Skip to Main Content

The Faculty of Medicine - Biochemistry and Molecular Biology: Kaempfer Raymond

Researchers

 Last updated September 2023 - Biochemistry and Molecular Biology 

List of Publications

1.

Popugailo A, Rotfogel Z, Levy M, Turgeman O, Hillman D, Levy R, et al. The homodimer interfaces of costimulatory receptors B7 and CD28 control their engagement and pro-inflammatory signaling. Journal of Biomedical Science [Internet]. 2023;30(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163653152&doi=10.1186%252fs12929-023-00941-3&partnerID=40&md5=1bbb5c803045bf4c44cf4ca6490b0cba

2.

Namer LS, Harwig A, Heynen SP, Das AT, Berkhout B, Kaempfer R. HIV co-opts a cellular antiviral mechanism, activation of stress kinase PKR by its RNA, to enable splicing of rev/tat mRNA. Cell and Bioscience [Internet]. 2023;13(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148248651&doi=10.1186%252fs13578-023-00972-1&partnerID=40&md5=4635af31dd6d728f1f39199aa0a48679

3.

Kaempfer R. Positive Regulation of Splicing of Cellular and Viral mRNA by Intragenic RNA Elements That Activate the Stress Kinase PKR, an Antiviral Mechanism. Genes [Internet]. 2023;14(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160374634&doi=10.3390%252fgenes14050974&partnerID=40&md5=b12a52d39efd30b082eba97f7a478b44

4.

Kunkl M, Amormino C, Spallotta F, Caristi S, Fiorillo MT, Paiardini A, et al. Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells. Frontiers in Immunology [Internet]. 2023;14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159695596&doi=10.3389%252ffimmu.2023.1170821&partnerID=40&md5=25cc6f41b5979c14056f25e7177f1400

5.

Gopalan V, Nilsen T, Altman AM, Stark BC, Feinstein SI, Koski R, et al. Tribute to Sidney Altman. RNA (New York, NY) [Internet]. 2022;28(11):1393–429. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140933658&doi=10.1261%252frna.079397.122&partnerID=40&md5=e2c7847d5f1a76d30c601ded203e4fd5

6.

Kunkl M, Amormino C, Caristi S, Tedeschi V, Fiorillo MT, Levy R, et al. Binding of Staphylococcal Enterotoxin B (SEB) to B7 Receptors Triggers TCR- and CD28-Mediated Inflammatory Signals in the Absence of MHC Class II Molecules. Frontiers in Immunology [Internet]. 2021;12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114257046&doi=10.3389%252ffimmu.2021.723689&partnerID=40&md5=6df10dd80655023adf501290f56f8b0e

7.

Edgar R, Cohen A, Hillman D, Kaempfer R, Shirvan A. Prolonged Benefit of Reltecimod Despite Short Plasma Half-Life. International Journal of Peptide Research and Therapeutics [Internet]. 2020;26(4):2399–410. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078781422&doi=10.1007%252fs10989-020-10033-7&partnerID=40&md5=c71ebb534317f49dc9aa088151c754d5

8.

Edgar R, Tarrio ML, Maislin G, Chiguang F, Kaempfer R, Cross A, et al. Treatment with One Dose of Reltecimod is Superior to Two Doses in Mouse Models of Lethal Infection. International Journal of Peptide Research and Therapeutics [Internet]. 2020;26(3):1669–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075209779&doi=10.1007%252fs10989-019-09974-5&partnerID=40&md5=269d18fe812cdef279eb295230fc6276

9.

Klepsch O, Namer LS, Köhler N, Kaempfer R, Dittrich A, Schaper F. Intragenic regulation of SOCS3 isoforms. Cell Communication and Signaling [Internet]. 2019;17(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068150849&doi=10.1186%252fs12964-019-0379-6&partnerID=40&md5=e7865c9fab53707196468a7052b3f37d

10.

Kaempfer R, Ilan L, Cohen-Chalamish S, Turgeman O, Sarah Namer L, Osman F. Control of mRNA splicing by intragenic RNA activators of stress signaling: Potential implications for human disease. Frontiers in Genetics [Internet]. 2019;10(MAY). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067885268&doi=10.3389%252ffgene.2019.00464&partnerID=40&md5=7c398593cde8f20b9159674ade6204a1

11.

Popugailo A, Rotfogel Z, Supper E, Hillman D, Kaempfer R. Staphylococcal and streptococcal superantigens trigger B7/CD28 costimulatory receptor engagement to hyperinduce inflammatory cytokines. Frontiers in Immunology [Internet]. 2019;10(APR). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066480853&doi=10.3389%252ffimmu.2019.00942&partnerID=40&md5=f454d77d6277ea5832418a94d3556e0a

12.

Kaempfer R, Namer LS, Osman F, Ilan L. Control of mRNA splicing by noncoding intragenic RNA elements that evoke a cellular stress response. International Journal of Biochemistry and Cell Biology [Internet]. 2018;105:20–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054341145&doi=10.1016%252fj.biocel.2018.09.021&partnerID=40&md5=085fb3612ad7fe8ed37b1b3c511c0bb4

13.

Kaempfer R. Bacterial superantigen toxins, CD28, and drug development. Toxins [Internet]. 2018;10(11). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056421298&doi=10.3390%252ftoxins10110459&partnerID=40&md5=56cc4c7df24667246838f9d053c8c38a

14.

