Skip to Main Content

The Faculty of Medicine - Biochemistry and Molecular Biology: Kanner Baruch

Researchers

 Last updated September 2023 - Biochemistry and Molecular Biology 

List of Publications

1.

Nayak SR, Joseph D, Höfner G, Dakua A, Athreya A, Wanner KT, et al. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. Nature Structural and Molecular Biology [Internet]. 2023;30(7):1023–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163743450&doi=10.1038%252fs41594-023-01011-w&partnerID=40&md5=f004dc9ea008e3254c1663b3071c1d42

2.

Kanner BI, Dayan-Alon O. GABA transport goes structural. Trends in Pharmacological Sciences [Internet]. 2023;44(1):4–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136233339&doi=10.1016%252fj.tips.2022.08.001&partnerID=40&md5=e09a36c6a402ed24b9cd472c3384ecf3

3.

Dayan-Alon O, Kanner BI. Internal gate mutants of the GABA transporter GAT1 are capable of substrate exchange. Neuropharmacology [Internet]. 2019;161. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076239946&doi=10.1016%252fj.neuropharm.2019.02.016&partnerID=40&md5=ec981404cabb8b35d89f166cf6854d3a

4.

Silverstein N, Sliman A, Stockner T, Kanner BI. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity. Journal of Biological Chemistry [Internet]. 2018;293(37):14200–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053347995&doi=10.1074%252fjbc.RA118.003261&partnerID=40&md5=973be91023c76e9d6d39e7bfaecb259e

5.

Mattison KA, Butler KM, Inglis GAS, Dayan O, Boussidan H, Bhambhani V, et al. SLC6A1 variants identified in epilepsy patients reduce γ-aminobutyric acid transport. Epilepsia [Internet]. 2018;59(9):e135–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052463826&doi=10.1111%252fepi.14531&partnerID=40&md5=3414d0fbace81a092427f3e0c128fc9c

6.

Dayan O, Nagarajan A, Shah R, Ben-Yona A, Forrest LR, Kanner BI. An extra amino acid residue in transmembrane domain 10 of the γ-aminobutyric acid (GABA) transporter GAT-1 is required for efficient ion-coupled transport. Journal of Biological Chemistry [Internet]. 2017;292(13):5418–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016575976&doi=10.1074%252fjbc.M117.775189&partnerID=40&md5=2e0982b8891f9473f053d0d66504952f

7.

Tanui R, Tao Z, Silverstein N, Kanner B, Grewer C. Electrogenic steps associated with substrate binding to the neuronal glutamate transporter EAAC1. Journal of Biological Chemistry [Internet]. 2016;291(22):11852–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84971255225&doi=10.1074%252fjbc.M116.722470&partnerID=40&md5=5dbde0fcfdd3627a018267767501bfdb

8.

Silverstein N, Ewers D, Forrest LR, Fahlke C, Kanner BI. Molecular determinants of substrate specificity in sodium-coupled glutamate transporters. Journal of Biological Chemistry [Internet]. 2015;290(48):28988–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948456629&doi=10.1074%252fjbc.M115.682666&partnerID=40&md5=1ec53946e8e2f91729c74e5b6f2b6ce3

9.

Hilwi M, Dayan O, Kanner BI. Conformationally sensitive proximity of extracellular loops 2 and 4 of the γ-aminobutyric acid (GABA) transporter GAT-1 inferred from paired cysteine mutagenesis. Journal of Biological Chemistry [Internet]. 2014;289(49):34258–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84917690456&doi=10.1074%252fjbc.M114.593061&partnerID=40&md5=97d8ba97a3579b068b184d2e17a83973

10.

Dayan O, Ben-Yona A, Kanner BI. The aromatic and charge pairs of the thin extracellular gate of the γ-Aminobutyric acid transporter GAT-1 are differently impacted by mutation. Journal of Biological Chemistry [Internet]. 2014;289(41):28172–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907662093&doi=10.1074%252fjbc.M114.589721&partnerID=40&md5=1dd7d0466a93c2c028f1a3397988d321

11.

Shabaneh M, Rosental N, Kanner BI. Disulfide cross-linking of transport and trimerization domains of a neuronal glutamate transporter restricts the role of the substrate to the gating of the anion conductance. Journal of Biological Chemistry [Internet]. 2014;289(16):11175–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899011312&doi=10.1074%252fjbc.M114.550277&partnerID=40&md5=6149d9ffbe4d6000862709295add85f8

12.

