Last updated September 2024 - Microbiology and Molecular Genetics
1.
Soni A, Klebanov-Akopyan O, Erben E, Plaschkes I, Benyamini H, Mitesser V, et al. UMSBP2 is chromatin remodeler that functions in regulation of gene expression and suppression of antigenic variation in trypanosomes. Nucleic Acids Research [Internet]. 2023;51(11):5678–98. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163895805&doi=10.1093%252fnar%252fgkad402&partnerID=40&md5=280fa836bfccd7fba3edac4fb3fbdcf5
2.
Yamin K, Bijlani S, Berman J, Soni A, Shlomai J, Buragohain BM, et al. Fold-change of chromatin condensation in yeast is a conserved property. Scientific Reports [Internet]. 2022;12(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140027494&doi=10.1038%252fs41598-022-22340-8&partnerID=40&md5=380faf36d111593378e24e56f2b6d7ec
3.
Yaffe N, Rotem D, Soni A, Porath D, Shlomai J. Direct monitoring of the stepwise condensation of kinetoplast DNA networks. Scientific Reports [Internet]. 2021;11(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100071360&doi=10.1038%252fs41598-021-81045-6&partnerID=40&md5=42ef31c4968218dc02ea3733aa037002
4.
Klebanov-Akopyan O, Mishra A, Glousker G, Tzfati Y, Shlomai J. Trypanosoma brucei UMSBP2 is a single-stranded telomeric DNA binding protein essential for chromosome end protection. Nucleic Acids Research [Internet]. 2018;46(15):7757–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055026334&doi=10.1093%252fnar%252fgky597&partnerID=40&md5=c5c765f7ccce182f0ba5b017e08d59fb
5.
Botero A, Kapeller I, Cooper C, Clode PL, Shlomai J, Thompson RCA. The kinetoplast DNA of the Australian trypanosome, Trypanosoma copemani, shares features with Trypanosoma cruzi and Trypanosoma lewisi. International Journal for Parasitology [Internet]. 2018;48(9–10):691–700. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047432270&doi=10.1016%252fj.ijpara.2018.02.006&partnerID=40&md5=f6cfb580a1bac624df0eed10c8b37f43
6.
Bezalel-Buch R, Yaffe N, Shlomai J. Replication Machinery of Kinetoplast DNA [Internet]. Trypanosomatid Diseases: Molecular Routes to Drug Discovery. 2013. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886475397&doi=10.1002%252f9783527670383.ch13&partnerID=40&md5=6bfaffa66478407fec2cbb45cddfb0c4
7.
Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell [Internet]. 2012;150(3):533–48. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864584531&doi=10.1016%252fj.cell.2012.06.028&partnerID=40&md5=3e01d74e50443818e508796a700a8065
8.
Kapeller I, Milman N, Yaffe N, Shlomai J. Interactions of a replication initiator with histone H1-like proteins remodel the condensed mitochondrial genome. Journal of Biological Chemistry [Internet]. 2011;286(47):40566–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-81755189069&doi=10.1074%252fjbc.M111.270322&partnerID=40&md5=1218b4424031ad5f152ae09a64fe5980
9.
Shlomai J. Redox control of protein-DNA interactions: From molecular mechanisms to significance in signal transduction, gene expression, and DNA replication. Antioxidants and Redox Signaling [Internet]. 2010;13(9):1429–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957032845&doi=10.1089%252fars.2009.3029&partnerID=40&md5=4e76b8d370e42e912a2e9893351818f4
10.
Liu B, Wang J, Yaffe N, Lindsay ME, Zhao Z, Zick A, et al. Trypanosomes Have Six Mitochondrial DNA Helicases with One Controlling Kinetoplast Maxicircle Replication. Molecular Cell [Internet]. 2009;35(4):490–501. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-68949202846&doi=10.1016%252fj.molcel.2009.07.004&partnerID=40&md5=2685f7fe5731d8fca359a0007bccb0f3
11.
Sela D, Shlomai J. Regulation of UMSBP activities through redox-sensitive protein domains. Nucleic Acids Research [Internet]. 2009;37(1):279–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58549106154&doi=10.1093%252fnar%252fgkn927&partnerID=40&md5=bd45fc676f4779f1db3c7e15ecf2a7e8
12.