Kaempfer R. Ribosome cycle emerges from DNA replication. Nature Reviews Molecular Cell Biology [Internet]. 2017;18(8):470. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026907665&doi=10.1038%252fnrm.2017.59&partnerID=40&md5=ac04d881140e2301e626880f5be355c5

15.

Namer LS, Osman F, Banai Y, Masquida B, Jung R, Kaempfer R. An Ancient Pseudoknot in TNF-α Pre-mRNA Activates PKR, Inducing eIF2α Phosphorylation that Potently Enhances Splicing. Cell Reports [Internet]. 2017;20(1):188–200. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021800815&doi=10.1016%252fj.celrep.2017.06.035&partnerID=40&md5=d68b42cd88b9570ce7866fd68b05e212

16.

Ilan L, Osman F, Namer LS, Eliahu E, Cohen-Chalamish S, Ben-Asouli Y, et al. PKR activation and eIF2α phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Research [Internet]. 2017;27(5):688–704. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017133238&doi=10.1038%252fcr.2017.39&partnerID=40&md5=76e22dee07af71d83f601e4cb75cecf4

17.

Levy R, Rotfogel Z, Hillman D, Popugailo A, Arad G, Supper E, et al. Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2016;113(42):E6437–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991593759&doi=10.1073%252fpnas.1603321113&partnerID=40&md5=0ce81387c6b49f81e5d7dd3ff4bb4e84

18.

Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, et al. Correction to Binding of Superantigen Toxins into the CD28 Homodimer Interface Is Essential for Induction of Cytokine Genes That Mediate Lethal Shock [PLoS Biol, (2015), 13, 8]. PLoS Biology [Internet]. 2015;13(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955560812&doi=10.1371%252fjournal.pbio.1002237&partnerID=40&md5=ee10f205aad0e6fec26a7e368b81fee9

19.

Ramachandran G, Kaempfer R, Chung CS, Shirvan A, Chahin AB, Palardy JE, et al. CD28 homodimer interface mimetic peptide acts as a preventive and therapeutic agent in models of severe bacterial sepsis and gram-negative bacterial peritonitis. Journal of Infectious Diseases [Internet]. 2015;211(6):995–1003. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924371210&doi=10.1093%252finfdis%252fjiu556&partnerID=40&md5=37c6f603037163330bb62a67ba8d63f7

20.

Mirzoeva S, Paunesku T, Wanzer MB, Shirvan A, Kaempfer R, Woloschak GE, et al. Single administration of p2TA (AB103), a CD28 antagonist peptide, prevents inflammatory and thrombotic reactions and protects against gastrointestinal injury in total-body irradiated mice. PLoS ONE [Internet]. 2014;9(7). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904632453&doi=10.1371%252fjournal.pone.0101161&partnerID=40&md5=8c8471eecd690f6bf90549aa28409dff

21.

Bulger EM, Maier RV, Sperry J, Joshi M, Henry S, Moore FA, et al. A novel drug for treatment of necrotizing soft-tissue infections: A randomized clinical trial. JAMA Surgery [Internet]. 2014;149(6):528–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903310649&doi=10.1001%252fjamasurg.2013.4841&partnerID=40&md5=b9e71be22cde5a72e9927cadbb2afc95

22.

Kaempfer R, Arad G, Levy R, Hillman D, Nasie I, Rotfogel Z. CD28: Direct and critical receptor for superantigen toxins. Toxins [Internet]. 2013;5(9):1531–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884142988&doi=10.3390%252ftoxins5091531&partnerID=40&md5=f1342a06f9bfe0372d8f453cefecd000

23.

Ramachandran G, Tulapurkar ME, Harris KM, Arad G, Shirvan A, Shemesh R, et al. A peptide antagonist of CD28 signaling attenuates toxic shock and necrotizing soft-tissue infection induced by streptococcus pyogenes. Journal of Infectious Diseases [Internet]. 2013;207(12):1869–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84877970216&doi=10.1093%252finfdis%252fjit104&partnerID=40&md5=5bccc71d7eee170ed61317234945ebeb

24.

Kaempfer R. Kick-starting the origin of life. Comment on “Formamide and the origin of life” by R. Saladino, C. Crestini, S. Pino, G. Costanzo and E. Di Mauro. Physics of Life Reviews [Internet]. 2012;9(1):111–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857140975&doi=10.1016%252fj.plrev.2011.12.014&partnerID=40&md5=c996c08c11fb1020fa0d59a9fc096295

25.

Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biology [Internet]. 2011;9(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053319600&doi=10.1371%252fjournal.pbio.1001149&partnerID=40&md5=8af1b8badd473e5c1a53f3fdf40cbe62

26.

Cohen-Chalamish S, Hasson A, Weinberg D, Namer LS, Banai Y, Osman F, et al. Dynamic refolding of IFN-γ mRNA enables it to function as PKR activator and translation template. Nature Chemical Biology [Internet]. 2009;5(12):896–903. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-73349088152&doi=10.1038%252fnchembio.234&partnerID=40&md5=9c99b83918e63a7d41e34e41471b5ffb

27.

