Last updated September 2024 - Developmental Biology and Cancer Research
1.
Shalom B, Salaymeh Y, Risling M, Katzav S. Unraveling the Oncogenic Potential of VAV1 in Human Cancer: Lessons from Mouse Models. Cells [Internet]. 2023;12(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159201805&doi=10.3390%252fcells12091276&partnerID=40&md5=592a59a4449387d54eb629a9f52b1074
2.
Katzav S. Role of Vav1, a hematopoietic signal transduction molecule, as an adaptor protein in health and disease. Exploration of Immunology [Internet]. 2023;3(2):158–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169120503&doi=10.37349%252fei.2023.00095&partnerID=40&md5=b4183fa1d13e88c15813aa1bd2aad45b
3.
Shalom B, Farago M, Salaymeh Y, Sebban S, Pikarsky E, Katzav S. Vav1 Promotes B-Cell Lymphoma Development. Cells [Internet]. 2022;11(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126029877&doi=10.3390%252fcells11060949&partnerID=40&md5=24121c9c4e8729886fa42090a808c080
4.
Salaymeh Y, Farago M, Sebban S, Shalom B, Pikarsky E, Katzav S. Vav1 and mutant K-Ras synergize in the early development of pancreatic ductal adenocarcinoma in mice. Life Science Alliance [Internet]. 2020;3(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083195473&doi=10.26508%252flsa.202000661&partnerID=40&md5=c43b8c95c9ee1ca077d2fcdccc7a7636
5.
Farago M, Yarnitzky T, Shalom B, Katzav S. Vav1 mutations: What makes them oncogenic? Cellular Signalling [Internet]. 2020;65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074032732&doi=10.1016%252fj.cellsig.2019.109438&partnerID=40&md5=4eadca68ed04eacf6481f53fa09a1205
6.
Shalom B, Farago M, Pikarsky E, Katzav S. Vav1 mutations identified in human cancers give rise to different oncogenic phenotypes. Oncogenesis [Internet]. 2018;7(10). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054578001&doi=10.1038%252fs41389-018-0091-1&partnerID=40&md5=2126aecda502674031f94103407b5136
7.
Katzav S. Vav1: A Dr. Jekyll and Mr. Hyde protein - good for the hematopoietic system, bad for cancer. Oncotarget [Internet]. 2015;6(30):28731–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84945144260&doi=10.18632%252foncotarget.5086&partnerID=40&md5=a3b29486158a5d9b122f35590224d14f
8.
Katzav S, Schmitz ML. Mutations of c-Cbl in myeloid malignancies. Oncotarget [Internet]. 2015;6(13):10689–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929650046&doi=10.18632%252foncotarget.3986&partnerID=40&md5=49ece0e4081c82fa94a69244461474d9
9.
Razanadrakoto L, Cormier F, Laurienté V, Dondi E, Gardano L, Katzav S, et al. Mutation of Vav1 adaptor region reveals a new oncogenic activation. Oncotarget [Internet]. 2015;6(4):2524–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923032729&doi=10.18632%252foncotarget.2629&partnerID=40&md5=7419b47ac244c209ea75b3dd0e7fffd7
10.
Sebban S, Farago M, Rabinovich S, Lazer G, Idelchuck Y, Ilan L, et al. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion. Oncotarget [Internet]. 2014;5(19):9214–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910093530&doi=10.18632%252foncotarget.2400&partnerID=40&md5=e037510ef409acc9fe5fff9f9db93646
11.
Fernández-Espartero CH, Ramel D, Farago M, Malartre M, Luque CM, Limanovich S, et al. GTP exchange factor Vav regulates guided cell migration by coupling guidance receptor signalling to local rac activation. Journal of Cell Science [Internet]. 2013;126(10):2285–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879864401&doi=10.1242%252fjcs.124438&partnerID=40&md5=7bb57e4d8ef55e4b89d20d2e78eba008
12.
Sebban S, Farago M, Gashai D, Ilan L, Pikarsky E, Ben-Porath I, et al. Vav1 Fine Tunes p53 Control of Apoptosis versus Proliferation in Breast Cancer. PLoS ONE [Internet]. 2013;8(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872344918&doi=10.1371%252fjournal.pone.0054321&partnerID=40&md5=fe222d41d72cf8be8b12d85aac701ac7
13.
Ilan L, Katzav S. Human Vav1 expression in hematopoietic and cancer cell lines is regulated by c-Myb and by CpG methylation. PLoS ONE [Internet]. 2012;7(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855676050&doi=10.1371%252fjournal.pone.0029939&partnerID=40&md5=e6b7411d8839fbf60769bddbf8b53f23
14.