Sela D, Yaffe N, Shlomai J. Enzymatic mechanism controls redox-mediated protein-DNA interactions at the replication origin of kinetoplast DNA minicircles. Journal of Biological Chemistry [Internet]. 2008;283(46):32034–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-57649114086&doi=10.1074%252fjbc.M804417200&partnerID=40&md5=a2f56b15025effc6aa18d6215376d1e3
13.
Shlomai J, Sela D, Milman N, Kapeller I, Zick A, Bezalel R, et al. Unique characteristics of the kinetoplast dna replication machinery provide potential drug targets in trypanosomatids. Advances in Experimental Medicine and Biology [Internet]. 2008;625:9–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84934436700&doi=10.1007%252f978-0-387-77570-8_2&partnerID=40&md5=0c5b25b47828bcef14df568e23ad1d1c
14.
Milman N, Motyka SA, Englund PT, Robinson D, Shlomai J. Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2007;104(49):19250–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-37649011187&doi=10.1073%252fpnas.0706858104&partnerID=40&md5=247e25f8dbcf5de6bc52527e2d0788b2
15.
Onn I, Kapeller I, Abu-Elneel K, Shlomai J. Binding of the universal minicircle sequence binding protein at the kinetoplast DNA replication origin. Journal of Biological Chemistry [Internet]. 2006;281(49):37468–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846025784&doi=10.1074%252fjbc.M606374200&partnerID=40&md5=d6e510dffc0a3a2bc5adc40edcef3e87
16.
Zick A, Onn I, Bezalel R, Margalit H, Shlomai J. Assigning functions to genes: Identification of S-phase expressed genes in Leishmania major based on post-transcriptional control elements. Nucleic Acids Research [Internet]. 2005;33(13):4235–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-23044509170&doi=10.1093%252fnar%252fgki742&partnerID=40&md5=98e398b500ccc74163e4cfc9738bfae3
17.
Shlomai J. The structure and replication of kinetoplast DNA. Current Molecular Medicine [Internet]. 2004;4(6):623–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-4444304418&doi=10.2174%252f1566524043360096&partnerID=40&md5=d45a411b44666e431b2125aeaf96b6c9
18.
Onn I, Milman-Shtepel N, Shlomai J. Redox potential regulates binding of universal minicircle sequence binding protein at the kinetoplast DNA replication origin. Eukaryotic Cell [Internet]. 2004;3(2):277–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-16544372631&doi=10.1128%252fEC.3.2.277-287.2004&partnerID=40&md5=fff518867b2249c087f7884176748bf5
19.
Shlomai J. Specific recognition of the replication origins of the kinetoplast DNA. Acta Microbiologica et Immunologica Hungarica [Internet]. 2002;49(4):455–67. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0038750680&doi=10.1556%252fAMicr.49.2002.4.4&partnerID=40&md5=5361516bf8b153b37a7c1f5867a601ba
20.
Abu-Elneel K, Robinson DR, Drew ME, Englund PT, Shlomai J. Intramitochondrial localization of universal minicircle sequence-binding protein, a trypanosomatid protein that binds kinetoplast minicircle replication origins. Journal of Cell Biology [Internet]. 2001;153(4):725–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035858881&doi=10.1083%252fjcb.153.4.725&partnerID=40&md5=b59a28a89a868444b3a5ce5a3da38b9b
21.
Abu-Elneel K, Kapeller I, Shlomai J. Universal minicircle sequence-binding protein, a sequence-specific DNA- binding protein that recognizes the two replication origins of the kinetoplast DNA minicircle. Journal of Biological Chemistry [Internet]. 1999;274(19):13419–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033532083&doi=10.1074%252fjbc.274.19.13419&partnerID=40&md5=e38f66c4422af68e15ce26094509646d
22.
Tzfati Y, Shlomai J. Genomic organization and expression of the gene encoding the universal minicircle sequence binding protein. Molecular and Biochemical Parasitology [Internet]. 1998;94(1):137–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032128037&doi=10.1016%2fS0166-6851%2898%2900052-8&partnerID=40&md5=01119e7560e4b00a547cbaa2287a2893
23.
