Last updated September 2024 - Microbiology and Molecular Genetics
1.
Mark M, Klein O, Zhang Y, Das K, Elbaz A, Hazan RN, et al. Systematic Approaches to Study Eclipsed Targeting of Proteins Uncover a New Family of Mitochondrial Proteins. Cells [Internet]. 2023;12(11). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163063013&doi=10.3390%252fcells12111550&partnerID=40&md5=86476bdaf972949de608457a345c4d5d
2.
Hazan R, Lintzer D, Ziv T, Das K, Rosenhek-Goldian I, Porat Z, et al. Mitochondrial-derived vesicles retain membrane potential and contain a functional ATP synthase. EMBO Reports [Internet]. 2023;24(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150787522&doi=10.15252%252fembr.202256114&partnerID=40&md5=7232f85be9a2ab2b82bca3356bc2411c
3.
Friedman K, Karmon O, Fridman U, Goldberg Y, Pines O, Ben-Aroya S. Inactive Proteasomes Routed to Autophagic Turnover Are Confined within the Soluble Fraction of the Cell. Biomolecules [Internet]. 2023;13(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146779417&doi=10.3390%252fbiom13010077&partnerID=40&md5=c95bc96ea65764802b4cd0af2836f868
4.
Zhang Y, Karmon O, Das K, Wiener R, Lehming N, Pines O. Ubiquitination Occurs in the Mitochondrial Matrix by Eclipsed Targeted Components of the Ubiquitination Machinery. Cells [Internet]. 2022;11(24). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144530262&doi=10.3390%252fcells11244109&partnerID=40&md5=411a34bf0b81ffaaa22586272d74c5ea
5.
Solaimuthu B, Lichtenstein M, Hayashi A, Khatib A, Plaschkes I, Nevo Y, et al. Depletion of Fumarate Hydratase, an Essential TCA Cycle Enzyme, Drives Proliferation in a Two-Step Model. Cancers [Internet]. 2022;14(22). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142498982&doi=10.3390%252fcancers14225508&partnerID=40&md5=b28b7b0327d04d8926848664585bea21
6.
Yip J, Wang S, Tan J, Lim TK, Lin Q, Yu Z, et al. Fumarase affects the deoxyribonucleic acid damage response by protecting the mitochondrial desulfurase Nfs1p from modification and inactivation. iScience [Internet]. 2021;24(11). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118772043&doi=10.1016%252fj.isci.2021.103354&partnerID=40&md5=3b68aff2cb1b6ed53a544772ac372bef
7.
Silas Y, Singer E, Das K, Lehming N, Pines O. A combination of Class-I fumarases and metabolites (α-ketoglutarate and fumarate) signal the DNA damage response in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2021;118(23). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107390228&doi=10.1073%252fpnas.2026595118&partnerID=40&md5=abcdad8be9f12518f7ea5e96be2bc3f4
8.
Neumann MAC, Grossmann D, Schimpf-Linzenbold S, Dayan D, Stingl K, Ben-Menachem R, et al. Haploinsufficiency due to a novel ACO2 deletion causes mitochondrial dysfunction in fibroblasts from a patient with dominant optic nerve atrophy. Scientific Reports [Internet]. 2020;10(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092175067&doi=10.1038%252fs41598-020-73557-4&partnerID=40&md5=647eeee6c69af4d47f0446b7e23c6782
9.
Wang S, Ramamurthy D, Tan J, Liu J, Yip J, Chua A, et al. Post-translational Modifications of Fumarase Regulate its Enzyme Activity and Function in Respiration and the DNA Damage Response. Journal of Molecular Biology [Internet]. 2020;432(23):6108–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096495162&doi=10.1016%252fj.jmb.2020.09.021&partnerID=40&md5=516909f993e904fd02247567237aad00
10.
Chin HL, Goh DLM, Wang FS, Tay SKH, Heng CK, Donnini C, et al. A combination of two novel VARS2 variants causes a mitochondrial disorder associated with failure to thrive and pulmonary hypertension. Journal of Molecular Medicine [Internet]. 2019;97(11):1557–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073810546&doi=10.1007%252fs00109-019-01834-5&partnerID=40&md5=e409a029f6123e6c85beade907558917
11.