Kanner BI. Substrate-induced rearrangements in glutamate-transporter homologs. Nature Structural and Molecular Biology [Internet]. 2013;20(10):1142–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885416052&doi=10.1038%252fnsmb.2685&partnerID=40&md5=3a513673ce9577ab70e3b174b99ca29a

13.

Ben-Yona A, Kanner BI. Functional defects in the external and internal thin gates of the γ-aminobutyric acid (GABA) transporter GAT-1 can compensate each other. Journal of Biological Chemistry [Internet]. 2013;288(7):4549–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874027741&doi=10.1074%252fjbc.M112.430215&partnerID=40&md5=9c31fb6727ec6bc600fd13671eeb2a18

14.

Silverstein N, Crisman TJ, Forrest LR, Kanner BI. Cysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions. Journal of Biological Chemistry [Internet]. 2013;288(2):964–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872313828&doi=10.1074%252fjbc.M112.403576&partnerID=40&md5=22ebb4cf953543ed60e5fad9ff9d046e

15.

Teichman S, Qu S, Kanner BI. Conserved asparagine residue located in binding pocket controls cation selectivity and substrate interactions in neuronal glutamate transporter. Journal of Biological Chemistry [Internet]. 2012;287(21):17198–205. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861204243&doi=10.1074%252fjbc.M112.355040&partnerID=40&md5=869069498fdfea9a8a5edc19b530d735

16.

Ben-Yona A, Kanner BI. An acidic amino acid transmembrane helix 10 residue conserved in the neurotransmitter:sodium:symporters is essential for the formation of the extracellular gate of the γ-aminobutyric acid (GABA) transporter GAT-1. Journal of Biological Chemistry [Internet]. 2012;287(10):7159–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857716908&doi=10.1074%252fjbc.M111.323634&partnerID=40&md5=5ffc71fecc818b130018af8f7d9b7d92

17.

Rosental N, Gameiro A, Grewer C, Kanner BI. A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters. Journal of Biological Chemistry [Internet]. 2011;286(48):41381–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-82355184476&doi=10.1074%252fjbc.M111.291021&partnerID=40&md5=747822a77fd4ac5e1d2585b0c68fd02b

18.

Ben-Yona A, Bendahan A, Kanner BI. A glutamine residue conserved in the neurotransmitter: Sodium:symporters is essential for the interaction of chloride with the GABA transporter GAT-1. Journal of Biological Chemistry [Internet]. 2011;286(4):2826–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78951476578&doi=10.1074%252fjbc.M110.149732&partnerID=40&md5=2830589a4adbd66a8c795f41bdce4e1c

19.

Elbaz Y, Danieli T, Kanner BI, Schuldiner S. Expression of neurotransmitter transporters for structural and biochemical studies. Protein Expression and Purification [Internet]. 2010;73(2):152–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955416344&doi=10.1016%252fj.pep.2010.06.001&partnerID=40&md5=ba4ae99f5fa6a5abcd40e9763036c732

20.

Rosental N, Kanner BI. A conserved methionine residue controls the substrate selectivity of a neuronal glutamate transporter. Journal of Biological Chemistry [Internet]. 2010;285(28):21241–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954368557&doi=10.1074%252fjbc.M109.087163&partnerID=40&md5=07b8c1f6654e0d39f386915d57300351

21.

Tao Z, Rosental N, Kanner BI, Gameiro A, Mwaura J, Grewer C. Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101. Journal of Biological Chemistry [Internet]. 2010;285(23):17725–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952907248&doi=10.1074%252fjbc.M110.121798&partnerID=40&md5=36db589f9455ee0f74c0016ae3322b4d

22.

Crisman TJ, Qu S, Kanner BI, Forrest LR. Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2009;106(49):20752–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-73949133608&doi=10.1073%252fpnas.0908570106&partnerID=40&md5=eacac2417e46f026d982c15ef156da5b

23.

Teichman S, Qu S, Kanner BI. The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2009;106(34):14297–302. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70149086286&doi=10.1073%252fpnas.0904625106&partnerID=40&md5=c49c05e697c846a91efb6355729b0c35

24.

Ben-Yona A, Kanner BI. Transmembrane domain 8 of the γ-aminobutyric acid transporter GAT-1 lines a cytoplasmic accessibility pathway into its binding pocket. Journal of Biological Chemistry [Internet]. 2009;284(15):9727–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-65649107650&doi=10.1074%252fjbc.M809423200&partnerID=40&md5=f8c3cf85552df5576e3662c5e18db113

25.

Qu S, Kanner BI. Substrates and non-transportable analogues induce structural rearrangements at the extracellular entrance of the glial glutamate transporter GLT-1/EAAT2. Journal of Biological Chemistry [Internet]. 2008;283(39):26391–400. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-55549111238&doi=10.1074%252fjbc.M802401200&partnerID=40&md5=8661d2dd100d3072de05b181b3c6a975

26.