Flashner Y, Shlomai J, Shafferman A. Three novel plasmid R6K proteins act in concert to distort DNA within the α and β origins of DNA replication. Molecular Microbiology [Internet]. 1996;19(5):985–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029976305&doi=10.1046%252fj.1365-2958.1996.428960.x&partnerID=40&md5=1fa40dbdcd8ec3da50f8c56f6463fab6
24.
Avrahami D, Tzfati Y, Shlomai J. A single-stranded DNA binding protein binds the origin of replication of the duplex kinetoplast DNA. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1995;92(23):10511–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028809552&doi=10.1073%252fpnas.92.23.10511&partnerID=40&md5=cc63dabf6236c348223f9752c44021e4
25.
Abeliovich H, Shlomai J. Reversible oxidative aggregation obstructs specific proteolytic cleavage of glutathione S-transferase fusion proteins. Analytical Biochemistry [Internet]. 1995;228(2):351–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029328649&doi=10.1006%252fabio.1995.1363&partnerID=40&md5=5844bd20bccfb398ed10dc23c2d631ab
26.
Tzfati Y, Abeliovich H, Avrahami D, Shlomai J. Universal minicircle sequence binding protein, a CCHC-type zinc finger protein that binds the universal minicircle sequence of trypanosomatids. Purification and characterization. Journal of Biological Chemistry [Internet]. 1995;270(36):21339–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029103420&doi=10.1074%252fjbc.270.36.21339&partnerID=40&md5=bc3b389628b5fc0b457bfa327377f90b
27.
Shlomai J. The assembly of kinetoplast DNA. Parasitology Today [Internet]. 1994;10(9):341–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028144787&doi=10.1016%2f0169-4758%2894%2990244-5&partnerID=40&md5=fa892b102ec738811e036c7a2b92bc47
28.
Masuda ES, Tokumitsu H, Tsuboi A, Shlomai J, Hung P, Arai KI, et al. The granulocyte-macrophage colony-stimulating factor promoter cis-acting element CLE0 mediates induction signals in T cells and is recognized by factors related to AP1 and NFAT. Molecular and Cellular Biology [Internet]. 1993;13(12):7399–407. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027488631&doi=10.1128%252fMCB.13.12.7399&partnerID=40&md5=24aeeb83efcf6887f481a0d370adc7e3
29.
Abeliovich H, Tzfati Y, Shlomai J. A trypanosomal CCHC-type zinc finger protein which binds the conserved universal sequence of kinetoplast DNA minicircles: Isolation and analysis of the complete cDNA from Crithidia fasciculata. Molecular and Cellular Biology [Internet]. 1993;13(12):7766–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027422980&doi=10.1128%252fMCB.13.12.7766&partnerID=40&md5=335ce2fce39815af10eab330e8c7dd38
30.
Tzfati Y, Abeliovich H, Kapeller I, Shlomai J. A single-stranded DNA-binding protein from Crithidia fasciculata recognizes the nucleotide sequence at the origin of replication of kinetoplast DNA minicircles. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1992;89(15):6891–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026769581&doi=10.1073%252fpnas.89.15.6891&partnerID=40&md5=d5d37ee4c5a6db39b51f5734f7d85f52
31.
Miyatake S, Shlomai J, Arai KI, Arai N. Characterization of the mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoter: Nuclear factors that interact with an element shared by three lymphokine genes - Those for GM-CSF, interleukin-4 (IL-4), and IL-5. Molecular and Cellular Biology [Internet]. 1991;11(12):5894–901. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025931765&doi=10.1128%252fmcb.11.12.5894&partnerID=40&md5=27a642a9044bc287de21e9f40a0e95dc
32.
Schlein Y, Jacobson RL, Shlomai J. Chitinase secreted by Leishmania functions in the sandfly vector. Proceedings of the Royal Society B: Biological Sciences [Internet]. 1991;245(1313):121–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025830542&doi=10.1098%252frspb.1991.0097&partnerID=40&md5=9558152bbec237de122ade8aa7803b83
33.
