Skip to Main Content

The Faculty of Medicine - Biochemistry and Molecular Biology: Kaempfer Raymond


 Last updated September 2023 - Biochemistry and Molecular Biology 

List of Publications


Popugailo A, Rotfogel Z, Levy M, Turgeman O, Hillman D, Levy R, et al. The homodimer interfaces of costimulatory receptors B7 and CD28 control their engagement and pro-inflammatory signaling. Journal of Biomedical Science [Internet]. 2023;30(1). Available from:


Namer LS, Harwig A, Heynen SP, Das AT, Berkhout B, Kaempfer R. HIV co-opts a cellular antiviral mechanism, activation of stress kinase PKR by its RNA, to enable splicing of rev/tat mRNA. Cell and Bioscience [Internet]. 2023;13(1). Available from:


Kaempfer R. Positive Regulation of Splicing of Cellular and Viral mRNA by Intragenic RNA Elements That Activate the Stress Kinase PKR, an Antiviral Mechanism. Genes [Internet]. 2023;14(5). Available from:


Kunkl M, Amormino C, Spallotta F, Caristi S, Fiorillo MT, Paiardini A, et al. Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells. Frontiers in Immunology [Internet]. 2023;14. Available from:


Gopalan V, Nilsen T, Altman AM, Stark BC, Feinstein SI, Koski R, et al. Tribute to Sidney Altman. RNA (New York, NY) [Internet]. 2022;28(11):1393–429. Available from:


Kunkl M, Amormino C, Caristi S, Tedeschi V, Fiorillo MT, Levy R, et al. Binding of Staphylococcal Enterotoxin B (SEB) to B7 Receptors Triggers TCR- and CD28-Mediated Inflammatory Signals in the Absence of MHC Class II Molecules. Frontiers in Immunology [Internet]. 2021;12. Available from:


Edgar R, Cohen A, Hillman D, Kaempfer R, Shirvan A. Prolonged Benefit of Reltecimod Despite Short Plasma Half-Life. International Journal of Peptide Research and Therapeutics [Internet]. 2020;26(4):2399–410. Available from:


Edgar R, Tarrio ML, Maislin G, Chiguang F, Kaempfer R, Cross A, et al. Treatment with One Dose of Reltecimod is Superior to Two Doses in Mouse Models of Lethal Infection. International Journal of Peptide Research and Therapeutics [Internet]. 2020;26(3):1669–83. Available from:


Klepsch O, Namer LS, Köhler N, Kaempfer R, Dittrich A, Schaper F. Intragenic regulation of SOCS3 isoforms. Cell Communication and Signaling [Internet]. 2019;17(1). Available from:


Kaempfer R, Ilan L, Cohen-Chalamish S, Turgeman O, Sarah Namer L, Osman F. Control of mRNA splicing by intragenic RNA activators of stress signaling: Potential implications for human disease. Frontiers in Genetics [Internet]. 2019;10(MAY). Available from:


Popugailo A, Rotfogel Z, Supper E, Hillman D, Kaempfer R. Staphylococcal and streptococcal superantigens trigger B7/CD28 costimulatory receptor engagement to hyperinduce inflammatory cytokines. Frontiers in Immunology [Internet]. 2019;10(APR). Available from:


Kaempfer R, Namer LS, Osman F, Ilan L. Control of mRNA splicing by noncoding intragenic RNA elements that evoke a cellular stress response. International Journal of Biochemistry and Cell Biology [Internet]. 2018;105:20–3. Available from:


Kaempfer R. Bacterial superantigen toxins, CD28, and drug development. Toxins [Internet]. 2018;10(11). Available from:


Kaempfer R. Ribosome cycle emerges from DNA replication. Nature Reviews Molecular Cell Biology [Internet]. 2017;18(8):470. Available from:


Namer LS, Osman F, Banai Y, Masquida B, Jung R, Kaempfer R. An Ancient Pseudoknot in TNF-α Pre-mRNA Activates PKR, Inducing eIF2α Phosphorylation that Potently Enhances Splicing. Cell Reports [Internet]. 2017;20(1):188–200. Available from:


Ilan L, Osman F, Namer LS, Eliahu E, Cohen-Chalamish S, Ben-Asouli Y, et al. PKR activation and eIF2α phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Research [Internet]. 2017;27(5):688–704. Available from:


Levy R, Rotfogel Z, Hillman D, Popugailo A, Arad G, Supper E, et al. Superantigens hyperinduce inflammatory cytokines by enhancing the B7-2/CD28 costimulatory receptor interaction. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2016;113(42):E6437–46. Available from:


Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, et al. Correction to Binding of Superantigen Toxins into the CD28 Homodimer Interface Is Essential for Induction of Cytokine Genes That Mediate Lethal Shock [PLoS Biol, (2015), 13, 8]. PLoS Biology [Internet]. 2015;13(8). Available from:


Ramachandran G, Kaempfer R, Chung CS, Shirvan A, Chahin AB, Palardy JE, et al. CD28 homodimer interface mimetic peptide acts as a preventive and therapeutic agent in models of severe bacterial sepsis and gram-negative bacterial peritonitis. Journal of Infectious Diseases [Internet]. 2015;211(6):995–1003. Available from:


Mirzoeva S, Paunesku T, Wanzer MB, Shirvan A, Kaempfer R, Woloschak GE, et al. Single administration of p2TA (AB103), a CD28 antagonist peptide, prevents inflammatory and thrombotic reactions and protects against gastrointestinal injury in total-body irradiated mice. PLoS ONE [Internet]. 2014;9(7). Available from:


Bulger EM, Maier RV, Sperry J, Joshi M, Henry S, Moore FA, et al. A novel drug for treatment of necrotizing soft-tissue infections: A randomized clinical trial. JAMA Surgery [Internet]. 2014;149(6):528–36. Available from:


Kaempfer R, Arad G, Levy R, Hillman D, Nasie I, Rotfogel Z. CD28: Direct and critical receptor for superantigen toxins. Toxins [Internet]. 2013;5(9):1531–42. Available from:


Ramachandran G, Tulapurkar ME, Harris KM, Arad G, Shirvan A, Shemesh R, et al. A peptide antagonist of CD28 signaling attenuates toxic shock and necrotizing soft-tissue infection induced by streptococcus pyogenes. Journal of Infectious Diseases [Internet]. 2013;207(12):1869–77. Available from:


Kaempfer R. Kick-starting the origin of life. Comment on “Formamide and the origin of life” by R. Saladino, C. Crestini, S. Pino, G. Costanzo and E. Di Mauro. Physics of Life Reviews [Internet]. 2012;9(1):111–3. Available from:


Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biology [Internet]. 2011;9(9). Available from:


Cohen-Chalamish S, Hasson A, Weinberg D, Namer LS, Banai Y, Osman F, et al. Dynamic refolding of IFN-γ mRNA enables it to function as PKR activator and translation template. Nature Chemical Biology [Internet]. 2009;5(12):896–903. Available from:


Kaempfer R. Interferon-γ mRNA attenuates its own translation by activating PKR: A molecular basis for the therapeutic effect of interferon-β in multiple sclerosis. Cell Research [Internet]. 2006;16(2):148–53. Available from:


Kaempfer R. Peptide antagonists of superantigen toxins. Molecular Diversity [Internet]. 2004;8(2):113–20. Available from:


Arad G, Hillman D, Levy R, Kaempfer R. Broad-spectrum immunity against superantigens is elicited in mice protected from lethal shock by a superantigen antagonist peptide. Immunology Letters [Internet]. 2004;91(2–3):141–5. Available from:


Kaempfer R. RNA sensors: Novel regulators of gene expression. EMBO Reports [Internet]. 2003;4(11):1043–7. Available from:


Kaempfer R, Arad G, Levy R, Hillman D. Defense against biologic warfare with superantigen toxins. Israel Medical Association Journal [Internet]. 2002;4(7):520–3. Available from:


Arad G, Levy R, Kaempfer R. Superantigen concomitantly induces Th1 cytokine genes and the ability to shut off their expression on re-exposure to superantigen. Immunology Letters [Internet]. 2002;82(1–2):75–8. Available from:


Ben-Asouli Y, Banai Y, Pel-Or Y, Shir A, Kaempfer R. Human interferon-γ mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell [Internet]. 2002;108(2):221–32. Available from:


Arad G, Hillman D, Levy R, Kaempfer R. Superantigen antagonist blocks Th1 cytokine gene induction and lethal shock. Journal of Leukocyte Biology [Internet]. 2001;69(6):921–7. Available from:


Schneider R, Agol VI, Andino R, Bayard F, Cavener DR, Chappell SA, et al. New ways of initiating translation in eukaryotes? [2](multiple letters). Molecular and Cellular Biology [Internet]. 2001;21(23):8238–46. Available from:


Arad G, Levy R, Hillman D, Kaempfer R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nature Medicine [Internet]. 2000;6(4):414–21. Available from:


Ben-Asouli Y, Banai Y, Hauser H, Kaempfer R. Recognition of 5’-terminal TAR structure in human immunodeficiency virus-1 mRNA by eukaryotic translation initiation factor 2. Nucleic Acids Research [Internet]. 2000;28(4):1011–8. Available from:


Richmond A, Kaempfer R. Cytokines revisited at Hilton Head. Cytokine and Growth Factor Reviews [Internet]. 2000;11(3):255–66. Available from:


Osman F, Jarrous N, Ben-Asouli Y, Kaempfer R. A cis-acting element in the 3’-untranslated region of human TNF-α mRNA renders splicing dependent on the activation of protein kinase PKR. Genes and Development [Internet]. 1999;13(24):3280–93. Available from:


Ketzinel M, Kaempfer R. Cell-mediated suppression of human interleukin-2 gene expression at splicing of mRNA. Immunology Letters [Internet]. 1999;68(1):161–6. Available from:


Kaempfer R. Cytokine and interferon research in Israel. Cytokine and Growth Factor Reviews [Internet]. 1998;9(2):99–108. Available from:


Gerez L, Shkolnik T, Hirschmann O, Lorber M, Arad G, Kaempfer R. Hyperinducible expression of the interferon-gamma (IFN-γ) gene and its suppression in systemic lupus erythematosus (SLE). Clinical and Experimental Immunology [Internet]. 1997;109(2):296–303. Available from:


Aframian D, Katzenellenbogen M, Arad G, Osman F, Sayar D, Ketzinel M, et al. Down-regulation of human tumor necrosis factor-β gene expression by cells with suppressive activity. Immunology Letters [Internet]. 1996;54(2–3):171–6. Available from:


Arad G, Katzenellenbogen M, Levy R, Slavin S, Kaempfer R. Linomide, an immunomodulator that inhibits T(h)1 cytokine gene expression. International Immunology [Internet]. 1996;8(10):1603–7. Available from:


Arad G, Nussinovich R, Na’Amad M, Kaempfer R. Dual control of human interleukin-2 and interferon-γ gene expression by histamine: Activation and suppression. Cellular Immunology [Internet]. 1996;170(1):149–55. Available from:


Jarrous N, Osman F, Kaempfer R. 2-Aminopurine selectively inhibits splicing of tumor necrosis factor alpha mRNA. Molecular and Cellular Biology [Internet]. 1996;16(6):2814–22. Available from:


Kaempfer R, Gerez L, Farbstein H, Madar L, Hirschman O, Nussinovich R, et al. Prediction of response to treatment in superficial bladder carcinoma through pattern of interleukin-2 gene expression. Journal of Clinical Oncology [Internet]. 1996;14(6):1778–86. Available from:


Arad G, Nussinovich R, Kaempfer R. Interleukin-2 induces an early step in the activation of interferon-γ gene expression. Immunology Letters [Internet]. 1995;44(2–3):213–6. Available from:


Gerez L, Arad G, Efrat S, Ketzinel M, Kaempfer R. Post-transcriptional regulation of human interleukin-2 gene expression at processing of precursor transcripts. Journal of Biological Chemistry [Internet]. 1995;270(33):19569–75. Available from:


Arad G, Ketzinel M, Tal C, Nussinovich R, Deutsch E, Schlesinger M, et al. Transient expression of human interleukin-2 and interferon-γ genes is regulated by interaction between distinct cell subsets. Cellular Immunology [Internet]. 1995;160(2):240–7. Available from:


Jarrous N, Kaempfer R. Induction of human interleukin-1 gene expression by retinoic acid and its regulation at processing of precursor transcripts. Journal of Biological Chemistry [Internet]. 1994;269(37):23141–9. Available from:


Kaempfer R. Regulation of the Human Interleukin-2/Interleukin-2 Receptor System: A Role for Immunosuppression. Proceedings of the Society for Experimental Biology and Medicine [Internet]. 1994;206(3):176–80. Available from:


Halevi A, Dollberg S, Manor D, Nussinovich R, Kaempfer R, Gale R. Is cord blood erythropoietin a marker of intrapartum hypoxia? Journal of perinatology : official journal of the California Perinatal Association [Internet]. 1992;12(3):215–9. Available from:


Gonsky R, Itamar D, Harary R, Kaempfer R. Binding of ATP and messenger RNA by the β-subunit of eukaryotic initiation factor 2. Biochimie [Internet]. 1992;74(5):427–34. Available from:


Gerez L, Madar L, Arad G, Sharav T, Reshef A, Ketzinel M, et al. Aberrant regulation of interleukin-2 but not of interferon-γ gene expression in Down syndrome (trisomy 21). Clinical Immunology and Immunopathology [Internet]. 1991;58(2):251–66. Available from:


Gerez L, Madar L, Shkolnik T, Kristal B, Arad G, Reshef A, et al. Regulation of interleukin-2 and interferon-γ gene expression in renal failure. Kidney International [Internet]. 1991;40(2):266–72. Available from:


KETZINEL M, EFRAT S, SAYAR D, GEREZ L, TAL C, DEUTSCH E, et al. Regulation of Human Interleukin‐2 and Interferon‐Gamma Gene Expression by Suppressor T Lymphocytes. Scandinavian Journal of Immunology [Internet]. 1991;33(5):593–605. Available from:


Harary R, Kaempfer R. Distinct epitopes in eukaryotic initiation factor 2 for binding of mRNA and for ternary complex formation with methionyl-tRNAf and GTP. BBA - Gene Structure and Expression [Internet]. 1990;1050(1–3):129–33. Available from:


Gonsky R, Lebendiker MA, Harary R, Banai Y, Kaempfer R. Binding of ATP to eukaryotic initiation factor 2. Differential modulation of mRNA-binding activity and GTP-dependent binding of methionyl-tRNA(f/Met). Journal of Biological Chemistry [Internet]. 1990;265(16):9083–9. Available from:


Manor D, Nussinovich R, Yeheskel A, Kaempfer R. A constitutive antibody in normal human serum directed against rabbit bone marrow cells: Lack in parturients, neonates, and hematologic disorders. The Journal of Laboratory and Clinical Medicine [Internet]. 1990;116(6):771–8. Available from:


Ketzinel M, Gila A, Tal C, Schlesinger M, Nussinovich R, Reshef A, et al. The potential to express or suppress human interleukin-2 and interferon-γ genes is not restricted to distinct cell subsets. Molecular Immunology [Internet]. 1990;27(12):1325–30. Available from:


Sayar D, Ketzinel M, Gerez L, Silberberg C, Reshef A, Kaempfer R. Expression of the human IL-2 receptor on lymphocytes involves rapid turnover of its p55 α-subunit (Tac). Journal of Immunology [Internet]. 1990;145(9):2946–9. Available from:


Harary R, Gonsky R, Itamar D, Kaempfer R. Relief of cytotoxicity and enhancement of interferon inducer activity of double-stranded RNA by eukaryotic initiation factor 2. Virology [Internet]. 1990;174(2):494–503. Available from:


Leitersdorf E, Banai Y, Friedman G, Kaempfer R. Superinduction of the human gene encoding low density lipoprotein receptor. Biochemical and Biophysical Research Communications [Internet]. 1989;165(2):574–80. Available from:


Lebendiker MA, Tal C, Sayar D, Pilo S, Eilon A, Banai Y, et al. Superinduction of the human gene encoding immune interferon. The EMBO journal [Internet]. 1987;6(3):585–9. Available from:


Rosenthal A, Marsh S, Manor D, Kaempfer R. DNA synthesis by erythroid precursors in a completely defined medium: A rapid, sensitive, and convenient bioassay for erythropoietin. Experimental Hematology [Internet]. 1985;13(3):174–84. Available from:


Efrat S, Kaempfer R. A qualitative difference in the interleukin 2 (IL-2) requirement of helper and cytotoxic T lymphocytes. Cellular Immunology [Internet]. 1984;88(1):207–12. Available from:


Efrat S, Zelig S, Yagen B, Kaempfer R. Superinduction of human interleukin-2 messenger RNA by inhibitors of translation. Biochemical and Biophysical Research Communications [Internet]. 1984;123(2):842–8. Available from:


Efrat S, Kaempfer R. Control of biologically active interleukin 2 messenger RNA formation in induced human lymphocytes. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1984;81(9 I):2601–5. Available from:


Knoller S, Kaempfer R. Isolation of a Heme-Controlled Inhibitor of Translation That Blocks the Interaction between Messenger RNA and Eukaryotic Initiation Factor 2. Biochemistry [Internet]. 1984;23(11):2462–9. Available from:


ITAMAR D, GONSKY R, LEBENDIKER M, KAEMPFER R. The nature of the interaction of eukaryotic initiation factor 2 with double‐stranded RNA. European Journal of Biochemistry [Internet]. 1984;145(2):373–9. Available from:


KAEMPFER R, KONIJN AM. Translational Competition by mRNA Species Encoding Albumin, Ferritin, Haemopexin and Globin. European Journal of Biochemistry [Internet]. 1983;131(3):545–50. Available from:


Efrat S, Pilo S, Kaempfer R. Kinetics of induction and molecular size of mRNAs encoding human interleukin-2 and γ-interferon. Nature [Internet]. 1982;297(5863):236–9. Available from:


Rosen H, Di Segni G, Kaempfer R. Translational control by messenger RNA competition for eukaryotic initiation factor 2. Journal of Biological Chemistry [Internet]. 1982;257(2):946–52. Available from:


Perez-Bercoff R, Kaempfer R. Genomic RNA of mengovirus. V. Recognition of common features by ribosomes and eucaryotic initiation factor 2. Journal of Virology [Internet]. 1982;41(1):30–41. Available from:


Kaempfer R, Efrat S, Pilo S. Expression and molecular size of messenger RNA species encoding interleukin-2 and gamma interferon from normal human lymphocytes. Federation Proceedings [Internet]. 1982;41(4):4018. Available from:


Kaempfer R, Van Emmelo J, Fiers W. Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5’-terminal sequence comprising the ribosome binding site. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1981;78(3 I):1542–6. Available from:


Rosen H, Knoller S, Kaempfer R. Messenger Ribonucleic Acid Specificity in the Inhibition of Eukaryotic Translation by Double-Stranded Ribonucleic Acid. Biochemistry [Internet]. 1981;20(11):3011–20. Available from:


Rosen H, Kaempfer R. Mutually exclusive binding of messenger RNA and initiator methionyl transfer RNA to eukaryotic initiation factor 2. Biochemical and Biophysical Research Communications [Internet]. 1979;91(2):449–55. Available from:


Segni GD, Rosen H, Kaempfer R. Competition between α- and β-Globin Messenger Ribonucleic Acids for Eucaryotic Initiation Factor 2. Biochemistry [Internet]. 1979;18(13):2847–54. Available from:


Kaempfer R, Israeli R, Rosaeli H, Knoller S, Zilberstein A, Schmidt A, et al. Reversal of the interferon-induced block of protein synthesis by purified preparations of eucaryotic initiation factor 2. Virology [Internet]. 1979;99(1):170–3. Available from:


KAEMPFER R, HOLLENDER R, SOREQ H, NUDEL U. Recognition of Messenger RNA in Eukaryotic Protein Synthesis: Equilibrium Studies of the Interaction between Messenger RNA and the Initiation Factor that Binds Methionyl‐tRNAf. European Journal of Biochemistry [Internet]. 1979;94(2):591–600. Available from:


Kaempfer R, Jay G. Binding of Messenger RNA in Initiation of Prokaryotic Translation. Methods in Enzymology [Internet]. 1979;60(C):332–43. Available from:


Kaempfer R. RNA-Affinity Chromatography: Its Use in Purification of Eukaryotic Initiation Factor 2. Methods in Enzymology [Internet]. 1979;60(C):247–55. Available from:


Kaempfer R. Binding of Messenger RNA in Initiation of Eukaryotic Translation. Methods in Enzymology [Internet]. 1979;60(C):380–92. Available from:


Di Segni G, Kerem H, Cividalli G, Rachmilewitz EA, Kaempfer R. Absence of functional β-globin messenger RNA in Kurdish Jews with β 0-thalassemia. Israel Journal of Medical Sciences [Internet]. 1978;14(11):1116–23. Available from:


Kaempfer R, Rosen H, Israeli R. Translational control: Recognition of the methylated 5’ end and an internal sequence in eukaryotic mRNA by the initiation factor that binds methionyl-tRNA(f)(met). Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1978;75(2):650–4. Available from:


Kaempfer R, Hollender R, Abrams WR, Israeli R. Specific binding of messenger RNA and methionyl-tRNA(f)(Met) by the same initiation factor for eukaryotic protein synthesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1978;75(1):209–13. Available from:


Izak G, Karsai A, Cohen S, Kaempfer R. Observations on erythroid cell differentiation and maturation in synchronized rabbit erythropoetic tissue. New Istanbul Contribution to Clinical Science [Internet]. 1977;12(1):34–42. Available from:


Jay G, Kaempfer R. Translational repression of a viral messenger RNA by a host protein. Journal of Biological Chemistry [Internet]. 1975;250(15):5749–55. Available from:


Jay G, Kaempfer R. Initiation of protein synthesis. Binding of messenger RNA. Journal of Biological Chemistry [Internet]. 1975;250(15):5742–8. Available from:


Leick VR, Santerre RF, Kaempfer R. Masking of peptidyl transferase activity in polyribosomes. Archives of Biochemistry and Biophysics [Internet]. 1975;169(2):622–6. Available from:


Kaempfer R. Identification and RNA-binding properties of an initiation factor capable of relieving translational inhibition induced by heme deprivation or double-stranded RNA. Biochemical and Biophysical Research Communications [Internet]. 1974;61(2):591–7. Available from:


Jay G, Abrams WR, Kaempfer R. Resistance of bacterial protein synthesis to double-stranded RNA. Biochemical and Biophysical Research Communications [Internet]. 1974;60(4):1357–64. Available from:


Jay G, Kaempfer R. Host interference with viral gene expression: Mode of action of bacterial factor i. Journal of Molecular Biology [Internet]. 1974;82(2):193–212. Available from:


Raffel C, Stein S, Kaempfer R. Role for heme in mammalian protein synthesis: activation of an initiation factor. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1974;71(10):4020–4. Available from:


Jay G, Kaempfer R. Sequence of events in initiation of translation: a role for initiator transfer RNA in the recognition of messenger RNA. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1974;71(8):3199–203. Available from:


Kaempfer R, Kaufman J. Inhibition of cellular protein synthesis by double-stranded RNA: inactivation of an initiation factor. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1973;70(4):1222–6. Available from:


Kaempfer R. Initiation factor IF-3: a specific inhibitor of ribosomal subunit association. Journal of Molecular Biology [Internet]. 1972;71(3):583–98. Available from:


Kaempfer R, Kaufman J. Translational control of hemoglobin synthesis by an initiation factor required for recycling of ribosomes and for their binding to messenger RNA. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1972;69(11):3317–21. Available from:


Kaempfer R. Ribosomal Subunit Exchange: Analysis in Vivo. Methods in Enzymology [Internet]. 1971;20(C):456–67. Available from:


Kaempfer R. Ribosomal Subunit Exchange: Analysis in Vitro. Methods in Enzymology [Internet]. 1971;20(C):467–72. Available from:


Kaempfer R, Meselson M. Sedimentation Velocity Analysis in Accelerating Gradients. Methods in Enzymology [Internet]. 1971;20(C):521–8. Available from:


Kaempfer R. Control of single ribosome formation by an initiation factor for protein synthesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1971;68(10):2458–62. Available from:


Kaempfer R. Dissociation of ribosomes on polypeptide chain termination and origin of single ribosomes. Nature [Internet]. 1970;228(5271):534–7. Available from:


Kaempfer R. Ribosomal subunit exchange in the cytoplasm of a eukaryote. Nature [Internet]. 1969;222(5197):950–3. Available from:


Kaempfer R, Meselson M. Studies of ribosomal subunit exchange. Cold Spring Harbor symposia on quantitative biology [Internet]. 1969;34:209–20. Available from:


Kaempfer R, Meselson M. Permanent association of 5 s RNA molecules with 50 s ribosomal subunits in growing bacteria. Journal of Molecular Biology [Internet]. 1968;34(3):703–7. Available from:


Kaempfer ROR, Meselson M, Raskas HJ. Cyclic dissociation into stable subunits and re-formation of ribosomes during bacterial growth. Journal of Molecular Biology [Internet]. 1968;31(2):277–89. Available from:


Kaempfer R. Ribosomal subunit exchange during protein synthesis. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1968;61(1):106–13. Available from:


Kaempfer ROR, Sarkar S. Effect of infection with T-even phage on the constitutive synthesis of β-galactosidase in Escherichia coli. Journal of Molecular Biology [Internet]. 1967;27(3):469–74. Available from:


Kaempfer ROR, Magasanik B. Effect of infection with T-even phage on the inducible synthesis of β-galactosidase in Escherichia coli. Journal of Molecular Biology [Internet]. 1967;27(3):453–68. Available from:


Kaempfer ROR, Magasanik B. Mechanism of β-galactosidase induction in Escherichia coli. Journal of Molecular Biology [Internet]. 1967;27(3):475–94. Available from:


Bilezikian JP, Kaempfer ROR, Magasanik B. Mechanism of tryptophanase induction in Escherichia coli. Journal of Molecular Biology [Internet]. 1967;27(3):495–506. Available from: