Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

The Faculty of Medicine - Microbiology and Molecular Genetics: Pines Ophry


 Last updated June 2021 - School of Pharmacy

List of Publications

(1) Neumann MA-, Grossmann D, Schimpf-Linzenbold S, Dayan D, Stingl K, Ben-Menachem R, et al. Haploinsufficiency due to a novel ACO2 deletion causes mitochondrial dysfunction in fibroblasts from a patient with dominant optic nerve atrophy. Sci Rep 2020;10(1).

(2) Wang S, Ramamurthy D, Tan J, Liu J, Yip J, Chua A, et al. Post-translational Modifications of Fumarase Regulate its Enzyme Activity and Function in Respiration and the DNA Damage Response. J Mol Biol 2020;432(23):6108-6126.

(3) Chin H-, Goh DL-, Wang FS, Tay SKH, Heng CK, Donnini C, et al. A combination of two novel VARS2 variants causes a mitochondrial disorder associated with failure to thrive and pulmonary hypertension. J Mol Med 2019;97(11):1557-1566.

(4) Weill U, Yofe I, Sass E, Stynen B, Davidi D, Natarajan J, et al. Erratum to: Genome-wide SWAp-Tag yeast libraries for proteome exploration (Nature Methods, (2018), 15, 8, (617-622), 10.1038/s41592-018-0044-9). Nat Methods 2019;16(2):205.

(5) Ben-Menachem R, Wang K, Marcu O, Yu Z, Lim TK, Lin Q, et al. Yeast aconitase mitochondrial import is modulated by interactions of its C and N terminal domains and Ssa1/2 (Hsp70). Sci Rep 2018;8(1).

(6) Weill U, Yofe I, Sass E, Stynen B, Davidi D, Natarajan J, et al. Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nat Methods 2018;15(8):617-622.

(7) Leshets M, Silas YBH, Lehming N, Pines O. Fumarase: From the TCA Cycle to DNA Damage Response and Tumor Suppression. Front Mol Biosci 2018;5.

(8) Leshets M, Ramamurthy D, Lisby M, Lehming N, Pines O. Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2. Curr Genet 2018;64(3):697-712.

(9) Singer E, Silas YBH, Ben-Yehuda S, Pines O. Bacterial fumarase and L-malic acid are evolutionary ancient components of the DNA damage response. eLife 2017;6.

(10) Ben-Menachem R, Pines O. Detection of dual targeting and dual function of mitochondrial proteins in yeast. Methods Mol Biol 2017;1567:179-195.

(11) Fattal-Valevski A, Eliyahu H, Fraenkel NID, Elmaliach G, Hausman-Kedem M, Shaag A, et al. Homozygous mutation, p.Pro304His, in IDH3A, encoding isocitrate dehydrogenase subunit is associated with severe encephalopathy in infancy. Neurogenetics 2017;18(1):57-61.

(12) Dik E, Naamati A, Asraf H, Lehming N, Pines O. Human Fumarate Hydratase Is Dual Localized by an Alternative Transcription Initiation Mechanism. Traffic 2016;17(7):720-732.

(13) Kalderon B, Kogan G, Bubis E, Pines O. Cytosolic Hsp60 can modulate proteasome activity in yeast. J Biol Chem 2015;290(6):3542-3551.

(14) Kalderon B, Pines O. Protein folding as a driving force for dual protein targeting in eukaryotes. Front Mol Biosci 2014;1(NOV).

(15) Kisslov I, Naamati A, Shakarchy N, Pines O. Dual-targeted proteins tend to be more evolutionarily conserved. Mol Biol Evol 2014;31(10):2770-2779.

(16) Burak E, Yogev O, Sheffer S, Schueler-Furman O, Pines O. Evolving dual targeting of a prokaryotic protein in yeast. Mol Biol Evol 2013;30(7):1563-1573.

(17) Edvardson S, Porcelli V, Jalas C, Soiferman D, Kellner Y, Shaag A, et al. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J Med Genet 2013;50(4):240-245.

(18) Michot C, Hubert L, Romero NB, Gouda A, Mamoune A, Mathew S, et al. Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia. J Inherit Metab Dis 2012;35(6):1119-1128.

(19) Spiegel R, Pines O, Ta-Shma A, Burak E, Shaag A, Halvardson J, et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet 2012;90(3):518-523.

(20) Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 2011;286(48):41205-41216.

(21) Ben-Menachem R, Tal M, Shadur T, Pines O. A third of the yeast mitochondrial proteome is dual localized: A question of evolution. Proteomics 2011;11(23):4468-4476.

(22) Yogev O, Naamati A, Pines O. Fumarase: A paradigm of dual targeting and dual localized functions. FEBS J 2011;278(22):4230-4242.

(23) Ben-Menachem R, Regev-Rudzki N, Pines O. The aconitase C-terminal domain is an independent dual targeting element. J Mol Biol 2011;409(2):113-123.

(24) Yogev O, Pines O. Dual targeting of mitochondrial proteins: Mechanism, regulation and function. Biochim Biophys Acta Biomembr 2011;1808(3):1012-1020.