Arai N, Tsuboi A, Iwai Y, Miyatake S, Yokota K, De Waal Malefyt R, et al. Regulation of IL-3, IL-4 and GM-CSF genes and signal transduction by their receptors. Lymphokine Research [Internet]. 1990;9(4):551–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025123422&partnerID=40&md5=91d796195099e33303cb076c1c29701b
34.
Linial M, Shlomai J. Bent DNA structures associated with several origins of replication are recognized by a unique enzyme from trypanosomatids. Nucleic Acids Research [Internet]. 1988;16(14):6477–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023751228&doi=10.1093%252fnar%252f16.14.6477&partnerID=40&md5=c499c6c59d3450c6c0d04fcbbec15bce
35.
Miyatake S, Seiki M, Dewaal Malefijt R, Heike T, Fujisawa JI, Takebe Y, et al. Activation of T cell-derived lymphokine genes in T cells and fibroblasts: Effects of human T cell leukemia virus type I P40x protein and bovine papilloma virus encoded E2 protein. Nucleic Acids Research [Internet]. 1988;16(14):6547–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023705444&doi=10.1093%252fnar%252f16.14.6547&partnerID=40&md5=42cb7ea2cb899f118fa07de54d8db353
36.
Linial M, Shlomai J. A unique endonuclease from Crithidia fasciculata which recognizes a bend in the DNA helix. Specificity of the cleavage reaction. Journal of Biological Chemistry [Internet]. 1988;263(1):290–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023930795&partnerID=40&md5=f1bf121a9e3f839ea6d64a470fbb8a24
37.
Linial M, Shlomai J. The sequence-directed bent structure in kinetoplast DNA is recognized by an enzyme from Crithidia fasciculata. The Journal of biological chemistry [Internet]. 1987;262(31):15194–201. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023645813&partnerID=40&md5=83865fdc1fa1cea587586815d87f9633
38.
Linial M, Shlomai J. Sequence-directed bent DNA helix is the specific binding site for Crithidia fasciculata nicking enzyme. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1987;84(23):8205–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023480695&doi=10.1073%252fpnas.84.23.8205&partnerID=40&md5=ffdefed9f251569ac7c35a1ef1b0bc1f
39.
Shlomai J, Linial M. A nicking enzyme from trypanosomatids which specifically affects the topological linking of duplex DNA circles. Purification and characterization. Journal of Biological Chemistry [Internet]. 1986;261(34):16219–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022994969&partnerID=40&md5=0a29b7f5b081213e8d590aab88770b4d
40.
Millgram MA, Greenblatt CL, Shlomai J. Interaction of aminoglycosides and ionophores in the killing of Crithidia fasciculata. Zeitschrift für Parasitenkunde Parasitology Research [Internet]. 1985;71(6):699–704. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022354745&doi=10.1007%252fBF00926795&partnerID=40&md5=a3ef07cee24fb7e1494b54fb664e7cea
41.
Shlomai J, Zadok A. Kinetoplast DNA minicircles of trypanosomatids encode for a protein product. Nucleic Acids Research [Internet]. 1984;12(21):8017–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021761302&doi=10.1093%252fnar%252f12.21.8017&partnerID=40&md5=b3a503e96fa86f370403bf78a547c84f
42.
Shlomai J, Zadok A, Frank D. A unique ATP-dependent DNA topoisomerase from trypanosomatids. Advances in experimental medicine and biology [Internet]. 1984;179:409–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021669696&doi=10.1007%252f978-1-4684-8730-5_42&partnerID=40&md5=0f92cbfc1f8f833effbf912a59cce2a2
43.
Shlomai J, Zadok A. Reversible decatenation of kinetoplast DNA by a DNA topoisomerase from trypanosomatids. Nucleic Acids Research [Internet]. 1983;11(12):4019–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021112224&doi=10.1093%252fnar%252f11.12.4019&partnerID=40&md5=8254e92af1dab46683530cc2ebf63232
44.
Schlein Y, Warburg A, Schnur LF, Shlomai J. Vector compatibility of Phlebotomus papatasi dependent on differentially induced digestion. Acta Tropica [Internet]. 1983;40(1):65–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020627804&partnerID=40&md5=4dcaec8f1acd27675dad3883d8d0696a
45.
