Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

The Faculty of Medicine - Microbiology and Molecular Genetics: Trachtenberg Shlomo

Researchers

 Last updated June 2021 - School of Pharmacy

List of Publications

(1) Trachtenberg S, Schuck P, Phillips TM, Andrews SB, Leapman RD. A structural framework for a near-minimal form of life: Mass and compositional analysis of the helical mollicute Spiroplasma melliferum BC3. PLoS ONE 2014;9(2).

(2) Nisani-Bizer K, Trachtenberg S. Unperturbing a non-helically perturbed bacterial flagellar filament: Salmonella typhimurium SJW23. J Mol Biol 2012;416(3):367-388.

(3) Cohen-Krausz S, Cabahug PC, Trachtenberg S. The monomeric, tetrameric, and fibrillar organization of fib: The dynamic building block of the bacterial linear motor of Spiroplasma melliferum BC3. J Mol Biol 2011;410(2):194-213.

(4) Trachtenberg S, Dorward LM, Speransky VV, Jaffe H, Andrews SB, Leapman RD. Structure of the Cytoskeleton of Spiroplasma melliferum BC3 and Its Interactions with the Cell Membrane. J Mol Biol 2008;378(4):778-789.

(5) Cohen-Krausz S, Trachtenberg S. The Flagellar Filament Structure of the Extreme Acidothermophile Sulfolobus shibatae B12 Suggests that Archaeabacterial Flagella have a Unique and Common Symmetry and Design. J Mol Biol 2008;375(4):1113-1124.

(6) Trachtenberg S. The cytoskeleton of spiroplasma: A complex linear motor. J Mol Microbiol Biotechnol 2006;11(3-5):265-283.

(7) Trachtenberg S, Cohen-Krausz S. The archaeabacterial flagellar filament: A bacterial propeller with a pilus-like structure. J Mol Microbiol Biotechnol 2006;11(3-5):208-220.

(8) Ben-Artzi M, Croisille J-, Fishelov D, Trachtenberg S. A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations. J Comput Phys 2005;205(2):640-664.

(9) Trachtenberg S, Galkin VE, Egelman EH. Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: Insights into polymorphism. J Mol Biol 2005;346(3):665-676.

(10) Trachtenberg S. Mollicutes. Curr Biol 2005;15(13):R483-484.

(11) Trachtenberg S. Shaping and moving a Spiroplasma. J Mol Microbiol Biotechnol 2004;7(1-2):78-87.

(12) Trachtenberg S, Fishelov D, Ben-Artzi M. Bacterial flagellar microhydrodynamics: Laminar flow over complex flagellar filaments, analog Archimedean screws and cylinders, and its perturbations. Biophys J 2003;85(3):1345-1357.

(13) Cohen-Krausz S, Trachtenberg S. The axial α-helices and radial spokes in the core of the cryo-negatively stained complex flagellar filament of Pseudomonas rhodos: Recovering high-resolution details from a flexible helical assembly. J Mol Biol 2003;331(5):1093-1108.

(14) Trachtenberg S, Andrews SB, Leapman RD. Mass distribution and spatial organization of the linear bacterial motor of Spiroplasma citri R8A2. J Bacteriol 2003;185(6):1987-1994.

(15) Trachtenberg S, Gilad R, Geffen N. The bacterial linear motor of Spiroplasma melliferum BC3: From single molecules to swimming cells. Mol Microbiol 2003;47(3):671-697.

(16) Gilad R, Porat A, Trachtenberg S. Motility modes of Spiroplasma melliferum BC3: A helical, wall-less bacterium driven by a linear motor. Mol Microbiol 2003;47(3):657-669.

(17) Cohen-Krausz S, Trachtenberg S. The structure of the helically perturbed flagellar filament of Pseudomonas rhodos: Implications for the absence of the outer domain in other complex flagellins and for the flexibility of the radial spokes. Mol Microbiol 2003;48(5):1305-1316.

(18) Cohen-Krausz S, Trachtenberg S. The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. J Mol Biol 2002;321(3):383-395.

(19) Trachtenberg S, Gilad R. A bacterial linear motor: Cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3. Mol Microbiol 2001;41(4):827-848.

(20) Ben-Artzi M, Fishelov D, Trachtenberg S. Vorticity dynamics and numerical resolution of Navier-Stokes equations. Math Model Numer Anal 2001;35(2):313-330.

(21) Amihai D, Trachtenberg S, Terkel J, Hammel I. The structure of mast cell secretory granules in the blind mole rat (Spalax ehrenbergi). J Struct Biol 2001;136(2):96-100.

(22) Trachtenberg S, Pinnick B, Kessel M. The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: Cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. J Struct Biol 2000;130(1):10-26.

(23) Trachtenberg S. Mollicutes - Wall-less bacteria with internal cytoskeletons. J Struct Biol 1998;124(2-3):244-256.

(24) Trachtenberg S, Derosier DJ, Zemlin F, Beckmann E. Non-helical perturbations of the flagellar filament: Salmonella typhimurium SJW117 at 9.6 Å resolution. J Mol Biol 1998;276(4):759-773.

