Skip to Main Content

The Faculty of Medicine - Developmental Biology and Cancer Research: Cedar Haim

Researchers

עודכן בתאריך

Last updated September 2023 - Developmental Biology and Cancer Research

List of Publications

1.

Naama M, Rahamim M, Zayat V, Sebban S, Radwan A, Orzech D, et al. Pluripotency-independent induction of human trophoblast stem cells from fibroblasts. Nature Communications [Internet]. 2023;14(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161338642&doi=10.1038%252fs41467-023-39104-1&partnerID=40&md5=1cc81d96db24f7c718f8e993a177d8fd

2.

Michaeli TF, Sabag O, Fok R, Azria B, Monin J, Nevo Y, et al. Muscle injury causes long-term changes in stem-cell DNA methylation. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2022;119(52). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144250855&doi=10.1073%252fpnas.2212306119&partnerID=40&md5=72fef6efcfad92bfe3cad49dd6bfa7ef

3.

Cedar H, Sabag O, Reizel Y. The role of DNA methylation in genome-wide gene regulation during development. Development (Cambridge) [Internet]. 2022;149(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123671420&doi=10.1242%252fdev.200118&partnerID=40&md5=81f6cc666c3124f47ca7286e3159a489

4.

Blumenfeld B, Masika H, Farago M, Yehuda Y, Halaseh L, Vardi O, et al. Chromosomal coordination and differential structure of asynchronous replicating regions. Nature Communications [Internet]. 2021;12(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101447798&doi=10.1038%252fs41467-021-21348-4&partnerID=40&md5=d2cc9f1b88834f027afc3da3e87a1e13

5.

Bergman Y, Simon I, Cedar H. Asynchronous Replication Timing: A Mechanism for Monoallelic Choice During Development. Frontiers in Cell and Developmental Biology [Internet]. 2021;9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117119380&doi=10.3389%252ffcell.2021.737681&partnerID=40&md5=ad17ceb41bfdfa22dd97ab60c7db7f04

6.

Falick Michaeli T, Spiro A, Sabag O, Karavani G, Yagel S, Eventov-Friedman S, et al. Determining gestational age using genome methylation profile: A novel approach for fetal medicine. Prenatal Diagnosis [Internet]. 2019;39(11):1005–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070691027&doi=10.1002%252fpd.5535&partnerID=40&md5=ca794b6f82b553ab09bdde29d9e1aaed

7.

Reizel Y, Sabag O, Skversky Y, Spiro A, Steinberg B, Bernstein D, et al. Postnatal DNA demethylation and its role in tissue maturation. Nature Communications [Internet]. 2018;9(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047559689&doi=10.1038%252fs41467-018-04456-6&partnerID=40&md5=4da1d48969525d31af95a5d180ad73a6

8.

Greenfield R, Tabib A, Keshet I, Moss J, Sabag O, Goren A, et al. Role of transcription complexes in the formation of the basal methylation pattern in early development. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2018;115(41):10387–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054779719&doi=10.1073%252fpnas.1804755115&partnerID=40&md5=fd554656af639f98cfcc08c2143da90c

9.

Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. The Lancet [Internet]. 2018;392(10149):777–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054890608&doi=10.1016%2fS0140-6736%2818%2931268-6&partnerID=40&md5=42d4debfb1f372b253487b43cf091ee1

10.

Neiman D, Moss J, Hecht M, Magenheim J, Piyanzin S, Shapiro AMJ, et al. Islet cells share promoter hypomethylation independently of expression, but exhibit cell-type-specific methylation in enhancers. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2017;114(51):13525–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038844288&doi=10.1073%252fpnas.1713736114&partnerID=40&md5=fe8d23cca35cb8213e6d463623b84d8d

11.

Levin-Klein R, Fraenkel S, Lichtenstein M, Matheson LS, Bartok O, Nevo Y, et al. Clonally stable Vκ allelic choice instructs Igκ repertoire. Nature Communications [Internet]. 2017;8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020023519&doi=10.1038%252fncomms15575&partnerID=40&md5=3d2f7950a2dce10b54b6e1fdbb72c137

12.

Klutstein M, Moss J, Kaplan T, Cedar H. Contribution of epigenetic mechanisms to variation in cancer risk among tissues. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2017;114(9):2230–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014324011&doi=10.1073%252fpnas.1616556114&partnerID=40&md5=69babb38f2785bf5295e838f9d5f0f6c

13.

Masika H, Farago M, Hecht M, Condiotti R, Makedonski K, Buganim Y, et al. Programming asynchronous replication in stem cells. Nature Structural and Molecular Biology [Internet]. 2017;24(12):1132–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039561560&doi=10.1038%252fnsmb.3503&partnerID=40&md5=c219458237a5bc33d96c3166a1d83574

14.

Cedar H, Razin A. Annotating the genome by DNA methylation. International Journal of Developmental Biology [Internet]. 2017;61(3–5):137–48. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020288263&doi=10.1387%252fijdb.160270hc&partnerID=40&md5=d7f10b20ca12f027c1d5de905fe4b380

15.

Hecht M, Tabib A, Kahan T, Orlanski S, Gropp M, Tabach Y, et al. Epigenetic mechanism of FMR1 inactivation in Fragile X syndrome. International Journal of Developmental Biology [Internet]. 2017;61(3–5):285–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020256375&doi=10.1387%252fijdb.170022hc&partnerID=40&md5=18d0a81d55cc698c8625334fb5dda9e9

16.

Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Research [Internet]. 2016;76(12):3446–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976869967&doi=10.1158%252f0008-5472.CAN-15-3278&partnerID=40&md5=ceb969604c203022cef33029176034f2

17.

Orlanski S, Labi V, Reizel Y, Spiro A, Lichtenstein M, Levin-Klein R, et al. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2016;113(18):5018–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84971524716&doi=10.1073%252fpnas.1604365113&partnerID=40&md5=45d1fabcbbd15abbb631214eb8e58bf4

18.

Almouzni G, Cedar H. Maintenance of epigenetic information. Cold Spring Harbor Perspectives in Biology [Internet]. 2016;8(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964978116&doi=10.1101%252fcshperspect.a019372&partnerID=40&md5=cca8610205ca64fbf022555c6b2f4894

19.

Reizel Y, Spiro A, Sabag O, Skversky Y, Hecht M, Keshet I, et al. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes and Development [Internet]. 2015;29(9):923–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929469179&doi=10.1101%252fgad.259309.115&partnerID=40&md5=1a90ef4c73c283210dd9eda7f50acc20

20.