Weill U, Yofe I, Sass E, Stynen B, Davidi D, Natarajan J, et al. Erratum to: Genome-wide SWAp-Tag yeast libraries for proteome exploration (Nature Methods, (2018), 15, 8, (617-622), 10.1038/s41592-018-0044-9). Nature Methods [Internet]. 2019;16(2):205. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059457913&doi=10.1038%252fs41592-018-0297-3&partnerID=40&md5=064300611a67260ec6e698d8d540f114
12.
Ben-Menachem R, Wang K, Marcu O, Yu Z, Lim TK, Lin Q, et al. Yeast aconitase mitochondrial import is modulated by interactions of its C and N terminal domains and Ssa1/2 (Hsp70). Scientific Reports [Internet]. 2018;8(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045426533&doi=10.1038%252fs41598-018-24068-w&partnerID=40&md5=2563cddb629b764420f5457fc14cec12
13.
Weill U, Yofe I, Sass E, Stynen B, Davidi D, Natarajan J, et al. Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nature Methods [Internet]. 2018;15(8):617–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049657368&doi=10.1038%252fs41592-018-0044-9&partnerID=40&md5=52c3d98c70de7488b5d4e0d2b6e28a1d
14.
Leshets M, Silas YBH, Lehming N, Pines O. Fumarase: From the TCA Cycle to DNA Damage Response and Tumor Suppression. Frontiers in Molecular Biosciences [Internet]. 2018;5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066923603&doi=10.3389%252ffmolb.2018.00068&partnerID=40&md5=e9ba89b43b8adf28c8827ad9dfc12e04
15.
Leshets M, Ramamurthy D, Lisby M, Lehming N, Pines O. Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2. Current Genetics [Internet]. 2018;64(3):697–712. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036591606&doi=10.1007%252fs00294-017-0786-4&partnerID=40&md5=975b06291793dde4f34560aafc7c86e7
16.
Singer E, Silas YBH, Ben-Yehuda S, Pines O. Bacterial fumarase and L-malic acid are evolutionary ancient components of the DNA damage response. eLife [Internet]. 2017;6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041024652&doi=10.7554%252feLife.30927&partnerID=40&md5=d98747e31a1dd8ac3fde51200e67789c
17.
Ben-Menachem R, Pines O. Detection of dual targeting and dual function of mitochondrial proteins in yeast. Methods in Molecular Biology [Internet]. 2017;1567:179–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014949215&doi=10.1007%252f978-1-4939-6824-4_11&partnerID=40&md5=ef246bfba9976ac0ca24d293d1d0ac9c
18.
Fattal-Valevski A, Eliyahu H, Fraenkel NID, Elmaliach G, Hausman-Kedem M, Shaag A, et al. Homozygous mutation, p.Pro304His, in IDH3A, encoding isocitrate dehydrogenase subunit is associated with severe encephalopathy in infancy. Neurogenetics [Internet]. 2017;18(1):57–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008507481&doi=10.1007%252fs10048-016-0507-z&partnerID=40&md5=dd029a85cf49a90328ac7bf7cb7f9053
19.
Dik E, Naamati A, Asraf H, Lehming N, Pines O. Human Fumarate Hydratase Is Dual Localized by an Alternative Transcription Initiation Mechanism. Traffic [Internet]. 2016;17(7):720–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84974685711&doi=10.1111%252ftra.12397&partnerID=40&md5=bc4718d540ca26c7fe90bd5bb12556ba
20.
Kalderon B, Kogan G, Bubis E, Pines O. Cytosolic Hsp60 can modulate proteasome activity in yeast. Journal of Biological Chemistry [Internet]. 2015;290(6):3542–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922422474&doi=10.1074%252fjbc.M114.626622&partnerID=40&md5=2b42fa00150156922c932523d0c256b9
21.
Kalderon B, Pines O. Protein folding as a driving force for dual protein targeting in eukaryotes. Frontiers in Molecular Biosciences [Internet]. 2014;1(NOV). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84974687278&doi=10.3389%252ffmolb.2014.00023&partnerID=40&md5=c07cf8487256b306ec2493f70070feeb
22.
Kisslov I, Naamati A, Shakarchy N, Pines O. Dual-targeted proteins tend to be more evolutionarily conserved. Molecular Biology and Evolution [Internet]. 2014;31(10):2770–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930342555&doi=10.1093%252fmolbev%252fmsu221&partnerID=40&md5=77de75e149d3608ed8110ee961dce693
23.