Kaempfer R. Interferon-γ mRNA attenuates its own translation by activating PKR: A molecular basis for the therapeutic effect of interferon-β in multiple sclerosis. Cell Research [Internet]. 2006;16(2):148–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-32644455683&doi=10.1038%252fsj.cr.7310020&partnerID=40&md5=8a07fefbcaf420d6bf8b784894003e3e

28.

Kaempfer R. Peptide antagonists of superantigen toxins. Molecular Diversity [Internet]. 2004;8(2):113–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-3543010767&doi=10.1023%252fB%253aMODI.0000025654.04427.44&partnerID=40&md5=559ebe9023ae1ce0dcd9e204ce88de3d

29.

Arad G, Hillman D, Levy R, Kaempfer R. Broad-spectrum immunity against superantigens is elicited in mice protected from lethal shock by a superantigen antagonist peptide. Immunology Letters [Internet]. 2004;91(2–3):141–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542362406&doi=10.1016%252fj.imlet.2003.11.003&partnerID=40&md5=6e8db422b470f7563c3d37e1e3bd0a64

30.

Kaempfer R. RNA sensors: Novel regulators of gene expression. EMBO Reports [Internet]. 2003;4(11):1043–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0348133608&doi=10.1038%252fsj.embor.7400005&partnerID=40&md5=4d9923331d5595e03a01c842dfa13c0a

31.

Kaempfer R, Arad G, Levy R, Hillman D. Defense against biologic warfare with superantigen toxins. Israel Medical Association Journal [Internet]. 2002;4(7):520–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036301812&partnerID=40&md5=7c130d395c198339cdd91a0053408eb6

32.

Arad G, Levy R, Kaempfer R. Superantigen concomitantly induces Th1 cytokine genes and the ability to shut off their expression on re-exposure to superantigen. Immunology Letters [Internet]. 2002;82(1–2):75–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037013721&doi=10.1016%2fS0165-2478%2802%2900021-4&partnerID=40&md5=795481918d361f42af26a8f5fbf56c1b

33.

Ben-Asouli Y, Banai Y, Pel-Or Y, Shir A, Kaempfer R. Human interferon-γ mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell [Internet]. 2002;108(2):221–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037169360&doi=10.1016%2fS0092-8674%2802%2900616-5&partnerID=40&md5=ac56bb87cf3f91f8df299f64bde5146d

34.

Arad G, Hillman D, Levy R, Kaempfer R. Superantigen antagonist blocks Th1 cytokine gene induction and lethal shock. Journal of Leukocyte Biology [Internet]. 2001;69(6):921–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034978628&partnerID=40&md5=2fbf4b56cfb788ff9b16322905de61af

35.

Schneider R, Agol VI, Andino R, Bayard F, Cavener DR, Chappell SA, et al. New ways of initiating translation in eukaryotes? [2](multiple letters). Molecular and Cellular Biology [Internet]. 2001;21(23):8238–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035167814&doi=10.1128%252fMCB.21.23.8238-8246.2001&partnerID=40&md5=b37ed46dbcf2432352d7aafdfe519325

36.

Arad G, Levy R, Hillman D, Kaempfer R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nature Medicine [Internet]. 2000;6(4):414–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034030865&doi=10.1038%252f74672&partnerID=40&md5=b05529f22ba84004d4661c2fa76faec5

37.

Ben-Asouli Y, Banai Y, Hauser H, Kaempfer R. Recognition of 5’-terminal TAR structure in human immunodeficiency virus-1 mRNA by eukaryotic translation initiation factor 2. Nucleic Acids Research [Internet]. 2000;28(4):1011–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034651819&doi=10.1093%252fnar%252f28.4.1011&partnerID=40&md5=4ceada62035513ba266c0ab47deac54a

38.

Richmond A, Kaempfer R. Cytokines revisited at Hilton Head. Cytokine and Growth Factor Reviews [Internet]. 2000;11(3):255–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034090013&doi=10.1016%2fS1359-6101%2800%2900008-3&partnerID=40&md5=8585299a8ac0ef98967b6037cad394de

39.

Osman F, Jarrous N, Ben-Asouli Y, Kaempfer R. A cis-acting element in the 3’-untranslated region of human TNF-α mRNA renders splicing dependent on the activation of protein kinase PKR. Genes and Development [Internet]. 1999;13(24):3280–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033572827&doi=10.1101%252fgad.13.24.3280&partnerID=40&md5=65423b5d6541e6573bcbb215b0d08fcd

40.

Ketzinel M, Kaempfer R. Cell-mediated suppression of human interleukin-2 gene expression at splicing of mRNA. Immunology Letters [Internet]. 1999;68(1):161–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033519419&doi=10.1016%2fS0165-2478%2899%2900046-2&partnerID=40&md5=30b3b24343f5838aaede98ae92c170a2

41.

Kaempfer R. Cytokine and interferon research in Israel. Cytokine and Growth Factor Reviews [Internet]. 1998;9(2):99–108. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344783759&doi=10.1016%2fS1359-6101%2898%2900008-2&partnerID=40&md5=653a5420b541ecf7dcedd15752020eb6

42.