Stoyanov E, Ludwig G, Mizrahi L, Olam D, Schnitzer-Perlman T, Tasika E, et al. Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis. Oncotarget [Internet]. 2015;6(13):11047–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929629987&doi=10.18632%252foncotarget.3567&partnerID=40&md5=4f8abb82e147fa170a78883e9c1b7bb6

21.

Ludwig G, Nejman D, Hecht M, Orlanski S, Abu-Remaileh M, Yanuka O, et al. Aberrant DNA methylation in ES cells. PLoS ONE [Internet]. 2014;9(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901322185&doi=10.1371%252fjournal.pone.0096090&partnerID=40&md5=6b11602226ada1cc27a99659c1bdd2e7

22.

Nejman D, Straussman R, Steinfeld I, Ruvolo M, Roberts D, Yakhini Z, et al. Molecular rules governing de novo methylation in cancer. Cancer Research [Internet]. 2014;74(5):1475–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896501999&doi=10.1158%252f0008-5472.CAN-13-3042&partnerID=40&md5=393cb0021fe63e90c768363e5da4eaa4

23.

Levin-Klein R, Kirillov A, Rosenbluh C, Cedar H, Bergman Y. A novel Pax5-binding regulatory element in the Igk locus. Frontiers in Immunology [Internet]. 2014;5(MAY). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905392411&doi=10.3389%252ffimmu.2014.00240&partnerID=40&md5=ae8af07e7b8a49ed51def0a7e1e4b1fd

24.

Sabag O, Zamir A, Keshet I, Hecht M, Ludwig G, Tabib A, et al. Establishment of methylation patterns in ES cells. Nature Structural and Molecular Biology [Internet]. 2014;21(1):110–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893771625&doi=10.1038%252fnsmb.2734&partnerID=40&md5=9587e0fd3a248c755feb680b66c8edaa

25.

Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nature Structural and Molecular Biology [Internet]. 2013;20(3):274–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875129831&doi=10.1038%252fnsmb.2518&partnerID=40&md5=4c8198f38f8db27c59cd052905c3da12

26.

Farago M, Rosenbluh C, Tevlin M, Fraenkel S, Schlesinger S, Masika H, et al. Clonal allelic predetermination of immunoglobulin-κ rearrangement. Nature [Internet]. 2012;490(7421):561–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867873501&doi=10.1038%252fnature11496&partnerID=40&md5=295e75d93a7ab58bfe98f42be12cce7e

27.

Cedar H, Bergman Y. Programming of DNA methylation patterns. Annual Review of Biochemistry [Internet]. 2012;81:97–117. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861912630&doi=10.1146%252fannurev-biochem-052610-091920&partnerID=40&md5=6dfca1e94b5d111b7c9e9890997a4842

28.

Cedar H, Bergman Y. Epigenetics of haematopoietic cell development. Nature Reviews Immunology [Internet]. 2011;11(7):478–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959674418&doi=10.1038%252fnri2991&partnerID=40&md5=42a6fb195a078ecbfdc9faeed1a9e271

29.

Michaelson-Cohen R, Keshet I, Straussman R, Hecht M, Cedar H, Beller U. Genome-wide de novo methylation in epithelial ovarian cancer. International Journal of Gynecological Cancer [Internet]. 2011;21(2):269–79. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79956112921&doi=10.1097%252fIGC.0b013e31820e5cda&partnerID=40&md5=0b558f50ada904b27816be6cc04e8ea9

30.

Bergman Y, Cedar H. Epigenetic control of recombination in the immune system. Seminars in Immunology [Internet]. 2010;22(6):323–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78249266271&doi=10.1016%252fj.smim.2010.07.003&partnerID=40&md5=6e002d2b427df991d8daf446ccd83de6

31.

Shufaro Y, Lacham-Kaplan O, Tzuberi BZ, Mclaughlin J, Trounson A, Cedar H, et al. Reprogramming of DNA replication timing. Stem Cells [Internet]. 2010;28(3):443–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950549511&doi=10.1002%252fstem.303&partnerID=40&md5=026d1f23c77b978c99d2cb6da74d1d7b

32.

Schlesinger S, Selig S, Bergman Y, Cedar H. Allelic inactivation of rDNA loci. Genes and Development [Internet]. 2009;23(20):2437–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350112537&doi=10.1101%252fgad.544509&partnerID=40&md5=afae3f39007c7e6db60cc3c6fe21e2ac

33.

Lande-Diner L, Zhang J, Cedar H. Shifts in Replication Timing Actively Affect Histone Acetylation during Nucleosome Reassembly. Molecular Cell [Internet]. 2009;34(6):767–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67649126836&doi=10.1016%252fj.molcel.2009.05.027&partnerID=40&md5=bc2f3accd9fb6243c399b5ec9593e484

34.

Cedar H, Bergman Y. Linking DNA methylation and histone modification: Patterns and paradigms. Nature Reviews Genetics [Internet]. 2009;10(5):295–304. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67349190247&doi=10.1038%252fnrg2540&partnerID=40&md5=d2ab9e42c5f71aa2f2342773d248c9d7

35.

Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, et al. Developmental programming of CpG island methylation profiles in the human genome. Nature Structural and Molecular Biology [Internet]. 2009;16(5):564–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-66149147557&doi=10.1038%252fnsmb.1594&partnerID=40&md5=48e1cf5f5e17e8cf8e0cb3407d5da88f

36.

Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Structural and Molecular Biology [Internet]. 2008;15(11):1176–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-55549145072&doi=10.1038%252fnsmb.1476&partnerID=40&md5=53a56bef74d4372c34eba87f155f30c3

37.

Cedar H. Orchestration of DNA methylation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [Internet]. 2008;4955 LNBI:65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-47249149648&doi=10.1007%252f978-3-540-78839-3_6&partnerID=40&md5=93e70169fead0e5ac36ca658030c5d35

38.

Cedar H, Bergman Y. Choreography of Ig allelic exclusion. Current Opinion in Immunology [Internet]. 2008;20(3):308–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-45449089640&doi=10.1016%252fj.coi.2008.02.002&partnerID=40&md5=0da0d0c2607750be05d6997c8b457216

39.

Goren A, Tabib A, Hecht M, Cedar H. DNA replication timing of the human β-globin domain is controlled by histone modification at the origin. Genes and Development [Internet]. 2008;22(10):1319–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-44149084708&doi=10.1101%252fgad.468308&partnerID=40&md5=d3de648d4b7d45f10c79dcccf394d7f8

40.