Benjamin S, Weidberg H, Rapaport D, Pekar O, Nudelman M, Segal D, et al. EHD2 mediates trafficking from the plasma membrane by modulating Rac1 activity. Biochemical Journal [Internet]. 2011;439(3):433–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80054043333&doi=10.1042%252fBJ20111010&partnerID=40&md5=ea44499d155f6a0796cc6dd1220309cb
15.
Lazer G, Katzav S. Guanine nucleotide exchange factors for RhoGTPases: Good therapeutic targets for cancer therapy? Cellular Signalling [Internet]. 2011;23(6):969–79. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952706224&doi=10.1016%252fj.cellsig.2010.10.022&partnerID=40&md5=2389e2e46030934865c53ff13e69dba1
16.
Lazer G, Pe’er L, Farago M, Machida K, Mayer BJ, Katzav S. Tyrosine residues at the carboxyl terminus of Vav1 play an important role in regulation of its biological activity. Journal of Biological Chemistry [Internet]. 2010;285(30):23075–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954934945&doi=10.1074%252fjbc.M109.094508&partnerID=40&md5=947fe8b581df2ee7890b157ffe819a13
17.
Lazer G, Idelchuk Y, Schapira V, Pikarsky E, Katzav S. The haematopoietic specific signal transducer Vav1 is aberrantly expressed in lung cancer and plays a role in tumourigenesis. Journal of Pathology [Internet]. 2009;219(1):25–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-68849084686&doi=10.1002%252fpath.2579&partnerID=40&md5=200610371729626a6f922d7e8f7c81f5
18.
Katzav S. Vav1: A hematopoietic signal transduction molecule involved in human malignancies. International Journal of Biochemistry and Cell Biology [Internet]. 2009;41(6):1245–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-60349115007&doi=10.1016%252fj.biocel.2008.11.006&partnerID=40&md5=1e9d5746927991bb2f0a8826dc047087
19.
Lazer G, Pe’er L, Schapira V, Richard S, Katzav S. The association of Sam68 with Vav1 contributes to tumorigenesis. Cellular Signalling [Internet]. 2007;19(12):2479–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35148833199&doi=10.1016%252fj.cellsig.2007.07.022&partnerID=40&md5=669eb13ea50acd02f4e647f91b38e029
20.
Katzav S. Flesh and blood: The story of Vav1, a gene that signals in hematopoietic cells but can be transforming in human malignancies. Cancer Letters [Internet]. 2007;255(2):241–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547957796&doi=10.1016%252fj.canlet.2007.04.015&partnerID=40&md5=a9308b07ec0ec5858cd4f573aabc6374
21.
Gazit R, Aker M, Elboim M, Achdout H, Katz G, Wolf DG, et al. NK cytotoxicity mediated by CD16 but not by NKp30 is functional in Griscelli syndrome. Blood [Internet]. 2007;109(10):4306–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34248370215&doi=10.1182%252fblood-2006-09-047159&partnerID=40&md5=8a683c37a214fefb5fccc45b8ac293d3
22.
Schapira V, Lazer G, Katzav S. Osteopontin is an oncogenic Vav1- but not wild-type Vav1-responsive gene: Implications for fibroblast transformation. Cancer Research [Internet]. 2006;66(12):6183–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745728149&doi=10.1158%252f0008-5472.CAN-05-3735&partnerID=40&md5=65a88258a39ec608dabfbfa90c151384
23.
Katzav S. Vav1: An oncogene that regulates specific transcriptional activation of T cells. Blood [Internet]. 2004;103(7):2443–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1642268790&doi=10.1182%252fblood-2003-08-2834&partnerID=40&md5=0687ed2b48b56a9caa3c4b7918471568
24.
Hornstein I, Alcover A, Katzav S. Vav proteins, masters of the world of cytoskeleton organization. Cellular Signalling [Internet]. 2004;16(1):1–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0242384071&doi=10.1016%2fS0898-6568%2803%2900110-4&partnerID=40&md5=e0adf97c800770cd20d9380b0b07ab43
25.
Hornstein I, Mortin MA, Katzav S. DroVav, the Drosophila melanogaster homologue of the mammalian Vav proteins, serves as a signal transducer protein in the Rac and DER pathways. Oncogene [Internet]. 2003;22(42 REV. ISS. 4):6774–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0242437944&doi=10.1038%252fsj.onc.1207027&partnerID=40&md5=6fe3a10f355968d91eb0f3632064f230
26.