Burak E, Yogev O, Sheffer S, Schueler-Furman O, Pines O. Evolving dual targeting of a prokaryotic protein in yeast. Molecular Biology and Evolution [Internet]. 2013;30(7):1563–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879406272&doi=10.1093%252fmolbev%252fmst039&partnerID=40&md5=8780715a05ecd3095043dc139d02828f
24.
Edvardson S, Porcelli V, Jalas C, Soiferman D, Kellner Y, Shaag A, et al. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. Journal of Medical Genetics [Internet]. 2013;50(4):240–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878851926&doi=10.1136%252fjmedgenet-2012-101485&partnerID=40&md5=8849352b800591ee603e326034bc5ec4
25.
Michot C, Hubert L, Romero NB, Gouda A, Mamoune A, Mathew S, et al. Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia. Journal of Inherited Metabolic Disease [Internet]. 2012;35(6):1119–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84867887549&doi=10.1007%252fs10545-012-9461-6&partnerID=40&md5=fd69d82e50e7d81d183da1f01d554a24
26.
Spiegel R, Pines O, Ta-Shma A, Burak E, Shaag A, Halvardson J, et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. American Journal of Human Genetics [Internet]. 2012;90(3):518–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858040979&doi=10.1016%252fj.ajhg.2012.01.009&partnerID=40&md5=16bf64f5d44f2465d39c4070f527a5ae
27.
Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. Journal of Biological Chemistry [Internet]. 2011;286(48):41205–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80955125480&doi=10.1074%252fjbc.M111.296152&partnerID=40&md5=ddc0c6fb51bb42aa9aa63d19a8b93109
28.
Ben-Menachem R, Tal M, Shadur T, Pines O. A third of the yeast mitochondrial proteome is dual localized: A question of evolution. Proteomics [Internet]. 2011;11(23):4468–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-81855185408&doi=10.1002%252fpmic.201100199&partnerID=40&md5=fce442a5b5b5030813749ce5a2a1b789
29.
Yogev O, Naamati A, Pines O. Fumarase: A paradigm of dual targeting and dual localized functions. FEBS Journal [Internet]. 2011;278(22):4230–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80255122737&doi=10.1111%252fj.1742-4658.2011.08359.x&partnerID=40&md5=4e4508522eaf607bd6d2406abf4bcf3d
30.
Ben-Menachem R, Regev-Rudzki N, Pines O. The aconitase C-terminal domain is an independent dual targeting element. Journal of Molecular Biology [Internet]. 2011;409(2):113–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955904604&doi=10.1016%252fj.jmb.2011.03.045&partnerID=40&md5=d6c3edadc8602bed60731c1061c4b869
31.
Yogev O, Pines O. Dual targeting of mitochondrial proteins: Mechanism, regulation and function. Biochimica et Biophysica Acta - Biomembranes [Internet]. 2011;1808(3):1012–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79851516332&doi=10.1016%252fj.bbamem.2010.07.004&partnerID=40&md5=a2d3a8abf5847056d4be288f76eaabba
32.
Kaufmann R, Straussberg R, Mandel H, Fattal-Valevski A, Ben-Zeev B, Naamati A, et al. Infantile cerebral and cerebellar atrophy is associated with a mutation in the MED17 subunit of the transcription preinitiation mediator complex. American Journal of Human Genetics [Internet]. 2010;87(5):667–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78249244149&doi=10.1016%252fj.ajhg.2010.09.016&partnerID=40&md5=b2216bbf8dbf8fdce6f2940e80c3a6a1
33.
Yogev O, Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, et al. Fumarase: A mitochondrial metabolic enzyme and a cytosolic/nuclear component of the dna damage response. PLoS Biology [Internet]. 2010;8(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950553262&doi=10.1371%252fjournal.pbio.1000328&partnerID=40&md5=a404fe6a29e90df39bf1c4faa48258b1
34.
Matthews GD, Gur N, Koopman WJH, Pines O, Vardimon L. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells. Journal of Cell Science [Internet]. 2010;123(3):351–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-76649117422&doi=10.1242%252fjcs.060749&partnerID=40&md5=b132541394bd8c397db08a058a2d90bb
35.