Fraenkel S, Mostoslavsky R, Novobrantseva TI, Pelanda R, Chaudhuri J, Esposito G, et al. Allelic “choice” governs somatic hypermutation in vivo at the immunoglobulin κ-chain locus. Nature Immunology [Internet]. 2007;8(7):715–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34250773900&doi=10.1038%252fni1476&partnerID=40&md5=9a3e9a1f95b36a7656dcdea5994fe1b9

41.

Lande-Diner L, Zhang J, Ben-Porath I, Amariglio N, Keshet I, Hecht M, et al. Role of DNA methylation in stable gene repression. Journal of Biological Chemistry [Internet]. 2007;282(16):12194–200. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34249692514&doi=10.1074%252fjbc.M607838200&partnerID=40&md5=b007e81cee2dd51646d7e15cde34ceb2

42.

Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genetics [Internet]. 2007;39(2):232–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846649587&doi=10.1038%252fng1950&partnerID=40&md5=0bfbec5b45c9173dcc2834f70864bfa4

43.

Goren A, Simchen G, Fibach E, Szabo PE, Tanimoto K, Chakalova L, et al. Fine tuning of globin gene expression by DNA methylation. PLoS ONE [Internet]. 2006;1(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-44149110031&doi=10.1371%252fjournal.pone.0000046&partnerID=40&md5=650a015d6a0cd35d403c36d7714ff729

44.

Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biology [Internet]. 2006;8(2):188–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645132331&doi=10.1038%252fncb1353&partnerID=40&md5=95dc2cfa726f08045e65916bffab9c42

45.

Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genetics [Internet]. 2006;38(2):149–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-31744433660&doi=10.1038%252fng1719&partnerID=40&md5=ad91a8c24e4be40ed0278b2cf7438f39

46.

Lande-Diner L, Cedar H. Silence of the genes - Mechanisms of long-term repression. Nature Reviews Genetics [Internet]. 2005;6(8):648–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-22944489197&doi=10.1038%252fnrg1639&partnerID=40&md5=bba44842fde02e6814e8c61232459fd9

47.

Goldmit M, Ji Y, Skok J, Roldan E, Jung S, Cedar H, et al. Epigenetic ontogeny of the Igk locus during B cell development. Nature Immunology [Internet]. 2005;6(2):198–203. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-13944262010&doi=10.1038%252fni1154&partnerID=40&md5=46a0347aa87590313677bd8227540416

48.

Lande-Diner L, Zhang J, Hashimshony T, Goren A, Keshet I, Cedar H. Gene repression paradigms in animal cells. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 2004;69:131–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-22944456025&doi=10.1101%252fsqb.2004.69.131&partnerID=40&md5=95c6eefc0aa0a2013c597d568388efdf

49.

Bergman Y, Cedar H. A stepwise epigenetic process controls immunoglobulin allelic exclusion. Nature Reviews Immunology [Internet]. 2004;4(10):753–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-5044220453&doi=10.1038%252fnri1458&partnerID=40&md5=d2561de276b9b156b824753902b539c1

50.

Rand E, Ben-Porath I, Keshet I, Cedar H. CTCF elements direct allele-specific undermethylation at the imprinted H19 locus. Current Biology [Internet]. 2004;14(11):1007–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1842650055&doi=10.1016%252fj.cub.2004.05.041&partnerID=40&md5=2b66aff00c8f58cbc9807b8243cf2983

51.

Ji Y, Zhang J, Lee AI, Cedar H, Bergman Y. A multistep mechanism for the activation of rearrangement in the immune system. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2003;100(13):7557–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038610946&doi=10.1073%252fpnas.0932635100&partnerID=40&md5=d2336883c5ecb5d856fafa1b7690de3e

52.

Hashimshony T, Zhang J, Keshet I, Bustin M, Cedar H. The role of DNA methylation in setting up chromatin structure during development. Nature Genetics [Internet]. 2003;34(2):187–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038243168&doi=10.1038%252fng1158&partnerID=40&md5=a997338ed77ec0ba80cc48e48b7bdc4f

53.

Singh N, Bergman Y, Cedar H, Chess A. Biallelic germline transcription at the κ immunoglobulin locus. Journal of Experimental Medicine [Internet]. 2003;197(6):743–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0345268756&doi=10.1084%252fjem.20021392&partnerID=40&md5=2e43ea6c91e24d768ee3d27ac8a6b6f7

54.

Rand E, Cedar H. Regulation of imprinting: A multi-tiered process. Journal of Cellular Biochemistry [Internet]. 2003;88(2):400–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037304158&doi=10.1002%252fjcb.10352&partnerID=40&md5=92b52db334422c09e2224dae19921d13

55.

Bergman Y, Fisher A, Cedar H. Epigenetic mechanisms that regulate antigen receptor gene expression. Current Opinion in Immunology [Internet]. 2003;15(2):176–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037375346&doi=10.1016%2fS0952-7915%2803%2900016-5&partnerID=40&md5=fa9723a9f215dc534adaf5ab0f594158

56.

Goren A, Cedar H. Replicating by the clock. Nature Reviews Molecular Cell Biology [Internet]. 2003;4(1):25–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037226539&doi=10.1038%252fnrm1008&partnerID=40&md5=77cf088975520e30b882df3e6c434605

57.

Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H. Establishment of transcriptional competence in early and late S phase. Nature [Internet]. 2002;420(6912):198–202. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037078986&doi=10.1038%252fnature01150&partnerID=40&md5=280aa32c1dfd94366c7eb76592e16c5d

58.

Perk J, Makedonski K, Lande L, Cedar H, Razin A, Shemer R. The imprinting mechanism of the Prader-Willi/Angelman regional control center. EMBO Journal [Internet]. 2002;21(21):5807–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036846536&doi=10.1093%252femboj%252fcdf570&partnerID=40&md5=085008530589c68177453e3ebcd40fdc

59.

Goldmit M, Schlissel M, Cedar H, Bergman Y. Differential accessibility at the κ chain locus plays a role in allelic exclusion. EMBO Journal [Internet]. 2002;21(19):5255–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036792721&doi=10.1093%252femboj%252fcdf518&partnerID=40&md5=09ee074754afdb21b907b95ca9a3e793

60.

Ben-Porath I, Cedar H. Epigenetic crosstalk. Molecular Cell [Internet]. 2001;8(5):933–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035930336&doi=10.1016%2fS1097-2765%2801%2900399-9&partnerID=40&md5=b1bc32796245a170d96e116840d85f41

61.