Hornstein I, Pikarsky E, Groysman M, Amir G, Peylan-Ramu N, Katzav S. The haematopoietic specific signal transducer Vav1 is expressed in a subset of human neuroblastomas. Journal of Pathology [Internet]. 2003;199(4):526–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344406838&doi=10.1002%252fpath.1314&partnerID=40&md5=a1eeed6b5f24d12907b44d3d0f546882
27.
Yin YJ, Salah Z, Maoz M, Ram SCE, Ochayon S, Neufeld G, et al. Oncogenic transformation induces tumor angiogenesis: A role for PAR1 activation. FASEB Journal [Internet]. 2003;17(2):163–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037308089&doi=10.1096%252ffj.02-0316com&partnerID=40&md5=1cd5bc03c7fd52dd14fdfe74f753f1e6
28.
Groysman M, Hornstein I, Alcover A, Katzav S. Vav1 and Ly-GDI two regulators of Rho GTPases, function cooperatively as signal transducers in T cell antigen receptor-induced pathways. Journal of Biological Chemistry [Internet]. 2002;277(51):50121–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037147241&doi=10.1074%252fjbc.M204299200&partnerID=40&md5=066112d8d21a2313687bd2d9f6bd300d
29.
Bar-Shavit R, Maoz M, Yongjun Y, Groysman M, Dekel I, Katzav S. Signalling pathways induced by protease-activated receptors and integrins in T cells. Immunology [Internet]. 2002;105(1):35–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036164574&doi=10.1046%252fj.0019-2805.2001.01351.x&partnerID=40&md5=079309779f5b48efa8f793550993d74c
30.
Dekel I, Russek N, Jones T, Mortin MA, Katzav S. Identification of the Drosophila melanogaster homologue of the mammalian signal transducer protein, Vav. FEBS Letters [Internet]. 2000;472(1):99–104. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034697330&doi=10.1016%2fS0014-5793%2800%2901413-7&partnerID=40&md5=d2aaaaad804aace858f887a771cecd2c
31.
Groysman M, Russek CSN, Katzav S. Vav, a GDP/GTP nucleotide exchange factor, interacts with GDIs, proteins that inhibit GDP/GTP dissociation. FEBS Letters [Internet]. 2000;467(1):75–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033956628&doi=10.1016%2fS0014-5793%2800%2901121-2&partnerID=40&md5=cf7e939f663829095f8034d7e449e9c2
32.
Landau E, Tirosh R, Pinson A, Banai S, Even-Ram S, Maoz M, et al. Protection of thrombin receptor expression under hypoxia. Journal of Biological Chemistry [Internet]. 2000;275(4):2281–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034723351&doi=10.1074%252fjbc.275.4.2281&partnerID=40&md5=0c792c27b5a8e973e4e3c233ce42fb39
33.
Zilberman Y, Yefenof E, Katzav S, Dorogin A, Rosenheimer-Goudsmid N, Guy R. Apoptosis of thymic lymphoma clones by thymic epithelial cells: A putative model for “death by neglect.” Immunology Letters [Internet]. 1999;67(2):95–104. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033119782&doi=10.1016%2fS0165-2478%2898%2900142-4&partnerID=40&md5=637d1caa903b4392c64df1cbd35f4f65
34.
Groysman M, Nagano M, Shaanan B, Katzav S. Mutagenic analysis of Vav reveals that an intact SH3 domain is required for transformation. Oncogene [Internet]. 1998;17(12):1597–606. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032563806&doi=10.1038%252fsj.onc.1202074&partnerID=40&md5=af6db90cd56361295f52ba2bfc14c556
35.
Uddin S, Yetter A, Katzav S, Hofmann C, White MF, Platanias LC. Insulin-like growth factor-1 induces rapid tyrosine phosphorylation of the vav proto-oncogene product. Experimental Hematology [Internet]. 1996;24(5):622–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029926095&partnerID=40&md5=026f32e0ef794b8fdd48bab6b17c2528
36.
Katzav S. Vav: Captain Hook for signal transduction? Critical Reviews in Oncogenesis [Internet]. 1995;6(2):87–97. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029548682&partnerID=40&md5=c9017d3b3520cdaf25a8091afdaf6a80
37.
Wu J, Katzav S, Weiss A. A functional T-cell receptor signaling pathway is required for p95(vav) activity. Molecular and Cellular Biology [Internet]. 1995;15(8):4337–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028999988&doi=10.1128%252fMCB.15.8.4337&partnerID=40&md5=88854621d5986b52b1a5ff50901bc8a0
38.
Uddin S, Katzav S, White MF, Platanias LC. Insulin-dependent tyrosine phosphorylation of the vav proto-oncogene product in cells of hematopoietic origin. Journal of Biological Chemistry [Internet]. 1995;270(13):7712–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028928447&doi=10.1074%252fjbc.270.13.7712&partnerID=40&md5=86510a560be8045a4c541ee8af0ea1ab
39.