Low RL, Shlomai J, Kornberg A. Protein n, a primosomal DNA replication protein of Escherichia coli: Purification and characterization. Journal of Biological Chemistry [Internet]. 1982;257(11):6242–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020322402&partnerID=40&md5=3ce277c0a00fe3fb0b3af8c70e7747e2
46.
Millgram M, Greenblatt CL, Shlomai J, Kaback HR. The interaction of ionophores and aminoglycosides in the killing of Crithidia. Journal of Protozoology [Internet]. 1982;29(3):536. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020453972&partnerID=40&md5=cdfd6ba029dc384365c37bd48d281419
47.
Arai K, Low R, Kobori J, Shlomai J, Kornberg A. Mechanism of dnaB protein action. V. Association of dnaB protein, protein n’, and other prepriming proteins in the primosome of DNA replication. Journal of Biological Chemistry [Internet]. 1981;256(10):5273–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019478464&partnerID=40&md5=4aa68ad138acc24c0379a40a509f8a7f
48.
Shlomai J, Polder L, Arai K, Kornberg A. Replication of ∅X174 DNA with purified enzymes. I. Conversion of viral DNA to a supercoiled, biologically active duplex. Journal of Biological Chemistry [Internet]. 1981;256(10):5233–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019732834&partnerID=40&md5=39c9374a3987dca2310fdaf5ec47a9a7
49.
Arai KI, Arai N, Shlomai J, Kobori J, Polder L, Low R, et al. Enzyme Studies of ϕX174 DNA Replication. Progress in Nucleic Acid Research and Molecular Biology [Internet]. 1981;26(C):9–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019344242&doi=10.1016%2fS0079-6603%2808%2960392-X&partnerID=40&md5=5b901ea9c45c2158ba65f73fc9becac4
50.
Arai K, Arai N, Shlomai J, Kornberg A. Replication of duplex DNA of phage φX174 reconstituted with purified enzymes. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1980;77(6 I):3322–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019306644&doi=10.1073%252fpnas.77.6.3322&partnerID=40&md5=03518cef702cf059c07e2e767fed54f9
51.
Shlomai J, Kornberg A. A prepriming DNA replication enzyme of Escherichia coli. II. Actions of protein n’: a sequence-specific, DNA-dependent ATPase. Journal of Biological Chemistry [Internet]. 1980;255(14):6794–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018972669&partnerID=40&md5=ae1649b0bdda7fd85d67bc9a5064a1b3
52.
Shlomai J, Kornberg A. A prepriming DNA replication enzyme of Escherichia coli. I. Purification of protein n’: a sequence-specific, DNA-dependent ATPase. Journal of Biological Chemistry [Internet]. 1980;255(14):6789–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018963435&partnerID=40&md5=226fde21c21ec2c96c4a796d5199eddd
53.
Shlomai J, Kornberg A. An Escherichia coli replication protein that recognizes a unique sequence within a hairpin region in φX174 DNA. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1980;77(2 II):799–803. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018867465&doi=10.1073%252fpnas.77.2.799&partnerID=40&md5=102b136e07c1ee2992ad07b4aeb43d8f
54.
Meyer RR, Shlomai J, Kobori J, Bates DL, Rowen L, McMacken R, et al. Enzymatic conversion of single-stranded phiX174 and G4 circles to duplex forms: Discontinuous replication. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 1979;43(1):289–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018386880&doi=10.1101%252fsqb.1979.043.01.035&partnerID=40&md5=8ddb5521814f4b455e993e07d5eb51f5
55.
Shlomai J, Kornberg A. Deoxyuridine triphosphatase of Escherichia coli. Purification, properties, and use as a reagent to reduce uracil incorporation into DNA. Journal of Biological Chemistry [Internet]. 1978;253(9):3305–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017866954&partnerID=40&md5=45201b07b687ec2ba511c9207a678ade
56.
Shlomai J, Becker Y. Replication of herpes simplex virus DNA after removal of hydroxyurea block from infected cells. Journal of General Virology [Internet]. 1977;37(2):429–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017752009&doi=10.1099%252f0022-1317-37-2-429&partnerID=40&md5=e115574a02a50d1db6654c8b83c1ada5
57.
Becker Y, Asher Y, Cohen Y, Weinberg-Zahlering E, Shlomai J. Phosphonoacetic acid-resistant mutants of herpes simplex virus: effect of phosphonoacetic acid on virus replication and in vitro deoxyribonucleic acid synthesis in isolated nuclei. Antimicrobial Agents and Chemotherapy [Internet]. 1977;11(5):919–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017685267&doi=10.1128%252fAAC.11.5.919&partnerID=40&md5=35da0e4c9b4646b2efff82bc6d1f3231
58.
Friedmann A, Shlomai J, Becker Y. Electron microscopy of herpes simplex virus DNA molecules isolated from infected cells by centrifugation in CsCl density gradients. Journal of General Virology [Internet]. 1977;34(3):507–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017369467&doi=10.1099%252f0022-1317-34-3-507&partnerID=40&md5=de0c14d7782cae08d29fe62917ee6cc9
59.
Shlomai J, Asher Y, Becker Y. In vitro synthesis of herpes simplex virus DNA in nuclei isolated from infected BSC1 cells. Journal of General Virology [Internet]. 1977;34(2):223–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017360029&doi=10.1099%252f0022-1317-34-2-223&partnerID=40&md5=851b70e5489f83dc098eee32a8472bc5
60.
Shlomai J, Strauss B, Asher Y, Friedmann A, Becker Y. Analysis of herpes simplex virus DNA synthesized in infected nuclei by chromatography on benzoylated naphthoylated DEAE cellulose columns. Journal of General Virology [Internet]. 1976;32(2):189–204. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017117435&doi=10.1099%252f0022-1317-32-2-189&partnerID=40&md5=bfff2dce3a293b29c44a721279f52835
61.
Shlomai J, Friedmann A, Becker Y. Replicative intermediates of herpes simplex virus DNA. Virology [Internet]. 1976;69(2):647–59. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017106093&doi=10.1016%2f0042-6822%2876%2990493-1&partnerID=40&md5=752c1e4e0b1e30a5b415b769496c558c
62.
Becker Y, Ben-Zeev A, Kamincik Y, Asher Y, Shlomai J. Nucleic acid biosynthesis in nuclei of cells infected with herpesviruses (HSV and EBV). IARC (International Agency for Research on Cancer) Scientific Publications [Internet]. 1975;No.11 I:245–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016761679&partnerID=40&md5=a174b1234d4532cb2ae4926a63669ad0
63.
Shlomai J, Becker Y. Analysis of herpes simplex virus DNA synthesized in vitro in nuclei isolated from infected BSC-1 cells. Virology [Internet]. 1975;68(1):275–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016797442&doi=10.1016%2f0042-6822%2875%2990170-1&partnerID=40&md5=2333f9dca21f1a6b88a1f4514c99ae45
64.
Shlomai J, Asher Y, Gordon YJ, Olshevsky U, Becker Y. Effect of zinc ions on the synthesis of herpes simplex virus DNA in infected BSC-1 cells. Virology [Internet]. 1975;66(1):330–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016527183&doi=10.1016%2f0042-6822%2875%2990204-4&partnerID=40&md5=8ef29b608064d5b5e01cb765e1f347b1
65.
Becker Y, Shlomai J, Weinberg E, Ben-Zeev A, Olshevsky U. Integration of Epstein-Barr virus DNA into cellular DNA of Burkitt lymphoblasts (Raji cell line). Israel Journal of Medical Sciences [Internet]. 1974;10(11):1454–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016130159&partnerID=40&md5=61ba08ef7e36998b7616f4cf023b1e7f
66.
Becker Y, Shlomai J, Asher Y, Weinberg E, Cohen Y, Olshevsky U, et al. Interaction of herpes simplex virus type 1 with rous sarcoma virus-transformed rat cells [XC and r(B77) cell lines]. Intervirology [Internet]. 1974;4(6):325–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016344276&doi=10.1159%252f000149867&partnerID=40&md5=ff410a36ebdb585f4045a940f151b7f8