Mostoslavsky R, Singh N, Tenzen T, Goldmit M, Gabay C, Elizur S, et al. Asynchronous replication and allelic exclusion in the immune system. Nature [Internet]. 2001;414(6860):221–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035829551&doi=10.1038%252f35102606&partnerID=40&md5=614118ba82a94cf09fefbe5625ffaa7d

62.

Simon I, Tenzen T, Mostoslavsky R, Fibach E, Lande L, Milot E, et al. Developmental regulation of DNA replication timing at the human β globin locus. EMBO Journal [Internet]. 2001;20(21):6150–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-17944382111&doi=10.1093%252femboj%252f20.21.6150&partnerID=40&md5=fb19236d8d72ba85e86c048a86d77fd6

63.

Eden S, Constancia M, Hashimshony T, Dean W, Goldstein B, Johnson AC, et al. An upstream repressor element plays a role in Igf2 imprinting. EMBO Journal [Internet]. 2001;20(13):3518–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035796466&doi=10.1093%252femboj%252f20.13.3518&partnerID=40&md5=2033e3e34e5409bcbf6b8a735399feff

64.

Shemer R, Hershko AY, Perk J, Mostoslavsky R, Tsuberi BZ, Cedar H, et al. The imprinting box of the Prader-Willi/Angelman syndrome domain. Nature Genetics [Internet]. 2000;26(4):440–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033671832&doi=10.1038%252f82571&partnerID=40&md5=dcbbe8d839f62fb900f1c92ecc43c305

65.

Rhoades KL, Singh N, Simon I, Glidden B, Cedar H, Chess A. Allele-specific expression patterns of interleukin-2 end Pax-5 revealed by a sensitive single-cell RT-PCR analysis. Current Biology [Internet]. 2000;10(13):789–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034729711&doi=10.1016%2fS0960-9822%2800%2900565-0&partnerID=40&md5=4272f2a0b76ef272feec37d5021abfa5

66.

Ben-Porath I, Cedar H. Imprinting: Focusing on the center. Current Opinion in Genetics and Development [Internet]. 2000;10(5):550–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033867606&doi=10.1016%2fS0959-437X%2800%2900126-X&partnerID=40&md5=2fed5d9a7bbe4ec9d8d0b3ace4ec9eff

67.

Simon I, Tenzen T, Reubinoff BE, Hillman D, McCarrey JR, Cedar H. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature [Internet]. 1999;401(6756):929–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033613361&doi=10.1038%252f44866&partnerID=40&md5=3fdf054cd15c2bb0ba0ebc69db47e32a

68.

Eden S, Hashimshony T, Keshet I, Cedar H, Thorne DW, Ausio J. DNA methylation models histone acetylation. Chemtracts [Internet]. 1999;12(10):718–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032857584&partnerID=40&md5=5d6ac36c0234ccda350b17b99c5b9cc0

69.

Cedar H, Verdine GL. The amazing demethylase. Nature [Internet]. 1999;397(6720):568–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033580166&doi=10.1038%252f17492&partnerID=40&md5=1558968ab75c724e2c8925f31f15f040

70.

Cedar H, Bergman Y. Developmental regulation of immune system gene rearrangement. Current Opinion in Immunology [Internet]. 1999;11(1):64–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033002383&doi=10.1016%2fS0952-7915%2899%2980012-0&partnerID=40&md5=f3c91139b8dac80b18202c9f1db27e7f

71.

Mostoslavsky R, Kirillov A, Ji YH, Goldmit M, Holzmann M, Wirth T, et al. Demethylation and the establishment of κ allelic exclusion. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 1999;64:197–206. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033498621&doi=10.1101%252fsqb.1999.64.197&partnerID=40&md5=ed8b178705c25088dfd62734fed4ac8e

72.

Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ, Cedar H. DNA methylation represses transcription in vivo. Nature Genetics [Internet]. 1999;22(2):203–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032992224&doi=10.1038%252f9727&partnerID=40&md5=ccc032332a984992e839c188236b27cd

73.

Swisher JFA, Rand E, Cedar H, Pyle AM. Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Research [Internet]. 1998;26(24):5573–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032534635&doi=10.1093%252fnar%252f26.24.5573&partnerID=40&md5=e9638ba54c7f1adfee160e5a03803a2e

74.

Weiss A, Keshet I, Razin A, Cedar H. Erratum: DNA methylation in vitro: Involvement of RNA (Cell (1998) 86:5 (709-718)). Cell [Internet]. 1998;95(4):x. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032514978&partnerID=40&md5=a37f77c166a5c2c09ccb157900dbe60d

75.

Eden S, Hashimshony T, Keshet I, Cedar H, Thorne AW. DNA methylation models histone acetylation [6]. Nature [Internet]. 1998;394(6696):842. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032572782&doi=10.1038%252f29680&partnerID=40&md5=7f5773349d3c660c202de964544e899a

76.

Mostoslavsky R, Singh N, Kirillov A, Pelanda R, Cedar H, Chess A, et al. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes and Development [Internet]. 1998;12(12):1801–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032526136&doi=10.1101%252fgad.12.12.1801&partnerID=40&md5=6feb4cf0e90fe310dc8c66575e6a564d

77.

Cedar H. The role of DNA demethylation in development. FASEB Journal [Internet]. 1997;11(9):A990. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750140169&partnerID=40&md5=8ba20d39e7dddcf5c37615ab1c11ed1c

78.

Siegfried Z, Cedar H. DNA methylation: A molecular lock. Current Biology [Internet]. 1997;7(5):R305–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031149162&doi=10.1016%2fs0960-9822%2806%2900144-8&partnerID=40&md5=cf8961538ecaf89108f5ad64bba206c5

79.

Weiss A, Cedar H. The role of DNA demethylation during development. Genes to Cells [Internet]. 1997;2(8):481–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031196156&doi=10.1046%252fj.1365-2443.1997.1390337.x&partnerID=40&md5=938e0ca57e08425c8cbea4b86db8fea9

80.

Bergman Y, Kirillov A, Kistler B, Mostoslavsky R, Cedar H, Wirth T. Nuclear nf-κb is essential for b-cell specific demethylation of the igκ locus. FASEB Journal [Internet]. 1996;10(6):A1170. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749081815&partnerID=40&md5=223d6126353a71c1f4db7e536be5bb43

81.

Weiss A, Keshet I, Razin A, Cedar H. DNA demethylation in vitro: Involvement of RNA. Cell [Internet]. 1996;86(5):709–18. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030572637&doi=10.1016%2fS0092-8674%2800%2980146-4&partnerID=40&md5=3a0acfd953a92269815987537c2996ca

82.