Eliyahu E, Pnueli L, Melamed D, Scherrer T, Gerber AP, Pines O, et al. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Molecular and Cellular Biology [Internet]. 2010;30(1):284–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-73549098882&doi=10.1128%252fMCB.00651-09&partnerID=40&md5=e67165b37419ce1c37b456e2e5f4c8dd
36.
Naamati A, Regev-Rudzki N, Galperin S, Lill R, Pines O. Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. Journal of Biological Chemistry [Internet]. 2009;284(44):30200–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-71049136017&doi=10.1074%252fjbc.M109.034694&partnerID=40&md5=ebc2ea4f83b3e4730f3991546b8ef373
37.
Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA, et al. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Annals of Neurology [Internet]. 2009;66(3):419–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350070203&doi=10.1002%252fana.21752&partnerID=40&md5=e46051d85dd4e71f28b414814cd311f7
38.
Regev-Rudzki N, Battat E, Goldberg I, Pines O. Dual localization of fumarase is dependent on the integrity of the glyoxylate shunt. Molecular Microbiology [Internet]. 2009;72(2):297–306. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-64149095598&doi=10.1111%252fj.1365-2958.2009.06659.x&partnerID=40&md5=43efd02326e7c706be51f162fd23741b
39.
Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood (DOI:10.1016/j.ajhg.2008.09.002). American Journal of Human Genetics [Internet]. 2009;84(1):95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149103028&doi=10.1016%252fj.ajhg.2008.12.003&partnerID=40&md5=5ccfe3895dbe364acb68c1b20f182f3b
40.
Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood. American Journal of Human Genetics [Internet]. 2008;83(4):489–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-53249091836&doi=10.1016%252fj.ajhg.2008.09.002&partnerID=40&md5=ec973e506ee9f3c343289c49bc748329
41.
Regev-Rudzki N, Yogev O, Pines O. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. Journal of Cell Science [Internet]. 2008;121(14):2423–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-49649109965&doi=10.1242%252fjcs.029207&partnerID=40&md5=e96dd580f997140c0987684ccf00d075
42.
Dinur-Mills M, Tal M, Pines O. Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net charge. PLoS ONE [Internet]. 2008;3(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-47749097978&doi=10.1371%252fjournal.pone.0002161&partnerID=40&md5=3bf3b355895f314af7116bcfe9129734
43.
Yogev O, Karniely S, Pines O. Translation-coupled translocation of yeast fumarase into mitochondria in vivo. Journal of Biological Chemistry [Internet]. 2007;282(40):29222–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35748984947&doi=10.1074%252fjbc.M704201200&partnerID=40&md5=6478384377fdd5de050a29245903425b
44.
Regev-Rudzki N, Pines O. Eclipsed distribution: A phenomenon of dual targeting of protein and its significance. BioEssays [Internet]. 2007;29(8):772–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547619977&doi=10.1002%252fbies.20609&partnerID=40&md5=f83e352f083e8639c1b3c3d6d432ada9
45.
Hadas Y, Goldberg I, Pines O, Prusky D. Involvement of gluconic acid and glucose oxidase in the pathogenicity of Penicillium expansum in apples. Phytopathology [Internet]. 2007;97(3):384–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847371123&doi=10.1094%252fPHYTO-97-3-0384&partnerID=40&md5=b56c9750b26e4012088265268b34ea33
46.
Shlevin L, Regev-Rudzki N, Karniely S, Pines O. Location-specific depletion of a dual-localized protein. Traffic [Internet]. 2007;8(2):169–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846251261&doi=10.1111%252fj.1600-0854.2006.00518.x&partnerID=40&md5=ee00144bd0b424985f66d98c39304663
47.
Karniely S, Rayzner A, Sass E, Pines O. α-Complementation as a probe for dual localization of mitochondrial proteins. Experimental Cell Research [Internet]. 2006;312(19):3835–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750375536&doi=10.1016%252fj.yexcr.2006.08.021&partnerID=40&md5=4646058c1327f9ffa2895d5b9a586a39
48.
Goldberg I, Rokem JS, Pines O. Organic acids: Old metabolites, new themes. Journal of Chemical Technology and Biotechnology [Internet]. 2006;81(10):1601–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749333439&doi=10.1002%252fjctb.1590&partnerID=40&md5=75316bcb74e7702d4d450bdb5ca305be
49.
Karniely S, Regev-Rudzki N, Pines O. The Presequence of Fumarase is Exposed to the Cytosol during Import into Mitochondria. Journal of Molecular Biology [Internet]. 2006;358(2):396–405. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646109080&doi=10.1016%252fj.jmb.2006.02.023&partnerID=40&md5=a02eb8a073fd3d12e10e2bd0029e2a62
50.
Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O. Yeast aconitase in two locations and two metabolic pathways: Seeing small amounts is believing. Molecular Biology of the Cell [Internet]. 2005;16(9):4163–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-24344441532&doi=10.1091%252fmbc.E04-11-1028&partnerID=40&md5=f2179012e8f40bff857621cea22a7e0a
51.
Karniely S, Pines O. Single translation-dual destination: Mechanisms of dual protein targeting in eukaryotes. EMBO Reports [Internet]. 2005;6(5):420–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-20044387943&doi=10.1038%252fsj.embor.7400394&partnerID=40&md5=0059c891b11ec2f2e1e4dee3e9ee52c0
52.
Sass E, Karniely S, Pines O. Folding of Fumarase during Mitochondrial Import Determines its Dual Targeting in Yeast. Journal of Biological Chemistry [Internet]. 2003;278(46):45109–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0242413667&doi=10.1074%252fjbc.M302344200&partnerID=40&md5=16f0cd3af68614c79b02dfb5a07d5951
53.
Drori N, Kramer-Haimovich H, Rollins J, Dinoor A, Okon Y, Pines O, et al. External pH and nitrogen source affect secretion of pectate lyase by Colletotrichum gloeosporioides. Applied and Environmental Microbiology [Internet]. 2003;69(6):3258–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037641220&doi=10.1128%252fAEM.69.6.3258-3262.2003&partnerID=40&md5=8eb99685baa629bc16fab589f060783d
54.
Bressler E, Pines O, Goldberg I, Braun S. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor. Biotechnology Progress [Internet]. 2002;18(3):445–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035988002&doi=10.1021%252fbp010139t&partnerID=40&md5=c8de93b5cdbcf7c36e44ed81fc3f938d
55.
Sass E, Blachinsky E, Karniely S, Pines O. Mitochondrial and Cytosolic Isoforms of Yeast Fumarase Are Derivatives of a Single Translation Product and Have Identical Amino Termini. Journal of Biological Chemistry [Internet]. 2001;276(49):46111–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035824654&doi=10.1074%252fjbc.M106061200&partnerID=40&md5=f20050c1ec490703ce3582f524fe192c
56.
Yakoby N, Beno-Moualem D, Keen NT, Dinoor A, Pines O, Prusky D. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Molecular Plant-Microbe Interactions [Internet]. 2001;14(8):988–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034921938&doi=10.1094%252fMPMI.2001.14.8.988&partnerID=40&md5=2b42a69c2ba3bf58c936f279aef34db1
57.
Pines O, Inouye M. Expression and secretion of proteins in E. coli. Applied Biochemistry and Biotechnology - Part B Molecular Biotechnology [Internet]. 1999;12(1):25–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032707339&doi=10.1385%252fMB%253a12%253a1%253a25&partnerID=40&md5=c63235a4fd0535a22bbaee0e58b1af0b
58.
Knox C, Sass E, Neupert W, Pines O. Import into mitochondria, folding and retrograde movement of fumarase in yeast. Journal of Biological Chemistry [Internet]. 1998;273(40):25587–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032475958&doi=10.1074%252fjbc.273.40.25587&partnerID=40&md5=c8da65fb4051e0e040a457f9df5e2940
59.
Pines O, Shemesh S, Battat E, Goldberg I. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology [Internet]. 1997;48(2):248–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030858003&doi=10.1007%252fs002530051046&partnerID=40&md5=e69e0adb787c54990a3df63c4bcf2a88
60.
Pines O, Inouye M. Expression and secretion of proteins in E. coli. Methods in molecular biology (Clifton, NJ) [Internet]. 1997;62:73–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030642164&partnerID=40&md5=a421b47d781c8537493733045756486b
61.
Pines O, Even-Ram S, Elnathan N, Battat E, Aharonov O, Gibson D, et al. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: The role of fumarase. Applied Microbiology and Biotechnology [Internet]. 1996;46(4):393–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029801279&doi=10.1007%252fs002530050835&partnerID=40&md5=7c15bc1580a205052e5d30afa4fa6f56
62.