(25) Kaufmann R, Straussberg R, Mandel H, Fattal-Valevski A, Ben-Zeev B, Naamati A, et al. Infantile cerebral and cerebellar atrophy is associated with a mutation in the MED17 subunit of the transcription preinitiation mediator complex. Am J Hum Genet 2010;87(5):667-670.

(26) Yogev O, Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, et al. Fumarase: A mitochondrial metabolic enzyme and a cytosolic/nuclear component of the dna damage response. PloS Biol 2010;8(3).

(27) Matthews GD, Gur N, Koopman WJH, Pines O, Vardimon L. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells. J Cell Sci 2010;123(3):351-359.

(28) Eliyahu E, Pnueli L, Melamed D, Scherrer T, Gerber AP, Pines O, et al. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol 2010;30(1):284-294.

(29) Naamati A, Regev-Rudzki N, Galperin S, Lill R, Pines O. Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem 2009;284(44):30200-30208.

(30) Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA, et al. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol 2009;66(3):419-424.

(31) Regev-Rudzki N, Battat E, Goldberg I, Pines O. Dual localization of fumarase is dependent on the integrity of the glyoxylate shunt. Mol Microbiol 2009;72(2):297-306.

(32) Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood (DOI:10.1016/j.ajhg.2008.09.002). Am J Hum Genet 2009;84(1):95.

(33) Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood. Am J Hum Genet 2008;83(4):489-494.

(34) Regev-Rudzki N, Yogev O, Pines O. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. J Cell Sci 2008;121(14):2423-2431.

(35) Dinur-Mills M, Tal M, Pines O. Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net charge. PLoS ONE 2008;3(5).

(36) Yogev O, Karniely S, Pines O. Translation-coupled translocation of yeast fumarase into mitochondria in vivo. J Biol Chem 2007;282(40):29222-29229.

(37) Regev-Rudzki N, Pines O. Eclipsed distribution: A phenomenon of dual targeting of protein and its significance. Bioessays 2007;29(8):772-782.

(38) Hadas Y, Goldberg I, Pines O, Prusky D. Involvement of gluconic acid and glucose oxidase in the pathogenicity of Penicillium expansum in apples. Phytopathology 2007;97(3):384-390.

(39) Shlevin L, Regev-Rudzki N, Karniely S, Pines O. Location-specific depletion of a dual-localized protein. Traffic 2007;8(2):169-176.

(40) Karniely S, Rayzner A, Sass E, Pines O. α-Complementation as a probe for dual localization of mitochondrial proteins. Exp Cell Res 2006;312(19):3835-3846.

(41) Goldberg I, Rokem JS, Pines O. Organic acids: Old metabolites, new themes. J Chem Technol Biotechnol 2006;81(10):1601-1611.

(42) Karniely S, Regev-Rudzki N, Pines O. The Presequence of Fumarase is Exposed to the Cytosol during Import into Mitochondria. J Mol Biol 2006;358(2):396-405.

(43) Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O. Yeast aconitase in two locations and two metabolic pathways: Seeing small amounts is believing. Mol Biol Cell 2005;16(9):4163-4171.

(44) Karniely S, Pines O. Single translation-dual destination: Mechanisms of dual protein targeting in eukaryotes. EMBO Rep 2005;6(5):420-425.

(45) Sass E, Karniely S, Pines O. Folding of Fumarase during Mitochondrial Import Determines its Dual Targeting in Yeast. J Biol Chem 2003;278(46):45109-45116.

(46) Drori N, Kramer-Haimovich H, Rollins J, Dinoor A, Okon Y, Pines O, et al. External pH and nitrogen source affect secretion of pectate lyase by Colletotrichum gloeosporioides. Appl Environ Microbiol 2003;69(6):3258-3262.

(47) Bressler E, Pines O, Goldberg I, Braun S. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor. Biotechnol Prog 2002;18(3):445-450.

(48) Sass E, Blachinsky E, Karniely S, Pines O. Mitochondrial and Cytosolic Isoforms of Yeast Fumarase Are Derivatives of a Single Translation Product and Have Identical Amino Termini. J Biol Chem 2001;276(49):46111-46117.

(49) Yakoby N, Beno-Moualem D, Keen NT, Dinoor A, Pines O, Prusky D. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Mol Plant-Microbe Interact 2001;14(8):988-995.

(50) Pines O, Inouye M. Expression and secretion of proteins in E. coli. Appl Biochem Biotechnol Part B Mol Biotechnol 1999;12(1):25-34.

(51) Knox C, Sass E, Neupert W, Pines O. Import into mitochondria, folding and retrograde movement of fumarase in yeast. J Biol Chem 1998;273(40):25587-25593.

(52) Pines O, Shemesh S, Battat E, Goldberg I. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1997;48(2):248-255.

(53) Pines O, Inouye M. Expression and secretion of proteins in E. coli. Methods Mol Biol 1997;62:73-87.