Kirillov A, Kistler B, Mostoslavsky R, Cedar H, Wirth T, Bergman Y. A role for nuclear NF-κB in B-cell-specific demethylation of the Igκ locus. Nature Genetics [Internet]. 1996;13(4):435–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030038608&doi=10.1038%252fng0895-435&partnerID=40&md5=40fd8ebaa218ba8560a499b7368768b4

83.

Eden S, Cedar H. Action at a distance. Nature [Internet]. 1995;375(6526):16–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029061140&doi=10.1038%252f375016a0&partnerID=40&md5=273cd6049ee531c5561eea490ac15977

84.

Ariel M, Robinson E, McCarrey JR, Cedar H. Gamete–specific methylation correlates with imprinting of the murine Xist gene. Nature Genetics [Internet]. 1995;9(3):312–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028859287&doi=10.1038%252fng0395-312&partnerID=40&md5=44a7ad49606ab0e29497a5ddb489033c

85.

Chess A, Simon I, Cedar H, Axel R. Allelic inactivation regulates olfactory receptor gene expression. Cell [Internet]. 1994;78(5):823–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027981484&doi=10.1016%2fS0092-8674%2894%2990562-2&partnerID=40&md5=e50bec189d7970c4f49d6c3e501acf07

86.

Razin A, Cedar H. DNA methylation and genomic imprinting. Cell [Internet]. 1994;77(4):473–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028286005&doi=10.1016%2f0092-8674%2894%2990208-9&partnerID=40&md5=033c642a8a53fe31e0db21e8ef12b7a9

87.

Lichtenstein M, Keini G, Cedar H, Bergman Y. B cell-specific demethylation: A novel role for the intronic κ chain enhancer sequence. Cell [Internet]. 1994;76(5):913–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028328632&doi=10.1016%2f0092-8674%2894%2990365-4&partnerID=40&md5=e81b2c13283d734c88876a5e521501e9

88.

Eden S, Cedar H. Role of DNA methylation in the regulation of transcription. Current Opinion in Genetics and Development [Internet]. 1994;4(2):255–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028315867&doi=10.1016%2fS0959-437X%2805%2980052-8&partnerID=40&md5=c74e54bfe120d0f6312f8cfa97adf2db

89.

Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Names A, et al. Spl elements protect a CpG island from de novo methylation. Nature [Internet]. 1994;371(6496):435–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028104109&doi=10.1038%252f371435a0&partnerID=40&md5=514ea616b6d4dbe4467184239c92bb1d

90.

Ariel M, Cedar H, McCarrey J. Developmental changes in methylation of spermatogenesis–specific genes include reprogramming in the epididymis. Nature Genetics [Internet]. 1994;7(1):59–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028085632&doi=10.1038%252fng0594-59&partnerID=40&md5=93ff493120523d39c7381fadc8ac9296

91.

Stöger R, Kubička P, Liu CG, Kafri T, Razin A, Cedar H, et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell [Internet]. 1993;73(1):61–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027400888&doi=10.1016%2f0092-8674%2893%2990160-R&partnerID=40&md5=c838991091c818c3628fa29fc4625364

92.

Friedlande Y, Kaufmann NA, Cedar H, Weinberg N, Kark JD. The role of XbaI polymorphism of the apolipoprotein B gene in determining levels and covariability of lipid and lipoprotein variables in a sample of Israeli offspring with family history of myocardial infarction. Atherosclerosis [Internet]. 1993;98(2):165–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027513112&doi=10.1016%2f0021-9150%2893%2990126-F&partnerID=40&md5=584affe46879939eab63360f9a06f475

93.

Ariel M, Selig S, Brandeis M, Kitsberg D, Kafri T, Weiss A, et al. Allele-specific structures in the mouse Igf2-H19 domain. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 1993;58:307–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027820571&doi=10.1101%252fSQB.1993.058.01.036&partnerID=40&md5=f095b0eaac9b2e26f6621b35c2bbf6e3

94.

Kitsberg D, Selig S, Keshet I, Cedar H. Replication structure of the human & beta;-globin gene domain. Nature [Internet]. 1993;366(6455):588–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027749608&doi=10.1038%252f366588a0&partnerID=40&md5=2036f7dee93a83a0c325f015f1782dbf

95.

Brandeis M, Ariel M, Cedar H. Dynamics of DNA methylation during development. BioEssays [Internet]. 1993;15(11):709–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027689976&doi=10.1002%252fbies.950151103&partnerID=40&md5=657670478dc9cae27de3b7243a7158cf

96.

Razin A, Cedar H. DNA methylation and embryogenesis. EXS [Internet]. 1993;64:343–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027356234&doi=10.1007%252f978-3-0348-9118-9_15&partnerID=40&md5=373aac51ace3348252947025f378bfab

97.

Friedlander Y, Kaufmann NA, Cedar H, Kark JD. XbaI polymorphism of the apolipoprotein B gene and plasma lipid and lipoprotein response to dietary fat and cholesterol: a clinical trial. Clinical Genetics [Internet]. 1993;43(5):223–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027250722&doi=10.1111%252fj.1399-0004.1993.tb03807.x&partnerID=40&md5=c1b98e4344b5946bbb17a347db2e153d

98.

Brandeis M, Kafri T, Ariel M, Chaillet JR, McCarrey J, Razin A, et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO Journal [Internet]. 1993;12(9):3669–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027236694&doi=10.1002%252fj.1460-2075.1993.tb06041.x&partnerID=40&md5=e7807fe798ec103d6fe5432fbe266e29

99.

Kitsberg D, Selig S, Brandels M, Simon I, Keshet I, Driscoll DJ, et al. Allele-specific replication timing of imprinted gene regions. Nature [Internet]. 1993;364(6436):459–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027205671&doi=10.1038%252f364459a0&partnerID=40&md5=9fb25a0f82a53cf5a81c708b7a9c9a5a

100.

Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes and Development [Internet]. 1992;6(5):705–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026740497&doi=10.1101%252fgad.6.5.705&partnerID=40&md5=67b621fb6de7fbcff1c3cda75ebad1a1

101.

Selig S, Okumura K, Ward DC, Cedar H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO Journal [Internet]. 1992;11(3):1217–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026511908&doi=10.1002%252fj.1460-2075.1992.tb05162.x&partnerID=40&md5=c06e10a32e1ee26e5038c7ab1177a4ed

102.