Katzav S, Packham G, Sutherland M, Aroca P, Santos E, Cleveland JL. Vav and Ras induce fibroblast transformation by overlapping signaling pathways which require c-Myc function. Oncogene [Internet]. 1995;11(6):1079–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028834244&partnerID=40&md5=671502d8b74b921d2903f786b187fa78
40.
Katzav S, Sutherland M, Packham G, Yi T, Weiss A. The protein tyrosine kinase ZAP-70 can associate with the SH2 domain of proto-Vav. Journal of Biological Chemistry [Internet]. 1994;269(51):32579–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028595695&partnerID=40&md5=3404513351e4666e82cbb1c0b3fa9eed
41.
Gulbins E, Coggeshall KM, Langlet C, Baier G, Bonnefoy-Berard N, Burn P, et al. Activation of Ras in vitro and in intact fibroblasts by the Vav guanine nucleotide exchange protein. Molecular and Cellular Biology [Internet]. 1994;14(2):906–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027976785&doi=10.1128%252fMCB.14.2.906&partnerID=40&md5=51adbafd5cc33d9a64ee5b8855282886
42.
Katzav S. Single point mutations in the SH2 domain impair the transforming potential of vav and fail to activate proto-vav. Oncogene [Internet]. 1993;8(7):1757–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027219681&partnerID=40&md5=8e0a3dc8190d65c585b2ce0bc1f56794
43.
Gulbins E, Coggeshall KM, Baier G, Katzav S, Burn P, Altman A. Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation. Science [Internet]. 1993;260(5109):822–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027207287&doi=10.1126%252fscience.8484124&partnerID=40&md5=4da31f6e93c5b0f270ec08b55dc88e78
44.
Katzav S. vav: A MOLECULE FOR ALL HAEMOPOIESIS? British Journal of Haematology [Internet]. 1992;81(2):141–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026762434&doi=10.1111%252fj.1365-2141.1992.tb08198.x&partnerID=40&md5=b0da0ea628a43ff1edea5f0e5005c5f2
45.
Margolis B, Hu P, Katzav S, Li W, Oliver JM, Ullrich A, et al. Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature [Internet]. 1992;356(6364):71–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026535589&doi=10.1038%252f356071a0&partnerID=40&md5=86c5f7338bfc2bb7cfeceba7279da0bb
46.
Galland F, Katzav S, Birnbaum D. The products of the mcf-2 and vav proto-oncogenes and of the yeast gene cdc-24 share sequence similarities. Oncogene [Internet]. 1992;7(3):585–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026508148&partnerID=40&md5=3df4f785df6a2ad1dda832787bf118b2
47.
Cimino G, Moir DT, Canaani O, Williams K, Crist WM, Katzav S, et al. Cloning ofALL-1, the Locus Involved in Leukemias with the t(4;ll)(q21;q23), t(9;ll)(p22;q23), and t(ll;19)(q23;pl3) Chromosome Translocations. Cancer Research [Internet]. 1991;51(24):6712–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026335115&partnerID=40&md5=81dbdd8c045b0fa7d23281f372f18c4e
48.
Katzav S, Cleveland JL, Heslop HE, Pulido D. Loss of the Amino-Terminal Helix-Loop-Helix Domain of the vav Proto-Oncogene Activates Its Transforming Potential. Molecular and Cellular Biology [Internet]. 1991;11(4):1912–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026031054&doi=10.1128%252fMCB.11.4.1912&partnerID=40&md5=c24057745f0bc465106d9fb9d44af648
49.
Martinerie C, Cannizzaro LA, Croce CM, Huebner K, Katzav S, Barbacid M. The human VAV proto-oncogene maps to chromosome region 19p12→19p13.2. Human Genetics [Internet]. 1990;86(1):65–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025224735&doi=10.1007%252fBF00205175&partnerID=40&md5=dd369f5feab407e38239a96404fc63a7
50.
Katzav S, Martin-Zanca D, Barbacid M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO Journal [Internet]. 1989;8(8):2283–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024433697&doi=10.1002%252fj.1460-2075.1989.tb08354.x&partnerID=40&md5=ad0f4cdf8b8042a17e85fbf24daacbfc
51.
Katzav S, Martin-Zanca D, Barbacid M, Hedge AM, Isfort R, Ihle JN. The trk oncogene abrogates growth factor requirements and transforms hematopoietic cells. Oncogene [Internet]. 1989;4(9):1129–35. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024340701&partnerID=40&md5=b7caf2f0968afa38129e5b08792a71bb