(25) Trachtenberg S. A fast-freezing device with a retractable environmental chamber, suitable for kinetic cryo-electron microscopy studies. J Struct Biol 1998;123(1):45-55.

(26) Cohen-Krausz S, Trachtenberg S. Helical perturbations of the flagellar filament: Rhizobium lupini H13-3 at 13 Å resolution. J Struct Biol 1998;122(3):267-282.

(27) Trachtenberg S. Programmable freezesubstitution and cryoembedding device. Microsc Res Tech 1993;24(2):173-179.

(28) Trachtenberg S. Fast-freezing devices for cryo-electron-microscopy. Micron 1993;24(1):1-12.

(29) Trachtenberg S, Leonard KR, Tichelaar W. Radial mass density functions of vitrified helical specimens determined by scanning transmission electron microscopy: their potential use as substitutes for equatorial data. Ultramicroscopy 1992;45(3-4):307-321.

(30) Trachtenberg S, DeRosier DJ. Conformational switching in the flagellar filament of Salmonella typhimurium. J Mol Biol 1992;226(2):447-454.

(31) Trachtenberg S, Hammel I. The rigidity of bacterial flagellar filaments and its relation to filament polymorphism. J Struct Biol 1992;109(1):18-27.

(32) Trachtenberg S, DeRosier DJ. A three-start helical sheath on the flagellar filament of Caulobacter crescentus. J Bacteriol 1992;174(19):6198-6206.

(33) Trachtenberg S, DeRosier DJ. A molecular switch: Subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments. J Mol Biol 1991;220(1):67-77.

(34) Hyman HC, Trachtenberg S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed forms and their relation to filament superhelicity. J Mol Biol 1991;220(1):79-88.

(35) Trachtenberg S, DeRosier DJ. Three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus. A flagellin lacking the outer domain and its amino acid sequence lacking an internal segment. J Mol Biol 1988;202(4):787-808.

(36) Trachtenberg S, DeRosier DJ. Three-dimensional structure of the frozen-hydrated flagellar filament. The left-handed filament of Salmonella typhimurium. J Mol Biol 1987;195(3):581-601.

(37) Trachtenberg S, DeRosier DJ, Macnab RM. Three-dimensional structure of the complex flagellar filament of Rhizobium lupini and its relation to the structure of the plain filament. J Mol Biol 1987;195(3):603-620.

(38) Trachtenberg S. Assemblies of psoriatic keratin and their relation to normal intermediate filament structures. Biochim Biophys Acta Gen Subj 1987;923(3):327-332.

(39) Trachtenberg S, DeRosier DJ, Aizawa S-, Macnab RM. Pairwise perturbation of flagellin subunits. The structural basis for the differences between plain and complex bacterial flagellar filaments. J Mol Biol 1986;190(4):569-576.

(40) Trachtenberg S. Conformation and aggregation of a polysaccharide: In solution, as transported in Golgi vesicles, and in an extracellular matrix. J Ultrastruct Mol Struct Res 1986;97(1-3):89-102.

(41) TRACHTENBERG S, STOKES D, BULLITT E, DeROSIERa D. Actin and Flagellar Filaments: Two Helical Structures with Variable Twist. Ann New York Acad Sci 1986;483(1):88-99.

(42) Trachtenberg S. Cytochemical and morphological evidence for the involvement of the plasma membrane and plastids in mucilage secretion in Aloe arborescens. Ann Bot 1984;53(2):227-236.

(43) Trachtenberg S, Mayer AM. Mucilage cells, calcium oxalate crystals and soluble calcium in Opuntia ficus-indica. Ann Bot 1982;50(4):549-557.

(44) Trachtenberg S, Mayer AM. A stereological analysis of the succulent tissue 5Opuntia ficus-indica (L.) Mill: II. Ultrastructural development of the mucilage cells. J Exp Bot 1981;32(5):1105-1113.

(45) Trachtenberg S, Mayer AM. A stereological analysis of the succulent tissue 5Opuntia ficus-indica (L.) Mill: I. Development of mucilage cells. J Exp Bot 1981;32(5):1091-1103.

(46) Trachtenberg S, Mayer AM. Calcium oxalate crystals in Opuntia ficusindica (L.) mill.: Development and relation to mucilage cells - A stereological analysis. Protoplasma 1981;109(3-4):271-283.

(47) Trachtenberg S, Mayer AM. Composition and properties of Opuntia ficus-indica mucilage. Phytochemistry 1981;20(12):2665-2668.

(48) Trachtenberg S, Mayer AM. Biophysical properties of Opuntia ficus-indica mucilage. Phytochemistry 1980;21(12):2835-2843.

(49) TRACHTENBERG S, ZAMSKI E. THE APOPLASTIC CONDUCTION OF WATER IN POLYTRICHUM JUNIPERINUM WILLD. GAMETOPHYTES. New Phytol 1979;83(1):49-52.

(50) Trachtenberg S, Zamski E. Conduction of ionic solutes and assimilates in the leptom of Polytrichum juniperinum willd. J Exp Bot 1978;29(3):719-727.