Kitsberg D, Selig S, Cedar H. Chromosome structure and eukaryotic gene organization. Current Opinion in Genetics and Development [Internet]. 1991;1(4):534–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026298445&doi=10.1016%2fS0959-437X%2805%2980204-7&partnerID=40&md5=39d636a9ab3cee527536b0d2f7822c84

103.

Ariel M, McCarrey J, Cedar H. Methylation patterns of testis-specific genes. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1991;88(6):2317–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026085574&doi=10.1073%252fpnas.88.6.2317&partnerID=40&md5=383bcffc474aa395932dbcc5a6837a3b

104.

Razin A, Cedar H. DNA methylation and gene expression. Microbiological Reviews [Internet]. 1991;55(3):451–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025945632&doi=10.1128%252fmmbr.55.3.451-458.1991&partnerID=40&md5=d35d4be83831243f19160eeb0bafb511

105.

Frank D, Keshet I, Shani M, Levine A, Razin A, Cedar H. Demethylation of CpG islands in embryonic cells. Nature [Internet]. 1991;351(6323):239–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025869047&doi=10.1038%252f351239a0&partnerID=40&md5=121c6a07e2d79bfb49d1d532da1be52e

106.

Paroush Z, Keshet I, Yisraeli J, Cedar H. Dynamics of demethylation and activation of the α-actin gene in myoblasts. Cell [Internet]. 1990;63(6):1229–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025637814&doi=10.1016%2f0092-8674%2890%2990418-E&partnerID=40&md5=893315035b60c339fae7ee1625de690c

107.

Cedar H, Razin A. DNA methylation and development. BBA - Gene Structure and Expression [Internet]. 1990;1049(1):1–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025309202&doi=10.1016%2f0167-4781%2890%2990076-E&partnerID=40&md5=1a3964ae2910f7b806625852ae465615

108.

Frank D, Lichtenstein M, Paroush Z, Bergman Y, Shani M, Razin A, et al. Demethylation of genes in animal cells. Philosophical transactions of the Royal Society of London Series B, Biological sciences [Internet]. 1990;326(1235):241–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025716284&doi=10.1098%252frstb.1990.0008&partnerID=40&md5=908094f83a46a7842ea165b8805da376

109.

Handeli S, Klar A, Meuth M, Cedar H. Mapping replication units in animal cells. Cell [Internet]. 1989;57(6):909–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024336294&doi=10.1016%2f0092-8674%2889%2990329-2&partnerID=40&md5=7282837c137dbdfc7d25d26aad6cb6bc

110.

Diamond G, Cedar H, Marcus M. A temperature-sensitive mutation in asparaginyl-tRNA synthetase causes cell-cycle arrest in early S phase. Experimental Cell Research [Internet]. 1989;184(1):53–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024440682&doi=10.1016%2f0014-4827%2889%2990363-7&partnerID=40&md5=8840eb9c0dd2ff653c0c040552da6c6a

111.

Cedar H. DNA methylation and gene activity. Cell [Internet]. 1988;53(1):3–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024281345&doi=10.1016%2f0092-8674%2888%2990479-5&partnerID=40&md5=4d02536ba5ead12ec3d5f9a7c0b98e10

112.

Selig S, Ariel M, Goitein R, Marcus M, Cedar H. Regulation of mouse satellite DNA replication time. The EMBO journal [Internet]. 1988;7(2):419–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023955742&doi=10.1002%252fj.1460-2075.1988.tb02829.x&partnerID=40&md5=fce8bd1ec202cd4f71048cdbdafd85ad

113.

Yisraeli J, Frank D, Razin A, Cedar H. Effect of in vitro DNA methylation on β-globin gene expression. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1988;85(13):4638–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023780629&doi=10.1073%252fpnas.85.13.4638&partnerID=40&md5=3ec718467dd15fb7b759d49c0adefb2b

114.

Jablonka E, Goitein R, Sperling K, Cedar H, Marcus M. 5-aza-C-induced changes in the time of replication of the X chromosomes of Microtus agrestis are followed by non-random reversion to a late pattern of replication. Chromosoma [Internet]. 1987;95(1):81–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023093867&doi=10.1007%252fBF00293846&partnerID=40&md5=f092f7a7bfe2005c8393a084eb8fd298

115.

Yisraeli J, Adelstein RS, Melloul D, Nudel U, Yaffe D, Cedar H. Muscle-specific activation of a methylated chimeric actin gene. Cell [Internet]. 1986;46(3):409–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022538380&doi=10.1016%2f0092-8674%2886%2990661-6&partnerID=40&md5=be2ca96db4580b720e07589a8d33ace0

116.

Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell [Internet]. 1986;44(4):535–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022545498&doi=10.1016%2f0092-8674%2886%2990263-1&partnerID=40&md5=c6f33a742f2b6721a04396aac8845875

117.

Jablonka E, Goitein R, Marcus M, Cedar H. DNA hypomethylation causes an increase in DNase-I sensitivity and an advance in the time of replication of the entire inactive X chromosome. Chromosoma [Internet]. 1985;93(2):152–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022351169&doi=10.1007%252fBF00293162&partnerID=40&md5=f753def5c2706eab0211c42d3488caa8

118.

Sperling K, Kerem BS, Goitein R, Kottusch V, Cedar H, Marcus M. DNase I sensitivity in facultative and constitutive heterochromatin. Chromosoma [Internet]. 1985;93(1):38–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022365466&doi=10.1007%252fBF01259444&partnerID=40&md5=2d7560c1b0810b7c01442eef3d483c8c

119.

Keshet I, Yisraeli J, Cedar H. Effect of regional DNA methylation on gene expression. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1985;82(9):2560–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021924990&doi=10.1073%252fpnas.82.9.2560&partnerID=40&md5=697fa3133a15dbf6d26130168724e923

120.

Rosenthal A, Wright S, Cedar H, Flavell R, Grosveld F. Regulated expression of an introduced MHC H-2Kbm1 gene in murine embryonal carcinoma cells. Nature [Internet]. 1984;310(5976):415–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021184542&doi=10.1038%252f310415a0&partnerID=40&md5=8c251a22adcefaf084d9cb9a9496576e

121.

Razin A, Cedar H. DNA methylation in eukaryotic cells. International Review of Cytology [Internet]. 1984;VOL. 92:159–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021646337&doi=10.1016%2fs0074-7696%2808%2961327-3&partnerID=40&md5=0abc9dd7e7ef2e8f6a105ea77d4e0832

122.

Razin A, Webb C, Szyf M, Yisraeli J, Rosenthal A, Naveh-Many T, et al. Variations in DNA methylation during mouse cell differentiation in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1984;81(8 I):2275–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021366951&doi=10.1073%252fpnas.81.8.2275&partnerID=40&md5=f6a83eb8b75065cdb9b30c7a5ef04015

123.

Kerem BS, Goitein R, Diamond G, Cedar H, Marcus M. Mapping of DNAase I sensitive regions on mitotic chromosomes. Cell [Internet]. 1984;38(2):493–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021203243&doi=10.1016%2f0092-8674%2884%2990504-X&partnerID=40&md5=5c25ac73458d78575c943a9ffd661908

124.

Kerem BS, Goitein R, Richler C, Marcus M, Cedar H. In situ nick-translation distinguishes between active and inactive X chromosomes. Nature [Internet]. 1983;304(5921):88–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020582967&doi=10.1038%252f304088a0&partnerID=40&md5=4078c5b9139c8310643c7a823a7509ec

125.

Keshet E, Cedar H. Effect of CpG methylation on Msp I. Nucleic Acids Research [Internet]. 1983;11(11):3571–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021100955&doi=10.1093%252fnar%252f11.11.3571&partnerID=40&md5=322934e709c1d708b9419e6411b4702f

126.

Gruenbaum Y, Szyf M, Cedar H, Razin A. Methylation of replicating and post-replicated mouse L-cell DNA. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1983;80(16):4919–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020804287&doi=10.1073%252fpnas.80.16.4919&partnerID=40&md5=5df6eab8b457c6096dda0abe0ae6ec61

127.

Stein R, Sciaky-Gallili N, Razin A, Cedar H. Pattern of methylation of two genes coding for housekeeping functions. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1983;80(9 I):2422–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0011772880&doi=10.1073%252fpnas.80.9.2422&partnerID=40&md5=e72e07bf327d0b365392c1bb1dfec6d3

128.

Vardimon L, Kressmann A, Cedar H, Maechler M, Doerfler W. Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1982;79(4 I):1073–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020035209&doi=10.1073%252fpnas.79.4.1073&partnerID=40&md5=516b9c1ea63b25cd90b635f38f62b57d

129.

Gruenbaum Y, Cedar H, Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature [Internet]. 1982;295(5850):620–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020486108&doi=10.1038%252f295620a0&partnerID=40&md5=d28ef036eaa55adeb80965a16cab2579

130.

Stein R, Gruenbaum Y, Pollack Y, Razin A, Cedar H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1982;79(1):61–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-3743083805&doi=10.1073%252fpnas.79.1.61&partnerID=40&md5=a6933751b3b7a9083a35bb037943e851

131.

Cedar H, Stein R, Gruenbaum Y, Naveh-Many T, Sciaky-Gallili N, Razin A. Effect of DNA methylation on gene expression. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 1982;47(2):605–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020306150&doi=10.1101%252fsqb.1983.047.01.071&partnerID=40&md5=cd584776b1935acae05faafd3b9b3dec

132.

Gazit B, Cedar H, Lerer I, Voss R. Active genes are sensitive to deoxyribonuclease I during metaphase. Science [Internet]. 1982;217(4560):648–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019956296&doi=10.1126%252fscience.6283640&partnerID=40&md5=7ced0b60a697b3af72bf0a44b8d1b6c0

133.

Naveh-Many T, Cedar H. Topographical distribution of 5-methylcytosine in animal and plant DNA. Molecular and Cellular Biology [Internet]. 1982;2(7):758–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019944221&doi=10.1128%252fMCB.2.7.758&partnerID=40&md5=b60b2d85aa3d0b194e5ab4b5f30c170f

134.

Stein R, Razin A, Cedar H. In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1982;79(11 I):3418–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0009832780&doi=10.1073%252fpnas.79.11.3418&partnerID=40&md5=1902f9257757feee108b61bc1991c5af

135.

Vardimon L, Kuhlmann I, Doerfler W, Cedar H. Methylation of adenovirus genes in transformed cells and in vitro: Influence of the regulation of gene expression? European Journal of Cell Biology [Internet]. 1981;25(1):13–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019827475&partnerID=40&md5=d42a7132695dd8276153aa9fa392deea

136.

Gruenbaum Y, Naveh-many T, Cedar H, Razin A. Sequence specificity of methylation in higher plant DNA. Nature [Internet]. 1981;292(5826):860–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019417156&doi=10.1038%252f292860a0&partnerID=40&md5=e7901d207dc29f0ffd2f4caf97d8b532

137.

Gruenbaum Y, Cedar H, Razin A. Restriction enzyme digestion of hemimethylated DNA. Nucleic Acids Research [Internet]. 1981;9(11):2509–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019878040&doi=10.1093%252fnar%252f9.11.2509&partnerID=40&md5=f344f678652ce37af26a6511e4f830e5

138.

Quint A, Cedar H. In vitro methylation of DNA with Hpa II methylase. Nucleic Acids Research [Internet]. 1981;9(3):633–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019877884&doi=10.1093%252fnar%252f9.3.633&partnerID=40&md5=7b84c98dc5c2c06fbef130325824aae1

139.

Gruenbaum Y, Stein R, Cedar H, Razin A. Methylation of CpG sequences in eukaryotic DNA. FEBS Letters [Internet]. 1981;124(1):67–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019875880&doi=10.1016%2f0014-5793%2881%2980055-5&partnerID=40&md5=6c67a451206495e7484b6fd2588aaa20

140.

Naveh-Many T, Cedar H. Active gene sequences are undermethylated. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1981;78(7 I):4246–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0008554573&doi=10.1073%252fpnas.78.7.4246&partnerID=40&md5=f517ab0d56759ad83e9a7b6bf41b45e8

141.

Gazit B, Cedar H. Nuclease sensitivity of active chromatin. Nucleic Acids Research [Internet]. 1980;8(22):5143–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019128626&doi=10.1093%252fnar%252f8.22.5143&partnerID=40&md5=be27f8b0259c4986154c75acc4d13d35

142.

Quint A, Cedar H. Hybridization analysis of the methylated bases of Escherichia coli DNA. BBA Section Nucleic Acids And Protein Synthesis [Internet]. 1980;606(2):387–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018900680&doi=10.1016%2f0005-2787%2880%2990048-9&partnerID=40&md5=d177f12074f162385a1f29b18f7b7f21

143.

Guttman-Bass N, Cedar H, Panet A. Quantification of newly synthesized virus RNA in Moloney murine leukaemia virus-infected cells. Journal of General Virology [Internet]. 1980;48(2):341–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019303632&doi=10.1099%252f0022-1317-48-2-341&partnerID=40&md5=e65648365636756f7390fd567fcff5f5

144.