Gerez L, Shkolnik T, Hirschmann O, Lorber M, Arad G, Kaempfer R. Hyperinducible expression of the interferon-gamma (IFN-γ) gene and its suppression in systemic lupus erythematosus (SLE). Clinical and Experimental Immunology [Internet]. 1997;109(2):296–303. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030742301&doi=10.1046%252fj.1365-2249.1997.4471345.x&partnerID=40&md5=608d0e865c1cca4016948d0bb57ce11d

43.

Aframian D, Katzenellenbogen M, Arad G, Osman F, Sayar D, Ketzinel M, et al. Down-regulation of human tumor necrosis factor-β gene expression by cells with suppressive activity. Immunology Letters [Internet]. 1996;54(2–3):171–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030566723&doi=10.1016%2fS0165-2478%2896%2902668-5&partnerID=40&md5=be9b33ef01ef192885ef28a25b438625

44.

Arad G, Katzenellenbogen M, Levy R, Slavin S, Kaempfer R. Linomide, an immunomodulator that inhibits T(h)1 cytokine gene expression. International Immunology [Internet]. 1996;8(10):1603–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029823877&doi=10.1093%252fintimm%252f8.10.1603&partnerID=40&md5=f8c989951e1cffab2df85b484247417c

45.

Arad G, Nussinovich R, Na’Amad M, Kaempfer R. Dual control of human interleukin-2 and interferon-γ gene expression by histamine: Activation and suppression. Cellular Immunology [Internet]. 1996;170(1):149–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029893674&doi=10.1006%252fcimm.1996.0145&partnerID=40&md5=40589b5c2f83ba46be15b6b362c01ee8

46.

Jarrous N, Osman F, Kaempfer R. 2-Aminopurine selectively inhibits splicing of tumor necrosis factor alpha mRNA. Molecular and Cellular Biology [Internet]. 1996;16(6):2814–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030013325&doi=10.1128%252fMCB.16.6.2814&partnerID=40&md5=9440634e5b4f4aab4b2232888dab4cfe

47.

Kaempfer R, Gerez L, Farbstein H, Madar L, Hirschman O, Nussinovich R, et al. Prediction of response to treatment in superficial bladder carcinoma through pattern of interleukin-2 gene expression. Journal of Clinical Oncology [Internet]. 1996;14(6):1778–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029885357&doi=10.1200%252fJCO.1996.14.6.1778&partnerID=40&md5=e33c5f6fa55dc47cc5960f50bbde96b0

48.

Arad G, Nussinovich R, Kaempfer R. Interleukin-2 induces an early step in the activation of interferon-γ gene expression. Immunology Letters [Internet]. 1995;44(2–3):213–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028902160&doi=10.1016%2f0165-2478%2894%2900217-F&partnerID=40&md5=6643519303dc0896617debaad3a56a14

49.

Gerez L, Arad G, Efrat S, Ketzinel M, Kaempfer R. Post-transcriptional regulation of human interleukin-2 gene expression at processing of precursor transcripts. Journal of Biological Chemistry [Internet]. 1995;270(33):19569–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029117499&doi=10.1074%252fjbc.270.33.19569&partnerID=40&md5=2bc46b148290ab2a573d4fb7670b3a15

50.

Arad G, Ketzinel M, Tal C, Nussinovich R, Deutsch E, Schlesinger M, et al. Transient expression of human interleukin-2 and interferon-γ genes is regulated by interaction between distinct cell subsets. Cellular Immunology [Internet]. 1995;160(2):240–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028878097&doi=10.1016%2f0008-8749%2895%2980034-G&partnerID=40&md5=22d29b4038279133b825021608d7ee70

51.

Jarrous N, Kaempfer R. Induction of human interleukin-1 gene expression by retinoic acid and its regulation at processing of precursor transcripts. Journal of Biological Chemistry [Internet]. 1994;269(37):23141–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027934744&partnerID=40&md5=5df00417d957470b537d7b0aafcf2e16

52.

Kaempfer R. Regulation of the Human Interleukin-2/Interleukin-2 Receptor System: A Role for Immunosuppression. Proceedings of the Society for Experimental Biology and Medicine [Internet]. 1994;206(3):176–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028473075&doi=10.3181%252f00379727-206-43737&partnerID=40&md5=48f4f2d5e771c478b70983793847b67a

53.

Halevi A, Dollberg S, Manor D, Nussinovich R, Kaempfer R, Gale R. Is cord blood erythropoietin a marker of intrapartum hypoxia? Journal of perinatology : official journal of the California Perinatal Association [Internet]. 1992;12(3):215–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026926179&partnerID=40&md5=98e8ac452d9bf18e4719856006fc469d

54.

Gonsky R, Itamar D, Harary R, Kaempfer R. Binding of ATP and messenger RNA by the β-subunit of eukaryotic initiation factor 2. Biochimie [Internet]. 1992;74(5):427–34. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026693555&doi=10.1016%2f0300-9084%2892%2990082-P&partnerID=40&md5=b1b5920cd99ada2016e515ed067acc94

55.

Gerez L, Madar L, Arad G, Sharav T, Reshef A, Ketzinel M, et al. Aberrant regulation of interleukin-2 but not of interferon-γ gene expression in Down syndrome (trisomy 21). Clinical Immunology and Immunopathology [Internet]. 1991;58(2):251–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026069008&doi=10.1016%2f0090-1229%2891%2990140-6&partnerID=40&md5=9603489defb6d769ab0791feb4b5ec7c

56.

Gerez L, Madar L, Shkolnik T, Kristal B, Arad G, Reshef A, et al. Regulation of interleukin-2 and interferon-γ gene expression in renal failure. Kidney International [Internet]. 1991;40(2):266–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025902321&doi=10.1038%252fki.1991.209&partnerID=40&md5=274a2ea21d344fb3429a36c6b5fed8a2

57.

KETZINEL M, EFRAT S, SAYAR D, GEREZ L, TAL C, DEUTSCH E, et al. Regulation of Human Interleukin‐2 and Interferon‐Gamma Gene Expression by Suppressor T Lymphocytes. Scandinavian Journal of Immunology [Internet]. 1991;33(5):593–605. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025762979&doi=10.1111%252fj.1365-3083.1991.tb02531.x&partnerID=40&md5=e52a09ba409b547e252f4222073c6ae0

58.

Harary R, Kaempfer R. Distinct epitopes in eukaryotic initiation factor 2 for binding of mRNA and for ternary complex formation with methionyl-tRNAf and GTP. BBA - Gene Structure and Expression [Internet]. 1990;1050(1–3):129–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025041056&doi=10.1016%2f0167-4781%2890%2990153-S&partnerID=40&md5=54d080feb9d83a10ad20860332d4539f

59.

Gonsky R, Lebendiker MA, Harary R, Banai Y, Kaempfer R. Binding of ATP to eukaryotic initiation factor 2. Differential modulation of mRNA-binding activity and GTP-dependent binding of methionyl-tRNA(f/Met). Journal of Biological Chemistry [Internet]. 1990;265(16):9083–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025302825&partnerID=40&md5=efab63e9d88fc08c5d5391ec99bf3f38

60.

Manor D, Nussinovich R, Yeheskel A, Kaempfer R. A constitutive antibody in normal human serum directed against rabbit bone marrow cells: Lack in parturients, neonates, and hematologic disorders. The Journal of Laboratory and Clinical Medicine [Internet]. 1990;116(6):771–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025678984&partnerID=40&md5=7c43cacec35e99827b5f1b7fbc9354c7

61.

Ketzinel M, Gila A, Tal C, Schlesinger M, Nussinovich R, Reshef A, et al. The potential to express or suppress human interleukin-2 and interferon-γ genes is not restricted to distinct cell subsets. Molecular Immunology [Internet]. 1990;27(12):1325–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025597983&doi=10.1016%2f0161-5890%2890%2990038-2&partnerID=40&md5=d43116f7ca0fca5af25c2fc1fa0ccb85

62.

Sayar D, Ketzinel M, Gerez L, Silberberg C, Reshef A, Kaempfer R. Expression of the human IL-2 receptor on lymphocytes involves rapid turnover of its p55 α-subunit (Tac). Journal of Immunology [Internet]. 1990;145(9):2946–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025044028&partnerID=40&md5=fe9898d924af9c190be0fd0eec1d35fe

63.

Harary R, Gonsky R, Itamar D, Kaempfer R. Relief of cytotoxicity and enhancement of interferon inducer activity of double-stranded RNA by eukaryotic initiation factor 2. Virology [Internet]. 1990;174(2):494–503. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025012807&doi=10.1016%2f0042-6822%2890%2990103-X&partnerID=40&md5=e4bfbc4f05d49412284909bc8e3b36ec

64.

Leitersdorf E, Banai Y, Friedman G, Kaempfer R. Superinduction of the human gene encoding low density lipoprotein receptor. Biochemical and Biophysical Research Communications [Internet]. 1989;165(2):574–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024786444&doi=10.1016%2fS0006-291X%2889%2980005-1&partnerID=40&md5=3dca6b31febaa81fc785a587a7679480

65.

Lebendiker MA, Tal C, Sayar D, Pilo S, Eilon A, Banai Y, et al. Superinduction of the human gene encoding immune interferon. The EMBO journal [Internet]. 1987;6(3):585–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023304371&doi=10.1002%252fj.1460-2075.1987.tb04794.x&partnerID=40&md5=7d4835f14aa0f190b2fbcc8bb137e1b1

66.

Rosenthal A, Marsh S, Manor D, Kaempfer R. DNA synthesis by erythroid precursors in a completely defined medium: A rapid, sensitive, and convenient bioassay for erythropoietin. Experimental Hematology [Internet]. 1985;13(3):174–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021804275&partnerID=40&md5=149c404e7b9b76abec9aec5801a26544

67.

Efrat S, Kaempfer R. A qualitative difference in the interleukin 2 (IL-2) requirement of helper and cytotoxic T lymphocytes. Cellular Immunology [Internet]. 1984;88(1):207–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021147386&doi=10.1016%2f0008-8749%2884%2990065-0&partnerID=40&md5=f4060fc5eeb30e7478bb4fb56af0860c

68.

Efrat S, Zelig S, Yagen B, Kaempfer R. Superinduction of human interleukin-2 messenger RNA by inhibitors of translation. Biochemical and Biophysical Research Communications [Internet]. 1984;123(2):842–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021145910&doi=10.1016%2f0006-291X%2884%2990307-3&partnerID=40&md5=f0904bf87d2e703e84e02a85449dd413

69.

Efrat S, Kaempfer R. Control of biologically active interleukin 2 messenger RNA formation in induced human lymphocytes. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1984;81(9 I):2601–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0343333882&doi=10.1073%252fpnas.81.9.2601&partnerID=40&md5=d25fdb7f1ba19166ea5909cc8bd3902c

70.

Knoller S, Kaempfer R. Isolation of a Heme-Controlled Inhibitor of Translation That Blocks the Interaction between Messenger RNA and Eukaryotic Initiation Factor 2. Biochemistry [Internet]. 1984;23(11):2462–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021768744&doi=10.1021%252fbi00306a022&partnerID=40&md5=59e5f841b4db355f6b970d5b9939c462

71.

ITAMAR D, GONSKY R, LEBENDIKER M, KAEMPFER R. The nature of the interaction of eukaryotic initiation factor 2 with double‐stranded RNA. European Journal of Biochemistry [Internet]. 1984;145(2):373–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021754648&doi=10.1111%252fj.1432-1033.1984.tb08564.x&partnerID=40&md5=fb5edd08b278312be0f444cd96af007b

72.

KAEMPFER R, KONIJN AM. Translational Competition by mRNA Species Encoding Albumin, Ferritin, Haemopexin and Globin. European Journal of Biochemistry [Internet]. 1983;131(3):545–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021095323&doi=10.1111%252fj.1432-1033.1983.tb07296.x&partnerID=40&md5=94882dee3423854e42ad90f337e12c92

73.

Efrat S, Pilo S, Kaempfer R. Kinetics of induction and molecular size of mRNAs encoding human interleukin-2 and γ-interferon. Nature [Internet]. 1982;297(5863):236–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020327077&doi=10.1038%252f297236a0&partnerID=40&md5=5092625db4a948fec5825d8d216fd3c0

74.

Rosen H, Di Segni G, Kaempfer R. Translational control by messenger RNA competition for eukaryotic initiation factor 2. Journal of Biological Chemistry [Internet]. 1982;257(2):946–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020490176&partnerID=40&md5=59a6a3c0cbe0a4d13b46c77f716e9afa

75.

Perez-Bercoff R, Kaempfer R. Genomic RNA of mengovirus. V. Recognition of common features by ribosomes and eucaryotic initiation factor 2. Journal of Virology [Internet]. 1982;41(1):30–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020061279&doi=10.1128%252fjvi.41.1.30-41.1982&partnerID=40&md5=72fa824e3be4dd08c48c6b28d6941a21

76.

Kaempfer R, Efrat S, Pilo S. Expression and molecular size of messenger RNA species encoding interleukin-2 and gamma interferon from normal human lymphocytes. Federation Proceedings [Internet]. 1982;41(4):4018. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019954765&partnerID=40&md5=51788d9bce4fe4a48db539f7e208a9c1

77.

Kaempfer R, Van Emmelo J, Fiers W. Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5’-terminal sequence comprising the ribosome binding site. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1981;78(3 I):1542–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0343290977&doi=10.1073%252fpnas.78.3.1542&partnerID=40&md5=9ee05007cf5ad355cb972bcc9afa3fd4

78.

Rosen H, Knoller S, Kaempfer R. Messenger Ribonucleic Acid Specificity in the Inhibition of Eukaryotic Translation by Double-Stranded Ribonucleic Acid. Biochemistry [Internet]. 1981;20(11):3011–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019889038&doi=10.1021%252fbi00514a004&partnerID=40&md5=3af520d304237d4e7e60037e42ca865d

79.

Rosen H, Kaempfer R. Mutually exclusive binding of messenger RNA and initiator methionyl transfer RNA to eukaryotic initiation factor 2. Biochemical and Biophysical Research Communications [Internet]. 1979;91(2):449–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018803620&doi=10.1016%2f0006-291X%2879%2991542-0&partnerID=40&md5=fe94f77a7be54ee9e24aa79fee012561

80.

Segni GD, Rosen H, Kaempfer R. Competition between α- and β-Globin Messenger Ribonucleic Acids for Eucaryotic Initiation Factor 2. Biochemistry [Internet]. 1979;18(13):2847–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018802019&doi=10.1021%252fbi00580a027&partnerID=40&md5=0afcf6e244b4d19b9638ceff8083bc43

81.

Kaempfer R, Israeli R, Rosaeli H, Knoller S, Zilberstein A, Schmidt A, et al. Reversal of the interferon-induced block of protein synthesis by purified preparations of eucaryotic initiation factor 2. Virology [Internet]. 1979;99(1):170–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018611560&doi=10.1016%2f0042-6822%2879%2990049-7&partnerID=40&md5=0738fc0c33df6c42dae9bb2220310e26

82.

KAEMPFER R, HOLLENDER R, SOREQ H, NUDEL U. Recognition of Messenger RNA in Eukaryotic Protein Synthesis: Equilibrium Studies of the Interaction between Messenger RNA and the Initiation Factor that Binds Methionyl‐tRNAf. European Journal of Biochemistry [Internet]. 1979;94(2):591–600. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018449902&doi=10.1111%252fj.1432-1033.1979.tb12929.x&partnerID=40&md5=c2472af443c0d257d4b4a8fc72ed042a

83.

Kaempfer R, Jay G. Binding of Messenger RNA in Initiation of Prokaryotic Translation. Methods in Enzymology [Internet]. 1979;60(C):332–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018373260&doi=10.1016%2fS0076-6879%2879%2960031-9&partnerID=40&md5=862c7821a30fba12073d0733430f7439

84.

Kaempfer R. RNA-Affinity Chromatography: Its Use in Purification of Eukaryotic Initiation Factor 2. Methods in Enzymology [Internet]. 1979;60(C):247–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018373259&doi=10.1016%2fS0076-6879%2879%2960022-8&partnerID=40&md5=3be6558cb558e6acffce32eb1b5eed34

85.

Kaempfer R. Binding of Messenger RNA in Initiation of Eukaryotic Translation. Methods in Enzymology [Internet]. 1979;60(C):380–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018337176&doi=10.1016%2fS0076-6879%2879%2960036-8&partnerID=40&md5=5aa0d81429e327f590987397fbbd8227

86.

Di Segni G, Kerem H, Cividalli G, Rachmilewitz EA, Kaempfer R. Absence of functional β-globin messenger RNA in Kurdish Jews with β 0-thalassemia. Israel Journal of Medical Sciences [Internet]. 1978;14(11):1116–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018238225&partnerID=40&md5=b4ef4037cbcc417a39b852a3a9465154

87.

Kaempfer R, Rosen H, Israeli R. Translational control: Recognition of the methylated 5’ end and an internal sequence in eukaryotic mRNA by the initiation factor that binds methionyl-tRNA(f)(met). Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1978;75(2):650–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017891677&doi=10.1073%252fpnas.75.2.650&partnerID=40&md5=774ec0fefa2b52c6c4b6b8f28b43206c

88.

Kaempfer R, Hollender R, Abrams WR, Israeli R. Specific binding of messenger RNA and methionyl-tRNA(f)(Met) by the same initiation factor for eukaryotic protein synthesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1978;75(1):209–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017871023&doi=10.1073%252fpnas.75.1.209&partnerID=40&md5=3815cab77721156a13fcd22daa6cc38d

89.

Izak G, Karsai A, Cohen S, Kaempfer R. Observations on erythroid cell differentiation and maturation in synchronized rabbit erythropoetic tissue. New Istanbul Contribution to Clinical Science [Internet]. 1977;12(1):34–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017587755&partnerID=40&md5=814de8b51de4e398c2a3a35ebe4bbbdc

90.

Jay G, Kaempfer R. Translational repression of a viral messenger RNA by a host protein. Journal of Biological Chemistry [Internet]. 1975;250(15):5749–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016759993&partnerID=40&md5=5bffdb2c31a6ccaa72ef3b79e19bba42

91.

Jay G, Kaempfer R. Initiation of protein synthesis. Binding of messenger RNA. Journal of Biological Chemistry [Internet]. 1975;250(15):5742–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016697226&partnerID=40&md5=51dbad0e53735bc4aa39a2f9114ea77f

92.

Leick VR, Santerre RF, Kaempfer R. Masking of peptidyl transferase activity in polyribosomes. Archives of Biochemistry and Biophysics [Internet]. 1975;169(2):622–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016839348&doi=10.1016%2f0003-9861%2875%2990206-4&partnerID=40&md5=eaee60848455f0e81c92b528546ad637

93.

Kaempfer R. Identification and RNA-binding properties of an initiation factor capable of relieving translational inhibition induced by heme deprivation or double-stranded RNA. Biochemical and Biophysical Research Communications [Internet]. 1974;61(2):591–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016317903&doi=10.1016%2f0006-291X%2874%2990998-X&partnerID=40&md5=532b2cace9ed6fd006786d607722be25

94.

Jay G, Abrams WR, Kaempfer R. Resistance of bacterial protein synthesis to double-stranded RNA. Biochemical and Biophysical Research Communications [Internet]. 1974;60(4):1357–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016300153&doi=10.1016%2f0006-291X%2874%2990347-7&partnerID=40&md5=0d8b764d38b18720446051c0b4974fe8

95.

Jay G, Kaempfer R. Host interference with viral gene expression: Mode of action of bacterial factor i. Journal of Molecular Biology [Internet]. 1974;82(2):193–212. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015979225&doi=10.1016%2f0022-2836%2874%2990341-6&partnerID=40&md5=daecb959d63cd5aeed13d8f269125dbb

96.

Raffel C, Stein S, Kaempfer R. Role for heme in mammalian protein synthesis: activation of an initiation factor. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1974;71(10):4020–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016301824&doi=10.1073%252fpnas.71.10.4020&partnerID=40&md5=5cf1427488a16f0694e1c5eb3223270b

97.

Jay G, Kaempfer R. Sequence of events in initiation of translation: a role for initiator transfer RNA in the recognition of messenger RNA. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1974;71(8):3199–203. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016288204&doi=10.1073%252fpnas.71.8.3199&partnerID=40&md5=29da208f6585a6b3f08a27c6ed284771

98.

Kaempfer R, Kaufman J. Inhibition of cellular protein synthesis by double-stranded RNA: inactivation of an initiation factor. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1973;70(4):1222–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015612286&doi=10.1073%252fpnas.70.4.1222&partnerID=40&md5=ad67239e4062873b9bf8148a12226dfa

99.

Kaempfer R. Initiation factor IF-3: a specific inhibitor of ribosomal subunit association. Journal of Molecular Biology [Internet]. 1972;71(3):583–98. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015527764&doi=10.1016%2fS0022-2836%2872%2980025-1&partnerID=40&md5=1ed539f6598cb2d9c96fdcee37fafdb1

100.

Kaempfer R, Kaufman J. Translational control of hemoglobin synthesis by an initiation factor required for recycling of ribosomes and for their binding to messenger RNA. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1972;69(11):3317–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015425119&doi=10.1073%252fpnas.69.11.3317&partnerID=40&md5=ef7e120d192a6d3647688ff55e60ef00

101.

Kaempfer R. Ribosomal Subunit Exchange: Analysis in Vivo. Methods in Enzymology [Internet]. 1971;20(C):456–67. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957011555&doi=10.1016%2fS0076-6879%2871%2920050-1&partnerID=40&md5=5f7085b49d6186fa1ed0ac6cbfccee70

102.

Kaempfer R. Ribosomal Subunit Exchange: Analysis in Vitro. Methods in Enzymology [Internet]. 1971;20(C):467–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957008273&doi=10.1016%2fS0076-6879%2871%2920051-3&partnerID=40&md5=4c241e8093f0f5f910c46970549e53a6

103.

Kaempfer R, Meselson M. Sedimentation Velocity Analysis in Accelerating Gradients. Methods in Enzymology [Internet]. 1971;20(C):521–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956995150&doi=10.1016%2fS0076-6879%2871%2920059-8&partnerID=40&md5=f5390c586491d6212c91afc494acb7bb

104.

Kaempfer R. Control of single ribosome formation by an initiation factor for protein synthesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1971;68(10):2458–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015130143&doi=10.1073%252fpnas.68.10.2458&partnerID=40&md5=47e1cd2846ca622cd3b332c92b759fcf

105.

Kaempfer R. Dissociation of ribosomes on polypeptide chain termination and origin of single ribosomes. Nature [Internet]. 1970;228(5271):534–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014936375&doi=10.1038%252f228534a0&partnerID=40&md5=48bda5d6c74ee042d4610b1ff89a38de

106.

Kaempfer R. Ribosomal subunit exchange in the cytoplasm of a eukaryote. Nature [Internet]. 1969;222(5197):950–3. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014666811&doi=10.1038%252f222950a0&partnerID=40&md5=947ae0c9f943a080461ba8772edb20ad

107.

Kaempfer R, Meselson M. Studies of ribosomal subunit exchange. Cold Spring Harbor symposia on quantitative biology [Internet]. 1969;34:209–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014644523&doi=10.1101%252fsqb.1969.034.01.027&partnerID=40&md5=33179355a773a079a91b2b910a4c45e7

108.

Kaempfer R, Meselson M. Permanent association of 5 s RNA molecules with 50 s ribosomal subunits in growing bacteria. Journal of Molecular Biology [Internet]. 1968;34(3):703–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014432921&doi=10.1016%2f0022-2836%2868%2990191-5&partnerID=40&md5=5a5973ff25c5603cc3d0c9ba29619f22

109.

Kaempfer ROR, Meselson M, Raskas HJ. Cyclic dissociation into stable subunits and re-formation of ribosomes during bacterial growth. Journal of Molecular Biology [Internet]. 1968;31(2):277–89. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014432524&doi=10.1016%2f0022-2836%2868%2990444-0&partnerID=40&md5=c9f2e35a1c2e9f95cdcd34dbd92e1fec

110.

Kaempfer R. Ribosomal subunit exchange during protein synthesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1968;61(1):106–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014325012&doi=10.1073%252fpnas.61.1.106&partnerID=40&md5=3c88e626da69c7c7fe63a7de8be9366c

111.

Kaempfer ROR, Sarkar S. Effect of infection with T-even phage on the constitutive synthesis of β-galactosidase in Escherichia coli. Journal of Molecular Biology [Internet]. 1967;27(3):469–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-49949150580&doi=10.1016%2f0022-2836%2867%2990052-6&partnerID=40&md5=2d4a43028adca27c0fde05aa90f51ad0

112.

Kaempfer ROR, Magasanik B. Effect of infection with T-even phage on the inducible synthesis of β-galactosidase in Escherichia coli. Journal of Molecular Biology [Internet]. 1967;27(3):453–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014202656&doi=10.1016%2f0022-2836%2867%2990051-4&partnerID=40&md5=a7ef69b45a77ac5bab27b1c4aacbb778

113.

Kaempfer ROR, Magasanik B. Mechanism of β-galactosidase induction in Escherichia coli. Journal of Molecular Biology [Internet]. 1967;27(3):475–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014202650&doi=10.1016%2f0022-2836%2867%2990053-8&partnerID=40&md5=5802a626216f8996e2b04ffebe455db6

114.

Bilezikian JP, Kaempfer ROR, Magasanik B. Mechanism of tryptophanase induction in Escherichia coli. Journal of Molecular Biology [Internet]. 1967;27(3):495–506. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014202647&doi=10.1016%2f0022-2836%2867%2990054-X&partnerID=40&md5=7998b822581c20b44ce27061ee0f9b89