Last updated September 2024 - Biochemistry and Molecular Biology
1. Kaempfer, R. RNA Activators of Stress Kinase PKR within Human Genes That Control Splicing or Translation Create Novel Targets for Hereditary Diseases. Int. J. Mol. Sci. 25, (2024).
2. Popugailo, A. et al. The homodimer interfaces of costimulatory receptors B7 and CD28 control their engagement and pro-inflammatory signaling. J. Biomed. Sci. 30, (2023).
3. Namer, L. S. et al. HIV co-opts a cellular antiviral mechanism, activation of stress kinase PKR by its RNA, to enable splicing of rev/tat mRNA. Cell Biosci. 13, (2023).
4. Kaempfer, R. Positive Regulation of Splicing of Cellular and Viral mRNA by Intragenic RNA Elements That Activate the Stress Kinase PKR, an Antiviral Mechanism. Genes (Basel). 14, (2023).
5. Kunkl, M. et al. Corrigendum: Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells (Frontiers in Immunology, (2023), 14, (1170821), 10.3389/fimmu.2023.1170821). Front. Immunol. 14, (2023).
6. Kunkl, M. et al. Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells. Front. Immunol. 14, (2023).
7. Kunkl, M. et al. Binding of Staphylococcal Enterotoxin B (SEB) to B7 Receptors Triggers TCR- and CD28-Mediated Inflammatory Signals in the Absence of MHC Class II Molecules. Front. Immunol. 12, (2021).
8. Edgar, R., Cohen, A., Hillman, D., Kaempfer, R. & Shirvan, A. Prolonged Benefit of Reltecimod Despite Short Plasma Half-Life. Int. J. Pept. Res. Ther. 26, 2399–2410 (2020).
9. Edgar, R. et al. Treatment with One Dose of Reltecimod is Superior to Two Doses in Mouse Models of Lethal Infection. Int. J. Pept. Res. Ther. 26, 1669–1683 (2020).
10. Klepsch, O. et al. Intragenic regulation of SOCS3 isoforms. Cell Commun. Signal. 17, (2019).
11. Kaempfer, R. et al. Control of mRNA splicing by intragenic RNA activators of stress signaling: Potential implications for human disease. Front. Genet. 10, (2019).
12. Popugailo, A., Rotfogel, Z., Supper, E., Hillman, D. & Kaempfer, R. Staphylococcal and streptococcal superantigens trigger B7/CD28 costimulatory receptor engagement to hyperinduce inflammatory cytokines. Front. Immunol. 10, (2019).
13. Kaempfer, R., Namer, L. S., Osman, F. & Ilan, L. Control of mRNA splicing by noncoding intragenic RNA elements that evoke a cellular stress response. Int. J. Biochem. Cell Biol. 105, 20–23 (2018).
14. Kaempfer, R. Bacterial superantigen toxins, CD28, and drug development. Toxins (Basel). 10, (2018).
15. Kaempfer, R. Ribosome cycle emerges from DNA replication. Nat. Rev. Mol. Cell Biol. 18, 470 (2017).
16. Namer, L. S. et al. An Ancient Pseudoknot in TNF-α Pre-mRNA Activates PKR, Inducing eIF2α Phosphorylation that Potently Enhances Splicing. Cell Rep. 20, 188–200 (2017).
17. Ilan, L. et al. PKR activation and eIF2α phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Res. 27, 688–704 (2017).
18. Levy, R. et al. Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction. Proc. Natl. Acad. Sci. U. S. A. 113, E6437–E6446 (2016).
19. Arad, G. et al. Correction to Binding of Superantigen Toxins into the CD28 Homodimer Interface Is Essential for Induction of Cytokine Genes That Mediate Lethal Shock [PLoS Biol, (2015), 13, 8]. PLoS Biol. 13, (2015).
20. Ramachandran, G. et al. CD28 homodimer interface mimetic peptide acts as a preventive and therapeutic agent in models of severe bacterial sepsis and gram-negative bacterial peritonitis. J. Infect. Dis. 211, 995–1003 (2015).
21. Mirzoeva, S. et al. Single administration of p2TA (AB103), a CD28 antagonist peptide, prevents inflammatory and thrombotic reactions and protects against gastrointestinal injury in total-body irradiated mice. PLoS One 9, (2014).
22. Bulger, E. M. et al. A novel drug for treatment of necrotizing soft-tissue infections: A randomized clinical trial. JAMA Surg. 149, 528–536 (2014).
23. Kaempfer, R. et al. CD28: Direct and critical receptor for superantigen toxins. Toxins (Basel). 5, 1531–1542 (2013).
24. Ramachandran, G. et al. A peptide antagonist of CD28 signaling attenuates toxic shock and necrotizing soft-tissue infection induced by streptococcus pyogenes. J. Infect. Dis. 207, 1869–1877 (2013).
25. Kaempfer, R. Kick-starting the origin of life. Comment on ‘Formamide and the origin of life’ by R. Saladino, C. Crestini, S. Pino, G. Costanzo and E. Di Mauro. Phys. Life Rev. 9, 111–113 (2012).
26. Arad, G. et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol. 9, (2011).
27. Cohen-Chalamish, S. et al. Dynamic refolding of IFN-γ mRNA enables it to function as PKR activator and translation template. Nat. Chem. Biol. 5, 896–903 (2009).
28. Kaempfer, R. Interferon-γ mRNA attenuates its own translation by activating PKR: A molecular basis for the therapeutic effect of interferon-β in multiple sclerosis. Cell Res. 16, 148–153 (2006).
29. Kaempfer, R. Peptide antagonists of superantigen toxins. Mol. Divers. 8, 113–120 (2004).
30. Arad, G., Hillman, D., Levy, R. & Kaempfer, R. Broad-spectrum immunity against superantigens is elicited in mice protected from lethal shock by a superantigen antagonist peptide. Immunol. Lett. 91, 141–145 (2004).
31. Kaempfer, R. RNA sensors: Novel regulators of gene expression. EMBO Rep. 4, 1043–1047 (2003).
32. Kaempfer, R., Arad, G., Levy, R. & Hillman, D. Defense against biologic warfare with superantigen toxins. Isr. Med. Assoc. J. 4, 520–523 (2002).
33. Arad, G., Levy, R. & Kaempfer, R. Superantigen concomitantly induces Th1 cytokine genes and the ability to shut off their expression on re-exposure to superantigen. Immunol. Lett. 82, 75–78 (2002).
34. Ben-Asouli, Y., Banai, Y., Pel-Or, Y., Shir, A. & Kaempfer, R. Human interferon-γ mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108, 221–232 (2002).
35. Arad, G., Hillman, D., Levy, R. & Kaempfer, R. Superantigen antagonist blocks Th1 cytokine gene induction and lethal shock. J. Leukoc. Biol. 69, 921–927 (2001).
36. Schneider, R. et al. New ways of initiating translation in eukaryotes? [2](multiple letters). Mol. Cell. Biol. 21, 8238–8246 (2001).
37. Arad, G., Levy, R., Hillman, D. & Kaempfer, R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nat. Med. 6, 414–421 (2000).
38. Ben-Asouli, Y., Banai, Y., Hauser, H. & Kaempfer, R. Recognition of 5’-terminal TAR structure in human immunodeficiency virus-1 mRNA by eukaryotic translation initiation factor 2. Nucleic Acids Res. 28, 1011–1018 (2000).
39. Richmond, A. & Kaempfer, R. Cytokines revisited at Hilton Head. Cytokine Growth Factor Rev. 11, 255–266 (2000).
40. Osman, F., Jarrous, N., Ben-Asouli, Y. & Kaempfer, R. A cis-acting element in the 3’-untranslated region of human TNF-α mRNA renders splicing dependent on the activation of protein kinase PKR. Genes Dev. 13, 3280–3293 (1999).
41. Ketzinel, M. & Kaempfer, R. Cell-mediated suppression of human interleukin-2 gene expression at splicing of mRNA. Immunol. Lett. 68, 161–166 (1999).
42. Kaempfer, R. Cytokine and interferon research in Israel. Cytokine Growth Factor Rev. 9, 99–108 (1998).
43. Gerez, L. et al. Hyperinducible expression of the interferon-gamma (IFN-γ) gene and its suppression in systemic lupus erythematosus (SLE). Clin. Exp. Immunol. 109, 296–303 (1997).
44. Aframian, D. et al. Down-regulation of human tumor necrosis factor-β gene expression by cells with suppressive activity. Immunol. Lett. 54, 171–176 (1996).
45. Arad, G., Katzenellenbogen, M., Levy, R., Slavin, S. & Kaempfer, R. Linomide, an immunomodulator that inhibits T(h)1 cytokine gene expression. Int. Immunol. 8, 1603–1607 (1996).
46. Arad, G., Nussinovich, R., Na’Amad, M. & Kaempfer, R. Dual control of human interleukin-2 and interferon-γ gene expression by histamine: Activation and suppression. Cell. Immunol. 170, 149–155 (1996).
47. Jarrous, N., Osman, F. & Kaempfer, R. 2-Aminopurine selectively inhibits splicing of tumor necrosis factor alpha mRNA. Mol. Cell. Biol. 16, 2814–2822 (1996).
48. Kaempfer, R. et al. Prediction of response to treatment in superficial bladder carcinoma through pattern of interleukin-2 gene expression. J. Clin. Oncol. 14, 1778–1786 (1996).
49. Gerez, L., Arad, G., Efrat, S., Ketzinel, M. & Kaempfer, R. Post-transcriptional regulation of human interleukin-2 gene expression at processing of precursor transcripts. J. Biol. Chem. 270, 19569–19575 (1995).
50. Arad, G., Nussinovich, R. & Kaempfer, R. Interleukin-2 induces an early step in the activation of interferon-γ gene expression. Immunol. Lett. 44, 213–216 (1995).
51. Arad, G. et al. Transient expression of human interleukin-2 and interferon-γ genes is regulated by interaction between distinct cell subsets. Cell. Immunol. 160, 240–247 (1995).
52. Jarrous, N. & Kaempfer, R. Induction of human interleukin-1 gene expression by retinoic acid and its regulation at processing of precursor transcripts. J. Biol. Chem. 269, 23141–23149 (1994).
53. Kaempfer, R. Regulation of the Human Interleukin-2/Interleukin-2 Receptor System: A Role for Immunosuppression. Proc. Soc. Exp. Biol. Med. 206, 176–180 (1994).
54. Halevi, A. et al. Is cord blood erythropoietin a marker of intrapartum hypoxia? J. Perinatol. 12, 215–219 (1992).
55. Gonsky, R., Itamar, D., Harary, R. & Kaempfer, R. Binding of ATP and messenger RNA by the β-subunit of eukaryotic initiation factor 2. Biochimie 74, 427–434 (1992).
56. Gerez, L. et al. Aberrant regulation of interleukin-2 but not of interferon-γ gene expression in Down syndrome (trisomy 21). Clin. Immunol. Immunopathol. 58, 251–266 (1991).
57. Gerez, L. et al. Regulation of interleukin-2 and interferon-γ gene expression in renal failure. Kidney Int. 40, 266–272 (1991).
58. KETZINEL, M. et al. Regulation of Human Interleukin‐2 and Interferon‐Gamma Gene Expression by Suppressor T Lymphocytes. Scand. J. Immunol. 33, 593–605 (1991).
59. Sayar, D. et al. Expression of the human IL-2 receptor on lymphocytes involves rapid turnover of its p55 α-Subunit (Tac). J. Immunol. 145, 2946–2949 (1990).
60. Harary, R. & Kaempfer, R. Distinct epitopes in eukaryotic initiation factor 2 for binding of mRNA and for ternary complex formation with methionyl-tRNAf and GTP. BBA - Gene Struct. Expr. 1050, 129–133 (1990).
61. Gonsky, R., Lebendiker, M. A., Harary, R., Banai, Y. & Kaempfer, R. Binding of ATP to eukaryotic initiation factor 2: Differential modulation of mRNA-binding activity and GTP-dependent binding of methionyl-tRNAfMet. J. Biol. Chem. 265, 9083–9089 (1990).
62. Manor, D., Nussinovich, R., Yeheskel, A. & Kaempfer, R. A constitutive antibody in normal human serum directed against rabbit bone marrow cells: Lack in parturients, neonates, and hematologic disorders. J. Lab. Clin. Med. 116, 771–778 (1990).
63. Ketzinel, M. et al. The potential to express or suppress human interleukin-2 and interferon-γ genes is not restricted to distinct cell subsets. Mol. Immunol. 27, 1325–1330 (1990).
64. Harary, R., Gonsky, R., Itamar, D. & Kaempfer, R. Relief of cytotoxicity and enhancement of interferon inducer activity of double-stranded RNA by eukaryotic initiation factor 2. Virology 174, 494–503 (1990).
65. Leitersdorf, E., Banai, Y., Friedman, G. & Kaempfer, R. Superinduction of the human gene encoding low density lipoprotein receptor. Biochem. Biophys. Res. Commun. 165, 574–580 (1989).
66. Lebendiker, M. A. et al. Superinduction of the human gene encoding immune interferon. EMBO J. 6, 585–589 (1987).
67. Rosenthal, A., Marsh, S., Manor, D. & Kaempfer, R. DNA synthesis by erythroid precursors in a completely defined medium: A rapid, sensitive, and convenient bioassay for erythropoietin. Exp. Hematol. 13, 174–184 (1985).
68. Efrat, S. & Kaempfer, R. A qualitative difference in the interleukin 2 (IL-2) requirement of helper and cytotoxic T lymphocytes. Cell. Immunol. 88, 207–212 (1984).
69. Efrat, S., Zelig, S., Yagen, B. & Kaempfer, R. Superinduction of human interleukin-2 messenger RNA by inhibitors of translation. Biochem. Biophys. Res. Commun. 123, 842–848 (1984).
70. Efrat, S. & Kaempfer, R. Control of biologically active interleukin 2 messenger RNA formation in induced human lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 81, 2601–2605 (1984).
71. Knoller, S. & Kaempfer, R. Isolation of a Heme-Controlled Inhibitor of Translation That Blocks the Interaction between Messenger RNA and Eukaryotic Initiation Factor 2. Biochemistry 23, 2462–2469 (1984).
72. ITAMAR, D., GONSKY, R., LEBENDIKER, M. & KAEMPFER, R. The nature of the interaction of eukaryotic initiation factor 2 with double‐stranded RNA. Eur. J. Biochem. 145, 373–379 (1984).
73. KAEMPFER, R. & KONIJN, A. M. Translational Competition by mRNA Species Encoding Albumin, Ferritin, Haemopexin and Globin. Eur. J. Biochem. 131, 545–550 (1983).
74. Efrat, S., Pilo, S. & Kaempfer, R. Kinetics of induction and molecular size of mRNAs encoding human interleukin-2 and γ-interferon. Nature 297, 236–239 (1982).
75. Rosen, H., Di Segni, G. & Kaempfer, R. Translational control by messenger RNA competition for eukaryotic initiation factor 2. J. Biol. Chem. 257, 946–952 (1982).
76. Perez-Bercoff, R. & Kaempfer, R. Genomic RNA of mengovirus. V. Recognition of common features by ribosomes and eucaryotic initiation factor 2. J. Virol. 41, 30–41 (1982).
77. Kaempfer, R., Efrat, S. & Pilo, S. Expression and molecular size of messenger RNA species encoding interleukin-2 and gamma interferon from normal human lymphocytes. Fed. Proc. 41, 4018 (1982).
78. Kaempfer, R., Van Emmelo, J. & Fiers, W. Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5’-terminal sequence comprising the ribosome binding site. Proc. Natl. Acad. Sci. U. S. A. 78, 1542–1546 (1981).
79. Rosen, H., Knoller, S. & Kaempfer, R. Messenger Ribonucleic Acid Specificity in the Inhibition of Eukaryotic Translation by Double-Stranded Ribonucleic Acid. Biochemistry 20, 3011–3020 (1981).
80. Rosen, H. & Kaempfer, R. Mutually exclusive binding of messenger RNA and initiator methionyl transfer RNA to eukaryotic initiation factor 2. Biochem. Biophys. Res. Commun. 91, 449–455 (1979).
81. Segni, G. D., Rosen, H. & Kaempfer, R. Competition between α- and β-Globin Messenger Ribonucleic Acids for Eucaryotic Initiation Factor 2. Biochemistry 18, 2847–2854 (1979).
82. Kaempfer, R. et al. Reversal of the interferon-induced block of protein synthesis by purified preparations of eucaryotic initiation factor 2. Virology 99, 170–173 (1979).
83. KAEMPFER, R., HOLLENDER, R., SOREQ, H. & NUDEL, U. Recognition of Messenger RNA in Eukaryotic Protein Synthesis: Equilibrium Studies of the Interaction between Messenger RNA and the Initiation Factor that Binds Methionyl‐tRNAf. Eur. J. Biochem. 94, 591–600 (1979).
84. Kaempfer, R. & Jay, G. Binding of Messenger RNA in Initiation of Prokaryotic Translation. Methods in Enzymology vol. 60 332–343 (1979).
85. Kaempfer, R. RNA-Affinity Chromatography: Its Use in Purification of Eukaryotic Initiation Factor 2. Methods in Enzymology vol. 60 247–255 (1979).
86. Kaempfer, R. Binding of Messenger RNA in Initiation of Eukaryotic Translation. Methods in Enzymology vol. 60 380–392 (1979).
87. Di Segni, G., Kerem, H., Cividalli, G., Rachmilewitz, E. A. & Kaempfer, R. Absence of functional β-globin messenger RNA in Kurdish Jews with β 0-thalassemia. Isr. J. Med. Sci. 14, 1116–1123 (1978).
88. Kaempfer, R., Rosen, H. & Israeli, R. Translational control: Recognition of the methylated 5’ end and an internal sequence in eukaryotic mRNA by the initiation factor that binds methionyl-tRNA(f)(met). Proc. Natl. Acad. Sci. U. S. A. 75, 650–654 (1978).
89. Kaempfer, R., Hollender, R., Abrams, W. R. & Israeli, R. Specific binding of messenger RNA and methionyl-tRNA(f)(Met) by the same initiation factor for eukaryotic protein synthesis. Proc. Natl. Acad. Sci. U. S. A. 75, 209–213 (1978).
90. Izak, G., Karsai, A., Cohen, S. & Kaempfer, R. Observations on erythroid cell differentiation and maturation in synchronized rabbit erythropoetic tissue. New Istanbul Contrib. Clin. Sci. 12, 34–42 (1977).
91. Jay, G. & Kaempfer, R. Translational repression of a viral messenger RNA by a host protein. J. Biol. Chem. 250, 5749–5755 (1975).
92. Jay, G. & Kaempfer, R. Initiation of protein synthesis. Binding of messenger RNA. J. Biol. Chem. 250, 5742–5748 (1975).
93. Leick, V. R., Santerre, R. F. & Kaempfer, R. Masking of peptidyl transferase activity in polyribosomes. Arch. Biochem. Biophys. 169, 622–626 (1975).
94. Kaempfer, R. Identification and RNA-binding properties of an initiation factor capable of relieving translational inhibition induced by heme deprivation or double-stranded RNA. Biochem. Biophys. Res. Commun. 61, 591–597 (1974).
95. Jay, G., Abrams, W. R. & Kaempfer, R. Resistance of bacterial protein synthesis to double-stranded RNA. Biochem. Biophys. Res. Commun. 60, 1357–1364 (1974).
96. Jay, G. & Kaempfer, R. Host interference with viral gene expression: Mode of action of bacterial factor i. J. Mol. Biol. 82, 193–212 (1974).
97. Raffel, C., Stein, S. & Kaempfer, R. Role for heme in mammalian protein synthesis: activation of an initiation factor. Proc. Natl. Acad. Sci. U. S. A. 71, 4020–4024 (1974).
98. Jay, G. & Kaempfer, R. Sequence of events in initiation of translation: a role for initiator transfer RNA in the recognition of messenger RNA. Proc. Natl. Acad. Sci. U. S. A. 71, 3199–3203 (1974).
99. Kaempfer, R. & Kaufman, J. Inhibition of cellular protein synthesis by double-stranded RNA: inactivation of an initiation factor. Proc. Natl. Acad. Sci. U. S. A. 70, 1222–1226 (1973).
100. Kaempfer, R. Initiation factor IF-3: a specific inhibitor of ribosomal subunit association. J. Mol. Biol. 71, 583–598 (1972).
101. Kaempfer, R. & Kaufman, J. Translational control of hemoglobin synthesis by an initiation factor required for recycling of ribosomes and for their binding to messenger RNA. Proc. Natl. Acad. Sci. U. S. A. 69, 3317–3321 (1972).
102. Kaempfer, R. Ribosomal Subunit Exchange: Analysis in Vivo. Methods in Enzymology vol. 20 456–467 (1971).
103. Kaempfer, R. Ribosomal Subunit Exchange: Analysis in Vitro. Methods in Enzymology vol. 20 467–472 (1971).
104. Kaempfer, R. & Meselson, M. Sedimentation Velocity Analysis in Accelerating Gradients. Methods in Enzymology vol. 20 521–528 (1971).
105. Kaempfer, R. Control of single ribosome formation by an initiation factor for protein synthesis. Proc. Natl. Acad. Sci. U. S. A. 68, 2458–2462 (1971).
106. Kaempfer, R. Dissociation of ribosomes on polypeptide chain termination and origin of single ribosomes. Nature 228, 534–537 (1970).
107. Kaempfer, R. Ribosomal subunit exchange in the cytoplasm of a eukaryote. Nature 222, 950–953 (1969).
108. Kaempfer, R. & Meselson, M. Studies of ribosomal subunit exchange. Cold Spring Harb. Symp. Quant. Biol. 34, 209–220 (1969).
109. Kaempfer, R. & Meselson, M. Permanent association of 5 s RNA molecules with 50 s ribosomal subunits in growing bacteria. J. Mol. Biol. 34, 703–707 (1968).
110. Kaempfer, R. O. R., Meselson, M. & Raskas, H. J. Cyclic dissociation into stable subunits and re-formation of ribosomes during bacterial growth. J. Mol. Biol. 31, 277–289 (1968).
111. Kaempfer, R. Ribosomal subunit exchange during protein synthesis. Proc. Natl. Acad. Sci. U. S. A. 61, 106–113 (1968).
112. Kaempfer, R. O. R. & Sarkar, S. Effect of infection with T-even phage on the constitutive synthesis of β-galactosidase in Escherichia coli. J. Mol. Biol. 27, 469–474 (1967).
113. Kaempfer, R. O. R. & Magasanik, B. Effect of infection with T-even phage on the inducible synthesis of β-galactosidase in Escherichia coli. J. Mol. Biol. 27, 453–468 (1967).
114. Kaempfer, R. O. R. & Magasanik, B. Mechanism of β-galactosidase induction in Escherichia coli. J. Mol. Biol. 27, 475–494 (1967).
115. Bilezikian, J. P., Kaempfer, R. O. R. & Magasanik, B. Mechanism of tryptophanase induction in Escherichia coli. J. Mol. Biol. 27, 495–506 (1967).