN, Mangisto G, Saada A. Quantitative measurement of urinary glycosaminoglycans using a modified DMB method facilitates the diagnosis and monitoring of mucopolysaccharidoses. Journal of Pediatric Biochemistry [Internet]. 2012;2(3):163–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021688005&doi=10.1055%252fs-0036-1586409&partnerID=40&md5=26383913de8f7b624f1797b08f0913ee

97.

Kurian GA, Berenshtein E, Saada A, Chevion M. Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cellular Physiology and Biochemistry [Internet]. 2012;30(1):83–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863447640&doi=10.1159%252f000339043&partnerID=40&md5=b59d88b62c3212a2bba0185fecb8df9d

98.

Saada A, Edvardson S, Shaag A, Chung WK, Segel R, Miller C, et al. Combined OXPHOS complex i and IV defect, due to mutated complex i assembly factor C20ORF7. Journal of Inherited Metabolic Disease [Internet]. 2012;35(1):125–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863327256&doi=10.1007%252fs10545-011-9348-y&partnerID=40&md5=0916411988ca5b195aaa2a929d8cfc96

99.

Shufaro Y, Lebovich M, Aizenman E, Miller C, Simon A, Laufer N, et al. Human granulosa luteal cell oxidative phosphorylation function is not affected by age or ovarian response. Fertility and Sterility [Internet]. 2012;98(1):166-172.e2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862985979&doi=10.1016%252fj.fertnstert.2012.03.051&partnerID=40&md5=6cd3eaa487d10fbc5f6cc9bb070bdeba

100.

Berger I, Ben-Neriah Z, Dor-Wolman T, Shaag A, Saada A, Zenvirt S, et al. Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Molecular Genetics and Metabolism [Internet]. 2011;104(4):517–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-82255162594&doi=10.1016%252fj.ymgme.2011.09.020&partnerID=40&md5=9324c953d84eb30ce583d30ca5136925

101.

Golubitzky A, Dan P, Weissman S, Link G, Wikstrom JD, Saada A. Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS ONE [Internet]. 2011;6(10). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80055050942&doi=10.1371%252fjournal.pone.0026883&partnerID=40&md5=b6ec18f10cd2708b839220a9d253a163

102.

Saada A. The use of individual patient’s fibroblasts in the search for personalized treatment of nuclear encoded OXPHOS diseases. Molecular Genetics and Metabolism [Internet]. 2011;104(1–2):39–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052546948&doi=10.1016%252fj.ymgme.2011.07.016&partnerID=40&md5=03547cc08e81f3ec1096d9d239557590

103.

Dan P, Edvardson S, Bielawski J, Hama H, Saada A. 2-hydroxylated sphingomyelin profiles in cells from patients with mutated fatty acid 2-hydroxylase. Lipids in Health and Disease [Internet]. 2011;10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79956226812&doi=10.1186%252f1476-511X-10-84&partnerID=40&md5=d7f397501b41e8dd3b2173248bb18108

104.

Miller C, Wang L, Ostergaard E, Dan P, Saada A. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochimica et Biophysica Acta - Molecular Basis of Disease [Internet]. 2011;1812(5):625–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952701718&doi=10.1016%252fj.bbadis.2011.01.013&partnerID=40&md5=75a3e5184f35cf72e2877fcb51709ce0

105.

Porat S, Weinberg-Corem N, Tornovsky-Babaey S, Schyr-Ben-Haroush R, Hija A, Stolovich-Rain M, et al. Control of pancreatic β cell regeneration by glucose metabolism. Cell Metabolism [Internet]. 2011;13(4):440–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79953734660&doi=10.1016%252fj.cmet.2011.02.012&partnerID=40&md5=ba24d7ad33c73da0ee90402d73b69e72

106.

Smits P, Saada A, Wortmann SB, Heister AJ, Brink M, Pfundt R, et al. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. European Journal of Human Genetics [Internet]. 2011;19(4):394–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952745016&doi=10.1038%252fejhg.2010.214&partnerID=40&md5=0e17c2067df9a8d092fe8c8ba02fa633

107.

Spiegel R, Khayat M, Shalev SA, Horovitz Y, Mandel H, Hershkovitz E, et al. TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: Further delineation of a new syndrome. Journal of Medical Genetics [Internet]. 2011;48(3):177–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79951811299&doi=10.1136%252fjmg.2010.084608&partnerID=40&md5=eea326588e8e090eaa729aeeb1933936

108.

Edvardson S, Korman SH, Livne A, Shaag A, Saada A, Nalbandian R, et al. L-arginine:glycine amidinotransferase (AGAT) deficiency: Clinical presentation and response to treatment in two patients with a novel mutation. Molecular Genetics and Metabolism [Internet]. 2010;101(2–3):228–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957308438&doi=10.1016%252fj.ymgme.2010.06.021&partnerID=40&md5=938905f9d48f8f50a81a06c136cac069

109.

Levitas A, Muhammad E, Harel G, Saada A, Caspi VC, Manor E, et al. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. European Journal of Human Genetics [Internet]. 2010;18(10):1160–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957128549&doi=10.1038%252fejhg.2010.83&partnerID=40&md5=7ce7ea32aeeb3bbb6ac13613486587b6

110.

Lakhal B, Braham R, Berguigua R, Bouali N, Zaouali M, Chaieb M, et al. Cytogenetic analyses of premature ovarian failure using karyotyping and interphase fluorescence in situ hybridization (FISH) in a group of 1000 patients. Clinical Genetics [Internet]. 2010;78(2):181–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952216712&doi=10.1111%252fj.1399-0004.2009.01359.x&partnerID=40&md5=6764e7b6767dd339418db58a76140d84

111.

Berger I, Segal I, Shmueli D, Saada A. The effect of antiepileptic drugs on mitochondrial activity: A pilot study. Journal of Child Neurology [Internet]. 2010;25(5):541–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953096933&doi=10.1177%252f0883073809352888&partnerID=40&md5=1895350f6f7a3aa6a14a537c6c8ca18c

112.

Leshinsky-Silver E, Lev D, Malinger G, Shapira D, Cohen S, Lerman-Sagie T, et al. Leigh disease presenting in utero due to a novel missense mutation in the mitochondrial DNA-ND3. Molecular Genetics and Metabolism [Internet]. 2010;100(1):65–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950519832&doi=10.1016%252fj.ymgme.2010.02.002&partnerID=40&md5=b2a0296fd7588ad47f4714b08a5fd8a4

113.

Loeb V, Yakunin E, Saada A, Sharon R. The transgenic overexpression of α-synuclein and not its related pathology associates with complex I inhibition. Journal of Biological Chemistry [Internet]. 2010;285(10):7334–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77951239770&doi=10.1074%252fjbc.M109.061051&partnerID=40&md5=00b240a78a7f9aa84df3c65fdb737a4d

114.

Yakunin E, Moser A, Loeb V, Saada A, Faust P, Crane DI, et al. α-synuclein abnormalities in mouse models of peroxisome biogenesis disorders. Journal of Neuroscience Research [Internet]. 2010;88(4):866–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-76549112206&doi=10.1002%252fjnr.22246&partnerID=40&md5=1bd5452c9eeae9a4113ed09cfcc44d8e

115.

Zeharia A, Shaag A, Pappo O, Mager-Heckel AM, Saada A, Beinat M, et al. Acute Infantile Liver Failure Due to Mutations in the TRMU Gene (DOI:10.1016/j.ajhg.2009.08.004). American Journal of Human Genetics [Internet]. 2010;86(2):295. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-76049109044&doi=10.1016%252fj.ajhg.2010.01.020&partnerID=40&md5=8219119dc46f16b78518b9305e80abeb

116.

Jones CN, Miller C, Tenenbaum A, Spremulli LL, Saada A. Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion [Internet]. 2009;9(6):429–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70449133759&doi=10.1016%252fj.mito.2009.08.001&partnerID=40&md5=a6f471d13587bc48536cc37ef7654419

117.

Belaiche C, Holt A, Saada A. Nonylphenol ethoxylate plastic additives inhibit mitochondrial respiratory chain complex I. Clinical Chemistry [Internet]. 2009;55(10):1883–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349659681&doi=10.1373%252fclinchem.2009.130054&partnerID=40&md5=988e043fe18f1355e4098984eda632c5

118.

Saada A. Fishing in the (deoxyribonucleotide) pool. Biochemical Journal [Internet]. 2009;422(3):e3–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70249105044&doi=10.1042%252fBJ20091194&partnerID=40&md5=e35a59f35b01fe8caacc6933d60eef9b

119.

Zeharia A, Shaag A, Pappo O, Mager-Heckel AM, Saada A, Beinat M, et al. Acute Infantile Liver Failure Due to Mutations in the TRMU Gene. American Journal of Human Genetics [Internet]. 2009;85(3):401–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-69649100936&doi=10.1016%252fj.ajhg.2009.08.004&partnerID=40&md5=47f8c8201dfab8d3c82c87ffb363c07e

120.

Leshinsky-Silver E, Lebre AS, Minai L, Saada A, Steffann J, Cohen S, et al. NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Molecular Genetics and Metabolism [Internet]. 2009;97(3):185–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67349159760&doi=10.1016%252fj.ymgme.2009.03.002&partnerID=40&md5=622da6c81a02937d698a53da7c55e8bb

121.

Saada A, Vogel RO, Hoefs SJ, van den Brand MA, Wessels HJ, Willems PH, et al. Mutations in NDUFAF3 (C3ORF60), Encoding an NDUFAF4 (C6ORF66)-Interacting Complex I Assembly Protein, Cause Fatal Neonatal Mitochondrial Disease. American Journal of Human Genetics [Internet]. 2009;84(6):718–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-66749128531&doi=10.1016%252fj.ajhg.2009.04.020&partnerID=40&md5=dfa6c516b4ad8e219517393975cdb01b

122.

Ruvinsky I, Katz M, Dreazen A, Gielchinsky Y, Saada A, Freedman N, et al. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS ONE [Internet]. 2009;4(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-66049157014&doi=10.1371%252fjournal.pone.0005618&partnerID=40&md5=5d260ebe9c88d4324d77c77a6852bf54

123.

Shteyer E, Saada A, Shaag A, Al-Hijawi FA, Kidess R, Revel-Vilk S, et al. Exocrine Pancreatic Insufficiency, Dyserythropoeitic Anemia, and Calvarial Hyperostosis Are Caused by a Mutation in the COX4I2 Gene. American Journal of Human Genetics [Internet]. 2009;84(3):412–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-61549103491&doi=10.1016%252fj.ajhg.2009.02.006&partnerID=40&md5=19ae924d7489c85ee47ab80c1d18e2f1

124.

Spiegel R, Shaag A, Mandel H, Reich D, Penyakov M, Hujeirat Y, et al. Mutated NDUFS6 is the cause of fatal neonatal lactic acidemia in Caucasus Jews. European Journal of Human Genetics [Internet]. 2009;17(9):1200–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-69249232275&doi=10.1038%252fejhg.2009.24&partnerID=40&md5=d003db1056ff819ad1ee66a84ca82a96

125.

Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood (DOI:10.1016/j.ajhg.2008.09.002). American Journal of Human Genetics [Internet]. 2009;84(1):95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149103028&doi=10.1016%252fj.ajhg.2008.12.003&partnerID=40&md5=5ccfe3895dbe364acb68c1b20f182f3b

126.

Edvardson S, Hama H, Shaag A, Gomori JM, Berger I, Soffer D, et al. Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated with Leukodystrophy with Spastic Paraparesis and Dystonia. American Journal of Human Genetics [Internet]. 2008;83(5):643–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-55049092207&doi=10.1016%252fj.ajhg.2008.10.010&partnerID=40&md5=24783c691fd0814567b906c7f3f787cf

127.

Saada A. Mitochondrial deoxyribonucleotide pools in deoxyguanosine kinase deficiency. Molecular Genetics and Metabolism [Internet]. 2008;95(3):169–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-53849098899&doi=10.1016%252fj.ymgme.2008.07.007&partnerID=40&md5=025e8a72a0af6865cda570e9d4b364b3

128.

Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood. American Journal of Human Genetics [Internet]. 2008;83(4):489–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-53249091836&doi=10.1016%252fj.ajhg.2008.09.002&partnerID=40&md5=ec973e506ee9f3c343289c49bc748329

129.

Ghezzi D, Saada A, D’Adamo P, Fernandez-Vizarra E, Gasparini P, Tiranti V, et al. FASTKD2 Nonsense Mutation in an Infantile Mitochondrial Encephalomyopathy Associated with Cytochrome C Oxidase Deficiency. American Journal of Human Genetics [Internet]. 2008;83(3):415–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-50949096038&doi=10.1016%252fj.ajhg.2008.08.009&partnerID=40&md5=cfdd7c88d7c922ff763abbaf56265d6f

130.

Kohler JJ, Hosseini SH, Green E, Hoying-Brandt A, Cucoranu I, Haase CP, et al. Cardiac-targeted transgenic mutant mitochondrial enzymes: mtDNA defects, antiretroviral toxicity and cardiomyopathy. Cardiovascular Toxicology [Internet]. 2008;8(2):57–69. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-51449101904&doi=10.1007%252fs12012-008-9015-1&partnerID=40&md5=f74209e81ee75e77d0c133c48d6efd4a

131.

Emdadul Haque Md, Grasso D, Miller C, Spremulli LL, Saada A. The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion [Internet]. 2008;8(3):254–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-45449099046&doi=10.1016%252fj.mito.2008.04.004&partnerID=40&md5=5db374c206b8f6fe119b1f7b112b7245

132.

Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, Finer G, et al. Mitochondrial Complex III Deficiency Associated with a Homozygous Mutation in UQCRQ. American Journal of Human Genetics [Internet]. 2008;82(5):1211–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-42749083327&doi=10.1016%252fj.ajhg.2008.03.020&partnerID=40&md5=3e9a38b434fe2101ec54f55560cf0aa8

133.

Barghuti F, Elian K, Gomori JM, Shaag A, Edvardson S, Saada A, et al. The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Molecular Genetics and Metabolism [Internet]. 2008;94(1):78–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-41949112549&doi=10.1016%252fj.ymgme.2007.11.013&partnerID=40&md5=03f894c807ec98eee41a1829577d3538

134.

Berger I, Hershkovitz E, Shaag A, Edvardson S, Saada A, Elpeleg O. Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Annals of Neurology [Internet]. 2008;63(3):405–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-41849090449&doi=10.1002%252fana.21332&partnerID=40&md5=15c6b8e59922e5a1b429bb9516a4766e

135.

Saada A, Edvardson S, Rapoport M, Shaag A, Amry K, Miller C, et al. C6ORF66 Is an Assembly Factor of Mitochondrial Complex I. American Journal of Human Genetics [Internet]. 2008;82(1):32–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-38749144436&doi=10.1016%252fj.ajhg.2007.08.003&partnerID=40&md5=4de7a35bcec21561f896c4ceb99e1155

136.

Rapoport M, Saada A, Elpeleg O, Lorberboum-Galski H. TAT-mediated delivery of LAD restores pyruvate dehydrogenase complex activity in the mitochondria of patients with LAD deficiency. Molecular Therapy [Internet]. 2008;16(4):691–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-41149128339&doi=10.1038%252fmt.2008.4&partnerID=40&md5=74cae5c153f77f23e9310e79cab1af2b

137.

Saada A, Shaag A, Arnon S, Dolfin T, Miller C, Fuchs-Telem D, et al. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. Journal of Medical Genetics [Internet]. 2007;44(12):784–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-37249071299&doi=10.1136%252fjmg.2007.053116&partnerID=40&md5=8741a61c4ed97df314ffcdc41e11d0c7

138.

Reisch AS, Elpeleg O. Biochemical Assays for Mitochondrial Activity: Assays of TCA Cycle Enzymes and PDHc. Methods in Cell Biology [Internet]. 2007;80:199–222. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34147174836&doi=10.1016%2fS0091-679X%2806%2980010-5&partnerID=40&md5=bae823b0d27fda32a5fb59bc52e4e941

139.

Ciliberti N, Manfredini S, Angusti A, Durini E, Solaroli N, Vertuani S, et al. Novel selective human mitochondrial kinase inhibitors: Design, synthesis and enzymatic activity. Bioorganic and Medicinal Chemistry [Internet]. 2007;15(8):3065–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947285430&doi=10.1016%252fj.bmc.2007.01.049&partnerID=40&md5=fb3ebd3f15921bfc5bfb0d155ee16279

140.

Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. American Journal of Human Genetics [Internet]. 2007;81(4):857–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35348983348&doi=10.1086%252f521227&partnerID=40&md5=7c050aeba98374da44f24fee808c47af

141.

Spiegel R, Shaag A, Gutman A, Korman SH, Saada A, Elpeleg O, et al. Severe infantile type of carnitine palmitoyltransferase II (CPT II) deficiency due to homozygous R503C mutation. Journal of inherited metabolic disease [Internet]. 2007;30(2):266. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34247586652&doi=10.1007%252fs10545-007-0536-8&partnerID=40&md5=088e83c3a4cbc85588d2dd92c20e4688

142.

Smeitink JAM, Elpeleg O, Antonicka H, Diepstra H, Saada A, Smits P, et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. American Journal of Human Genetics [Internet]. 2006;79(5):869–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33751085653&doi=10.1086%252f508434&partnerID=40&md5=b1e882629641861ee96f525ef196afd0

143.

Leshinsky-Silver E, Lev D, Tzofi-Berman Z, Cohen S, Saada A, Yanoov-Sharav M, et al. Fulminant neurological deterioration in a neonate with Leigh syndrome due to a maternally transmitted missense mutation in the mitochondrial ND3 gene. Biochemical and Biophysical Research Communications [Internet]. 2005;334(2):582–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-22144483768&doi=10.1016%252fj.bbrc.2005.06.134&partnerID=40&md5=afe100e2435e44ad06bf38313dd6089c

144.

Bahat-Stroomza M, Gilgun-Sherki Y, Offen D, Panet H, Saada A, Krool-Galron N, et al. A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson’s disease. European Journal of Neuroscience [Internet]. 2005;21(3):637–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-14944376569&doi=10.1111%252fj.1460-9568.2005.03889.x&partnerID=40&md5=ec6a9489a8e8c2d0a890d0acd3f75772

145.

Elpeleg O, Miller C, Hershkovitz E, Bitner-Glindzicz M, Bondi-Rubinstein G, Rahman S, et al. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. American Journal of Human Genetics [Internet]. 2005;76(6):1081–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-18944390365&doi=10.1086%252f430843&partnerID=40&md5=e0180ebb3f14a16b94ed7f346156efd7

146.

Saada-Reisch A. Deoxyribonucleoside kinases in mitochondrial DNA depletion. Nucleosides, Nucleotides and Nucleic Acids [Internet]. 2004;23(8–9):1205–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-10344250455&doi=10.1081%252fNCN-200027480&partnerID=40&md5=1e0650523d813c768648e772cb64261c

147.

Saada A, Bar-Meir M, Belaiche C, Miller C, Elpeleg O. Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Analytical Biochemistry [Internet]. 2004;335(1):66–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-7444261879&doi=10.1016%252fj.ab.2004.08.015&partnerID=40&md5=8d30500b9a5f0112da9ff9c7f66e55be

148.

Saada A. Deoxyribonucleotides and disorders of mitochondrial DNA integrity. DNA and Cell Biology [Internet]. 2004;23(12):797–806. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-10344253295&doi=10.1089%252fdna.2004.23.797&partnerID=40&md5=4c7bc1d528de16d3663005607b8aa357

149.

Miller C, Saada A, Shaul N, Shabtai N, Ben-Shalom E, Shaag A, et al. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Annals of Neurology [Internet]. 2004;56(5):734–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-9144268494&doi=10.1002%252fana.20282&partnerID=40&md5=e1baf02626b378438aae835c3d5f9c37

150.

Lamont PJ, Thorburn DR, Fabian V, Vajsar J, Hawkins C, Saada A, et al. Nemaline rods and complex I deficiency in three infants with hypotonia, motor delay and failure to thrive. Neuropediatrics [Internet]. 2004;35(5):302–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-8844243256&doi=10.1055%252fs-2004-821243&partnerID=40&md5=6d23d5397ea03e1f170f90d7d8389783

151.

Saada A, Ben-Shalom E, Zyslin R, Miller C, Mandel H, Elpeleg O. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency. Biochemical and Biophysical Research Communications [Internet]. 2003;310(3):963–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0141534166&doi=10.1016%252fj.bbrc.2003.09.104&partnerID=40&md5=d169bc67bc20cfcaf182fd8faca84d03

152.

Saada A, Shaag A, Elpeleg O. mtDNA depletion myopathy: Elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency. Molecular Genetics and Metabolism [Internet]. 2003;79(1):1–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038183839&doi=10.1016%2fS1096-7192%2803%2900063-5&partnerID=40&md5=04210ff0029333e5158110969ed852a9

153.

Wang L, Saada A, Eriksson S. Kinetic properties of mutant human thymidine kinase 2 suggest a mechanism for mitochondrial DNA depletion myopathy. Journal of Biological Chemistry [Internet]. 2003;278(9):6963–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037470065&doi=10.1074%252fjbc.M206143200&partnerID=40&md5=09e43938a744a06f92276181f6076a2f

154.

Lev D, Gilad E, Leshinsky-Silver E, Houri S, Levine A, Saada A, et al. Reversible fulminant lactic acidosis and liver failure in an infant with hepatic cytochrome-c oxidase deficiency. Journal of Inherited Metabolic Disease [Internet]. 2002;25(5):371–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036746685&doi=10.1023%252fA%253a1020195616081&partnerID=40&md5=92920311fd7b7caf8a99552338553ba1

155.

Elpeleg O, Mandel H, Saada A. Depletion of the other genome-mitochondrial DNA depletion syndromes in humans. Journal of Molecular Medicine [Internet]. 2002;80(7):389–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036019510&doi=10.1007%252fs00109-002-0343-5&partnerID=40&md5=27aad9f67f1221bdf40dbb8c59e333fd

156.

Nevo Y, Soffer D, Kutai M, Zelnik N, Saada A, Jossiphov J, et al. Clinical characteristics and muscle pathology in myopathic mitochondrial DNA depletion. Journal of Child Neurology [Internet]. 2002;17(7):499–504. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036656706&doi=10.1177%252f088307380201700705&partnerID=40&md5=ab2b3626fab19969c6651842110fe2b8

157.

Mandel H, Szargel R, Labay V, Elpeleg O, Saada A, Shalata A, et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nature Genetics [Internet]. 2001;29(3):337–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035183256&doi=10.1038%252fng746&partnerID=40&md5=8efdec1281b6bd52d1cab0bbd6bcca6e

158.

Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nature Genetics [Internet]. 2001;29(3):342–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035179561&doi=10.1038%252fng751&partnerID=40&md5=fb11d3574b1755270df9823f4fb3022a

159.

Elpeleg ON, Hammerman C, Saada A, Shaag A, Golzand E. Antenatal presentation of carnitine palmitoyltransferase II deficiency. American Journal of Medical Genetics [Internet]. 2001;102(2):183–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035425592&doi=10.1002%252fajmg.1457&partnerID=40&md5=0b23ab9ff311d0306965f61aeee229d8

160.

Mandel H, Szargel R, Labay V, Elpeleg O, Saada A, Shalata A, et al. Erratum: The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA (Journal of Vascular Technology (2001) 29 (337-341)). Nature Genetics [Internet]. 2001;29(4):491. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-18344369705&doi=10.1038%252fng1201-491a&partnerID=40&md5=ddd314525beab25f006a3e3080fad14b

161.

Bar-Meir M, Elpeleg ON, Saada A. Effect of various agents on adenosine triphosphate synthesis in mitochondrial complex I deficiency. Journal of Pediatrics [Internet]. 2001;139(6):868–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035666573&doi=10.1067%252fmpd.2001.118885&partnerID=40&md5=d40d45de77a3aea5bcde7af810c0f79b

162.

Saada A, Aptowitzer I, Link G, Elpeleg ON. ATP synthesis in lipoamide dehydrogenase deficiency. Biochemical and Biophysical Research Communications [Internet]. 2000;269(2):382–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034673557&doi=10.1006%252fbbrc.2000.2310&partnerID=40&md5=c48b4e9203e4f0f5ba0b8d8316d888da

163.

Shany E, Saada A, Landau D, Shaag A, Hershkovitz E, Elpeleg ON. Lipoamide dehydrogenase deficiency due to a novel mutation in the interface domain. Biochemical and Biophysical Research Communications [Internet]. 1999;262(1):163–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033584455&doi=10.1006%252fbbrc.1999.1133&partnerID=40&md5=7c21a8abbc9bb8ca6bba21be29b3736b

164.

Shaag A, Saada A, Berger I, Mandel H, Joseph A, Feigenbaum A, et al. Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. American Journal of Medical Genetics [Internet]. 1999;82(2):177–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033555479&doi=10.1002%2f%28SICI%291096-8628%2819990115%2982%3a2%3c177%3a%3aAID-AJMG15%3e3.0.CO%3b2-9&partnerID=40&md5=ae983f93d8a6d5327301adb4468ac7ad

165.

Be’eri H, Reichert F, Saada A, Rotshenker S. The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. European Journal of Neuroscience [Internet]. 1998;10(8):2707–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031901842&doi=10.1046%252fj.1460-9568.1998.00277.x&partnerID=40&md5=baf5c52abf57560d5477fde57db9f777

166.

Link G, Saada A, Pinson A, Konijn AM, Hershko C. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. Journal of Laboratory and Clinical Medicine [Internet]. 1998;131(5):466–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032078224&doi=10.1016%2fS0022-2143%2898%2990148-2&partnerID=40&md5=7bb5a2a2db0e22e1ea0c21cb584a69b1

167.

Cohen O, Steiner I, Argov Z, Ashkenazi A, Diment J, Saada A, et al. Mitochondrial myopathy with atypical subacute presentation [6]. Journal of Neurology Neurosurgery and Psychiatry [Internet]. 1998;64(3):410–1. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031942127&doi=10.1136%252fjnnp.64.3.410&partnerID=40&md5=c1ec3321a11f8c5dec131a7c8f0722e0

168.

Elpeleg ON, Shaag A, Glustein JZ, Anikster Y, Joseph A, Saada A. Lipoamide dehydrogenase deficiency in ashkenazi jews: An insertion mutation in the mitochondrial leader sequence. Human Mutation [Internet]. 1997;10(3):256–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030769124&doi=10.1002%2f%28SICI%291098-1004%281997%2910%3a3%3c256%3a%3aAID-HUMU16%3e3.0.CO%3b2-Z&partnerID=40&md5=704f83b4685f381046ce49e12f919d61

169.

Aptowitzer I, Saada A, Faber J, Kleid D, Elpeleg ON. Liver disease in the Ashkenazi-Jewish lipoamide dehydrogenase deficiency. Journal of Pediatric Gastroenterology and Nutrition [Internet]. 1997;24(5):599–601. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030926196&doi=10.1097%252f00005176-199705000-00019&partnerID=40&md5=eeff728ec628ad46333e97bae54e55b3

170.

Shaag A, Saada A, Steinberg A, Navon P, Elpeleg ON. Mitochondrial encephalomyopathy associated with a novel mutation in the mitochondrial tRNA(leu(UUR)) gene (A3243T). Biochemical and Biophysical Research Communications [Internet]. 1997;233(3):637–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031589154&doi=10.1006%252fbbrc.1997.6496&partnerID=40&md5=9c45633bcfa988920babb9c59f329626

171.