Schonberger O, Knox C, Bibi E, Pines O. Split invertase polypeptides form functional complexes in the yeast periplasm in vivo. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1996;93(18):9612–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029835280&doi=10.1073%252fpnas.93.18.9612&partnerID=40&md5=3a7e3d446dd52039df5ca0a1ed65ac25
63.
Geller D, Taglicht D, Edgar R, Tam A, Pines O, Michaelis S, et al. Comparative topology studies in Saccharomyces cerevisiae and in Escherichia coli: The N-terminal half of the yeast ABC protein Ste6. Journal of Biological Chemistry [Internet]. 1996;271(23):13746–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030011712&doi=10.1074%252fjbc.271.23.13746&partnerID=40&md5=0ebef18f9326e28ddeff63076c7b210f
64.
Stein I, Peleg Y, Even-Ram S, Pines O. The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae. Molecular and Cellular Biology [Internet]. 1994;14(7):4770–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028233427&doi=10.1128%252fMCB.14.7.4770&partnerID=40&md5=45dfce7cd802b74e6f674e51343fa07b
65.
Davidov Y, Rahat A, Flechner I, Pines O. Characterization of the rnc-97 mutation of RNAaseIII: A glycine to glutamate substitution increases the requirement for magnesium ions. Journal of General Microbiology [Internet]. 1993;139(4):717–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027278089&doi=10.1099%252f00221287-139-4-717&partnerID=40&md5=df7b0527ffc5bca9ad4a74f713d73acc
66.
Pines O, Shani O. Elimination of the disulphide bond alters the conformation of mature lipo-β-lactamase in yeast. Applied Microbiology and Biotechnology [Internet]. 1992;38(1):67–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026452483&doi=10.1007%252fBF00169421&partnerID=40&md5=7f701f8d5157d3cc817bf00b48bbbd12
67.
Davidov Y, Zivion G, Pines O. Ribonuclease III reduces the efficiency of bacteriophage gy1 propagation in E. coli. Current Microbiology [Internet]. 1992;24(2):63–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026710695&doi=10.1007%252fBF01570899&partnerID=40&md5=c4cc91233de5a27d88bdd00c12da769a
68.
Shani O, Pines O. The relationship between disulphide bond formation, processing and secretion of lipo‐β‐lactamase in yeast. Molecular Microbiology [Internet]. 1992;6(2):189–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026584618&doi=10.1111%252fj.1365-2958.1992.tb02000.x&partnerID=40&md5=884dee0b4c4de91b0ea5151531ba1167
69.
Neufeld RJ, Peleg Y, Rokem JS, Pines O, Goldberg I. l-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme and Microbial Technology [Internet]. 1991;13(12):991–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026410778&doi=10.1016%2f0141-0229%2891%2990122-Q&partnerID=40&md5=9aa327f711a53d2f8b2ee1b79452ca92
70.
Schonberger O, Hirst TR, Pines O. Targeting and assembly of an oligomeric bacterial enterotoxoid in the endoplasmic reticulum of Saccharomyces cerevisiae. Molecular Microbiology [Internet]. 1991;5(11):2663–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025930765&doi=10.1111%252fj.1365-2958.1991.tb01975.x&partnerID=40&md5=24e2a813334ac431c2b357440ee00d21
71.
Pines O, London A. Expression and secretion of staphylococcal nuclease in yeast: Effects of amino-terminal sequences. Journal of General Microbiology [Internet]. 1991;137(4):771–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025767689&doi=10.1099%252f00221287-137-4-771&partnerID=40&md5=3f76afe6caee13b0cd7530f05881b582
72.
London A, Pines O. Specific β‐lactam antibiotics inhibit secretion of lipo‐β‐lactamase in yeast. Molecular Microbiology [Internet]. 1990;4(12):2193–200. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025647126&doi=10.1111%252fj.1365-2958.1990.tb00581.x&partnerID=40&md5=f6c0266e5d4b75f963554a70b6885f9b
73.
Peleg Y, Rokem JS, Goldberg I, Pines O. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: Localization of fumarase and efficient fumaric acid bioconversion to L-malic acid. Applied and Environmental Microbiology [Internet]. 1990;56(9):2777–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025075097&doi=10.1128%252faem.56.9.2777-2783.1990&partnerID=40&md5=d1895b58c027e92ed16064989fc36b8e
74.
Pines O, Shoham Y, Rosenberg E, Gutnick D. Unmasking of surface components by removal of cell-associated emulsan from Acinetobacter Sp. RAG-1. Applied Microbiology and Biotechnology [Internet]. 1988;28(1):93–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-9444226788&doi=10.1007%252fBF00250505&partnerID=40&md5=54bed541828dc13797097f4c6e729657
75.
Pines O, Yoon HJ, Inouye M. Expression of double-stranded-RNA-specific RNase III of Escherichia coli is lethal to Saccharomyces cerevisiae. Journal of bacteriology [Internet]. 1988;170(7):2989–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024043138&doi=10.1128%252fjb.170.7.2989-2993.1988&partnerID=40&md5=cba7412dc205256badaa58182cedca69
76.
Pines O, Lunn CA, Inouye M. Defective Escherichia coli signal peptides function in yeast. Molecular Microbiology [Internet]. 1988;2(2):209–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023973940&doi=10.1111%252fj.1365-2958.1988.tb00022.x&partnerID=40&md5=66cf4f76e2c66148435fc48e398d9f21
77.
Andersen J, Delihas N, Ikenaka K, Green PJ, Pines O, Ilercil O, et al. The isolation and characterization of RNA coded by the micF gene in Escherichia coli. Nucleic Acids Research [Internet]. 1987;15(5):2089–101. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023650604&doi=10.1093%252fnar%252f15.5.2089&partnerID=40&md5=a18701ed13154d99a93fe25f43b1dc6d
78.
Pines O, Gutnick D. Role for emulsan in growth of Acinetobacter calcoaceticus RAG-1 on crude oil. Applied and Environmental Microbiology [Internet]. 1986;51(3):661–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022619721&doi=10.1128%252faem.51.3.661-663.1986&partnerID=40&md5=5b349929eb38d822de6e9a9ee1a811d1
79.
Green PJ, Pines O, Inouye M. The role of antisense RNA in gene regulation. Annual Review of Biochemistry [Internet]. 1986;VOL. 55:569–97. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022555863&doi=10.1146%252fannurev.bi.55.070186.003033&partnerID=40&md5=7acedf47f7b43204c9d3a63e1c4464da
80.
Pines O, Inouye M. Antisense RNA regulation in prokaryotes. Trends in Genetics [Internet]. 1986;2(C):284–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0003738172&doi=10.1016%2f0168-9525%2886%2990270-2&partnerID=40&md5=92726cf298cff84b531c27eec70e30d9
81.
Pines O, Gutnick D. Specific binding of a bacteriophage at a hydrocarbon-water interface. Journal of Bacteriology [Internet]. 1984;157(1):179–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021355935&partnerID=40&md5=aacaeeb26ed2a94b502429a74d2a2f16
82.
Pines O, Gutnick D. Alternate hydrophobic sites on the cell surface of Acinetobacter calcoaceticus RAG-1. FEMS Microbiology Letters [Internet]. 1984;22(3):307–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021266921&doi=10.1111%252fj.1574-6968.1984.tb00746.x&partnerID=40&md5=ce3c195105642b95d798787b5a30cca1
83.
Rosenberg E, Kaplan N, Pines O, Rosenberg M, Gutnick D. Capsular polysaccharides interfere with adherence of Acinetobacter calcoaceticus to hydrocarbon. FEMS Microbiology Letters [Internet]. 1983;17(1–3):157–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020636770&doi=10.1111%252fj.1574-6968.1983.tb00392.x&partnerID=40&md5=ed0606937e033578e705fdd3be00dd71
84.
Pines O, Bayer EA, Gutnick DL. Localization of emulsan-like polymers associated with the cell surface of Acinetobacter calcoaceticus. Journal of Bacteriology [Internet]. 1983;154(2):893–905. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020535257&partnerID=40&md5=09f24034356b86ef0edfb9d86298d4a4
85.
Pines O, Gutnick DL. Relationship between phage resistance and emulsan production, interaction of phages with the cell-surface of Acinetobacter calcoaceticus RAG-1. Archives of Microbiology [Internet]. 1981;130(2):129–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019792023&doi=10.1007%252fBF00411064&partnerID=40&md5=7a53c3c8d2f6e619eabfcf0e2d63e564