Pollack Y, Stein R, Razin A, Cedar H. Methylation of foreign DNA sequences in eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1980;77(11):6463–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019081780&doi=10.1073%252fpnas.77.11.6463&partnerID=40&md5=d817b60c53789f82ecf44f11c74a9aa1

145.

Gazit B, Panet A, Cedar H. Reconstitution of a deoxyribonuclease I-sensitive structure on active genes. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1980;77(4 I):1787–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018821091&doi=10.1073%252fpnas.77.4.1787&partnerID=40&md5=f1037302c3b4b3fcca22d886f83e5422

146.

Cedar H, Solage A, Glaser G, Razin A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme Mspl. Nucleic Acids Research [Internet]. 1979;6(6):2125–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018370141&doi=10.1093%252fnar%252f6.6.2125&partnerID=40&md5=82ff1b319cd1e7d350c15b19ff41e2a8

147.

Cedar H, Panet A. Activation of the endogenous proviral genes in mouse cells is not followed by increased sensitivity to deoxyribonuclease I digestion. Journal of General Virology [Internet]. 1979;45(3):765–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018606016&doi=10.1099%252f0022-1317-45-3-765&partnerID=40&md5=97c6cc0fd2e514ee81c9fe6bec664e87

148.

Levitt A, Axel R, Cedar H. Nick translation of active genes in intact nuclei. Developmental Biology [Internet]. 1979;69(2):496–505. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018352630&doi=10.1016%2f0012-1606%2879%2990307-5&partnerID=40&md5=a616a260c1f9e73b06414549e19eec4b

149.

Weinstock R, Sweet R, Weiss M, Cedar H, Axel R. Intragenic DNA spacers interrupt the ovalbumin gene. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1978;75(3):1299–303. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017877367&doi=10.1073%252fpnas.75.3.1299&partnerID=40&md5=dc795c4ac7a3f61c0b22fd98e79f1756

150.

Solage A, Cedar H. Organization of 5-Methylcytosine in Chromosomal DNA. Biochemistry [Internet]. 1978;17(14):2934–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017841275&doi=10.1021%252fbi00607a036&partnerID=40&md5=063386bde5896d532a22b76d52db8083

151.

Panet A, Cedar H. Selective degradation of integrated murine leukemia proviral DNA by deoxyribonucleases. Cell [Internet]. 1977;11(4):933–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017649305&doi=10.1016%2f0092-8674%2877%2990304-X&partnerID=40&md5=8b5037fd32198c757cf97a981114d241

152.

Razin A, Cedar H. Distribution of 5-methylcytosine in chromatin. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1977;74(7):2725–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0011923583&doi=10.1073%252fpnas.74.7.2725&partnerID=40&md5=7f8a0f007c4e56617854c43f7aa6f748

153.

Bloch S, Cedar H. Methylation Of Chromatin Dna. Nucleic Acids Research [Internet]. 1976;3(6):1507–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017157549&doi=10.1093%252fnar%252f3.6.1507&partnerID=40&md5=6a6839159aa49c7f3d24595bb139ffe7

154.

Solage A, Cedar H. The kinetics of E. coli RNA polymerase. Nucleic Acids Research [Internet]. 1976;3(9):2207–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017137202&doi=10.1093%252fnar%252f3.9.2207&partnerID=40&md5=16e88105af4c54ab51dd08618dcc7f24

155.

Cedar H. Annealing and hybridization properties of herpes simplex virus type 1 DNA. Journal of General Virology [Internet]. 1976;32(3):337–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017134027&doi=10.1099%252f0022-1317-32-3-337&partnerID=40&md5=023cf8cd5cb31bcdb54b3031784a8170

156.

Solage A, Cedar H. RNA chain elongation on a chromatin template. Nucleic Acids Research [Internet]. 1976;3(9):2223–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017083412&doi=10.1093%252fnar%252f3.9.2223&partnerID=40&md5=b3bca45bc985cd0f07e93b53d8b21298

157.

Cedar H, Solage A, Zurucki F. Control of RNA synthesis by chromatin proteins. Nucleic Acids Research [Internet]. 1976;3(7):1659–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017073040&doi=10.1093%252fnar%252f3.7.1659&partnerID=40&md5=dea7d86adccc978c66ccdcb2743085f1

158.

Bloch S, Cedar H. Proceedings: In vitro transcription from chromatin of slime molds. Israel Journal of Medical Sciences [Internet]. 1975;11(11):1214–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016572269&partnerID=40&md5=40bfb094adbba306e5f22932ccf52400

159.

Cedar H. Transcription of DNA and chromatin with calf thymus RNA polymerase B in vitro. Journal of Molecular Biology [Internet]. 1975;95(2):257–69. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016814664&doi=10.1016%2f0022-2836%2875%2990394-0&partnerID=40&md5=a54c9046c85da728655bc84bc0d4455e

160.

Axel R, Cedar H, Felsenfeld G. The Structure of the Globin Genes in Chromatin. Biochemistry [Internet]. 1975;14(11):2489–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016693580&doi=10.1021%252fbi00682a031&partnerID=40&md5=2ea94f22415e11a2070452c36da98b30

161.

Axel R, Cedar H, Felsenfeld G. Chromatin template activity and chromatin structure. Cold Spring Harbor symposia on quantitative biology [Internet]. 1974;38:773–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016008142&doi=10.1101%252fSQB.1974.038.01.082&partnerID=40&md5=58f7b947fb43c6215cde1661c7bfbe1a

162.

Cedar H, Felsenfeld G. Transcription of chromatin in vitro. Journal of Molecular Biology [Internet]. 1973;77(2):237–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015781821&doi=10.1016%2f0022-2836%2873%2990334-3&partnerID=40&md5=16e2bd40b0e2b28d07d987ec4819f80c

163.

Axel R, Cedar H, Felsenfeld G. Synthesis of globin ribonucleic acid from duck reticulocyte chromatin in vitro. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1973;70(7):2029–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015806627&doi=10.1073%252fpnas.70.7.2029&partnerID=40&md5=5c275d82b7b02bef4af9cb8b91873967

164.

Axel R, Cedar H, Felsenfeld G. Chromatin template activity and chromatin structure. Symposia on Quantitative Biology [Internet]. 1973;VOL.38:773–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015707767&partnerID=40&md5=67cbd1af409d0bc2514f5d8b23201d82