(54) Pines O, Even-Ram S, Elnathan N, Battat E, Aharonov O, Gibson D, et al. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: The role of fumarase. Appl Microbiol Biotechnol 1996;46(4):393-399.

(55) Schonberger O, Knox C, Bibi E, Pines O. Split invertase polypeptides form functional complexes in the yeast periplasm in vivo. Proc Natl Acad Sci U S A 1996;93(18):9612-9617.

(56) Geller D, Taglicht D, Edgar R, Tam A, Pines O, Michaelis S, et al. Comparative topology studies in Saccharomyces cerevisiae and in Escherichia coli: The N-terminal half of the yeast ABC protein Ste6. J Biol Chem 1996;271(23):13746-13753.

(57) Stein I, Peleg Y, Even-Ram S, Pines O. The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 1994;14(7):4770-4778.

(58) Davidov Y, Rahat A, Flechner I, Pines O. Characterization of the rnc-97 mutation of RNAaseIII: A glycine to glutamate substitution increases the requirement for magnesium ions. J Gen Microbiol 1993;139(4):717-724.

(59) Pines O, Shani O. Elimination of the disulphide bond alters the conformation of mature lipo-β-lactamase in yeast. Appl Microbiol Biotechnol 1992;38(1):67-69.

(60) Davidov Y, Zivion G, Pines O. Ribonuclease III reduces the efficiency of bacteriophage gy1 propagation in E. coli. Curr Microbiol 1992;24(2):63-66.

(61) Shani O, Pines O. The relationship between disulphide bond formation, processing and secretion of lipo‐β‐lactamase in yeast. Mol Microbiol 1992;6(2):189-195.

(62) Pines O, London A. Expression and secretion of staphylococcal nuclease in yeast: Effects of amino-terminal sequences. J Gen Microbiol 1991;137(4):771-778.

(63) Schonberger O, Hirst TR, Pines O. Targeting and assembly of an oligomeric bacterial enterotoxoid in the endoplasmic reticulum of Saccharomyces cerevisiae. Mol Microbiol 1991;5(11):2663-2671.

(64) Neufeld RJ, Peleg Y, Rokem JS, Pines O, Goldberg I. l-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb Technol 1991;13(12):991-996.

(65) London A, Pines O. Specific β‐lactam antibiotics inhibit secretion of lipo‐β‐lactamase in yeast. Mol Microbiol 1990;4(12):2193-2200.

(66) Peleg Y, Rokem JS, Goldberg I, Pines O. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: Localization of fumarase and efficient fumaric acid bioconversion to L-malic acid. Appl Environ Microbiol 1990;56(9):2777-2783.

(67) Pines O, Shoham Y, Rosenberg E, Gutnick D. Unmasking of surface components by removal of cell-associated emulsan from Acinetobacter Sp. RAG-1. Appl Microbiol Biotechnol 1988;28(1):93-99.

(68) Pines O, Yoon HJ, Inouye M. Expression of double-stranded-RNA-specific RNase III of Escherichia coli is lethal to Saccharomyces cerevisiae. J Bacteriol 1988;170(7):2989-2993.

(69) Pines O, Lunn CA, Inouye M. Defective Escherichia coli signal peptides function in yeast. Mol Microbiol 1988;2(2):209-217.

(70) Andersen J, Delihas N, Ikenaka K, Green PJ, Pines O, Ilercil O, et al. The isolation and characterization of RNA coded by the micF gene in Escherichia coli. Nucleic Acids Res 1987;15(5):2089-2101.

(71) Pines O, Gutnick D. Role for emulsan in growth of Acinetobacter calcoaceticus RAG-1 on crude oil. Appl Environ Microbiol 1986;51(3):661-663.

(72) Pines O, Inouye M. Antisense RNA regulation in prokaryotes. Trends Genet 1986;2(C):284-287.

(73) Green PJ, Pines O, Inouye M. The role of antisense RNA in gene regulation. Annu Rev Biochem 1986;VOL. 55:569-597.

(74) Pines O, Gutnick D. Specific binding of a bacteriophage at a hydrocarbon-water interface. J Bacteriol 1984;157(1):179-183.

(75) Pines O, Gutnick D. Alternate hydrophobic sites on the cell surface of Acinetobacter calcoaceticus RAG-1. FEMS Microbiol Lett 1984;22(3):307-311.

(76) Pines O, Bayer EA, Gutnick DL. Localization of emulsan-like polymers associated with the cell surface of Acinetobacter calcoaceticus. J Bacteriol 1983;154(2):893-905.

(77) Rosenberg E, Kaplan N, Pines O, Rosenberg M, Gutnick D. Capsular polysaccharides interfere with adherence of Acinetobacter calcoaceticus to hydrocarbon. FEMS Microbiol Lett 1983;17(1-3):157-160.

(78) Pines O, Gutnick DL. Relationship between phage resistance and emulsan production, interaction of phages with the cell-surface of Acinetobacter calcoaceticus RAG-1. Arch Microbiol 1981;130(2):129-133.