Elpeleg ON, Saada AB, Shaag A, Glustein JZ, Ruitenbeek W, Tein I, et al. Lipoamide dehydrogenase deficiency: A new cause for recurrent myoglobinuria. Muscle and Nerve [Internet]. 1997;20(2):238–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031046624&doi=10.1002%2f%28SICI%291097-4598%28199702%2920%3a2%3c238%3a%3aAID-MUS18%3e3.0.CO%3b2-Z&partnerID=40&md5=adbe8a99a0857bb4bbdd6359c6847261

172.

Berger I, Elpeleg ON, Saada A. Lipoamide dehydrogenase activity in lymphocytes. Clinica Chimica Acta [Internet]. 1996;256(2):197–201. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030607699&doi=10.1016%2fS0009-8981%2896%2906420-0&partnerID=40&md5=bd4ccbd1bbfb2e7bd4eef1ca112eb571

173.

Saada A, Reichert F, Rotshenker S. Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. Journal of Cell Biology [Internet]. 1996;133(1):159–67. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029929404&doi=10.1083%252fjcb.133.1.159&partnerID=40&md5=f74c3009f9d70d8bac5bc40c9d089b6f

174.

Saada A, Dunaevsky‐Hutt A, Aamar A, Reichert F, Rotshenker S. Fibroblasts that Reside in Mouse and Frog Injured Peripheral Nerves Produce Apolipoproteins. Journal of Neurochemistry [Internet]. 1995;64(5):1996–2003. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028930810&doi=10.1046%252fj.1471-4159.1995.64051996.x&partnerID=40&md5=359eba21bf1e1de72456466a03344f5e

175.

Reichert F, Saada A, Rotshenker S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2. Journal of Neuroscience [Internet]. 1994;14(5 II):3231–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028334842&doi=10.1523%252fjneurosci.14-05-03231.1994&partnerID=40&md5=8550db01ebe1f44b787cb40443766a3f

176.

Aamar S, Saada A, Rotshenker S. Lesion‐Induced Changes in the Production of Newly Synthesized and Secreted Apo‐E and Other Molecules Are Independent of the Concomitant Recruitment of Blood‐Borne Macrophages into Injured Peripheral Nerves. Journal of Neurochemistry [Internet]. 1992;59(4):1287–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026761485&doi=10.1111%252fj.1471-4159.1992.tb08439.x&partnerID=40&md5=7db44e1f7d6aea3acf7ad0c627988d89

177.

Saada AB, Terespolski Y, Adoni A, Kahane I. Adherence of Ureaplasma urealyticum to human erythrocytes. Infection and Immunity [Internet]. 1991;59(1):467–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026011202&partnerID=40&md5=9a285a2d04e563fed5df8aaad3393122

178.

Kahane I, Reisch-Saada A, Almagor M, Abeliuck P, Yatziv S. Glycosidase Activities of Mycoplasmas. Zentralblatt fur Bakteriologie [Internet]. 1990;273(3):300–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025125533&doi=10.1016%2fS0934-8840%2811%2980432-9&partnerID=40&md5=1f74c2d3ef8f2b6fd94c8e5ab15b83a4

179.

Saada AB, Deutsch V, Kahane I. Interaction of a monoclonal antibody with the urease of Ureaplasma urealyticum. FEMS Microbiology Letters [Internet]. 1988;55(2):187–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023771044&doi=10.1111%252fj.1574-6968.1988.tb13931.x&partnerID=40&md5=cbe0fb5dae5109cc5d248f3c4f707d31

180.

Saada AB, Kahane I. Purification and characterization of urease from Ureaplasma urealyticum. Zentralblatt fur Bakteriologie Mikrobiologie und Hygiene - Abt 1 Orig A [Internet]. 1988;269(2):160–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024063450&doi=10.1016%2fS0176-6724%2888%2980092-0&partnerID=40&md5=e5d08df8099a2ba100ec273055892e3b

181.

Kahane I, Granek J, Reisch-Saada A. The adhesins of Mycoplasma gallisepticum and M. Pneumoniae. Annales de l’Institut Pasteur Microbiology [Internet]. 1984;135(1):25–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021366833&doi=10.1016%2fS0769-2609%2884%2980055-1&partnerID=40&md5=8526daa88564f82dbac343de528cb723