Kanner BI. Structural biology: It’s not all in the family. Nature [Internet]. 2008;454(7204):593–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-48349083070&doi=10.1038%252f454593a&partnerID=40&md5=6e4e0712a4788b1da55144e383c9ebc4

27.

Rosenberg A, Kanner BI. The substrates of the γ-aminobutyric acid transporter GAT-1 induce structural rearrangements around the interface of transmembrane domains 1 and 6. Journal of Biological Chemistry [Internet]. 2008;283(21):14376–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-47249132844&doi=10.1074%252fjbc.M801093200&partnerID=40&md5=b239efe8f24cbfdb2d41d604dd4fb891

28.

Kanner BI, Zomot E. Sodium-coupled neurotransmitter transporters. Chemical Reviews [Internet]. 2008;108(5):1654–68. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-44849091207&doi=10.1021%252fcr078246a&partnerID=40&md5=aa5148edc4e642251d044d0909d5acfd

29.

Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature [Internet]. 2007;449(7163):726–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35148815052&doi=10.1038%252fnature06133&partnerID=40&md5=96782e189d9a02ce2aed4257cbb46727

30.

Teichman S, Kanner BI. Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter. Journal of General Physiology [Internet]. 2007;129(6):527–39. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34249788444&doi=10.1085%252fjgp.200609707&partnerID=40&md5=d0bbf7a6cb91289931355e60c94cc524

31.

Shlaifer I, Kanner BI. Conformationally sensitive reactivity to permeant sulfhydryl reagents of cysteine residues engineered into helical hairpin 1 of the glutamate transporter GLT-1. Molecular Pharmacology [Internet]. 2007;71(5):1341–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34247484434&doi=10.1124%252fmol.106.032607&partnerID=40&md5=a0f3e9fdee208920e3f1c734758afac9

32.

Kanner BI. Gate movements in glutamate transporters. ACS Chemical Biology [Internet]. 2007;2(3):163–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34248572483&doi=10.1021%252fcb700040e&partnerID=40&md5=9cb3026050bd8259b182a9be62eaf20e

33.

Menaker D, Bendahan A, Kanner BI. The substrate specificity of a neuronal glutamate transporter is determined by the nature of the coupling ion. Journal of Neurochemistry [Internet]. 2006;99(1):20–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748713433&doi=10.1111%252fj.1471-4159.2006.04003.x&partnerID=40&md5=7c7cb51e2644c174ddf761c4fba58d65

34.

Rosental N, Bendahan A, Kanner BI. Multiple consequences of mutating two conserved β-bridge forming residues in the translocation cycle of a neuronal glutamate transporter. Journal of Biological Chemistry [Internet]. 2006;281(38):27905–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33748765517&doi=10.1074%252fjbc.M600331200&partnerID=40&md5=6491fed7953d4898bff700907e184c4e

35.

Kanner BI. Structure and function of sodium-coupled GABA and glutamate transporters. Journal of Membrane Biology [Internet]. 2006;213(2):89–100. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34247203194&doi=10.1007%252fs00232-006-0877-5&partnerID=40&md5=a19a139e8edfa9b4af856fe6d9d7dd02

36.

Zhou Y, Zomot E, Kanner BI. Identification of a lithium interaction site in the γ-aminobutyric acid (GABA) transporter GAT-1. Journal of Biological Chemistry [Internet]. 2006;281(31):22092–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33746839659&doi=10.1074%252fjbc.M602319200&partnerID=40&md5=660e5ddef628a61f0feac70269c23102

37.

Shachnai L, Shimamoto K, Kanner BI. Sulfhydryl modification of cysteine mutants of a neuronal glutamate transporter reveals an inverse relationship between sodium dependent conformational changes and the glutamate-gated anion conductance. Neuropharmacology [Internet]. 2005;49(6):862–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-26944479295&doi=10.1016%252fj.neuropharm.2005.07.005&partnerID=40&md5=0299a3aa485ca6a2a2d269b0e93a5154

38.

Kanner BI. Molecular physiology: Intimate contact enables transport. Nature [Internet]. 2005;437(7056):203–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-24644519925&doi=10.1038%252f437203a&partnerID=40&md5=fa0504b1c08acdec952613df59ecbc77

39.

Zomot E, Zhou Y, Kanner BI. Proximity of transmembrane domains 1 and 3 of the γ-aminobutyric acid transporter GAT-1 inferred from paired cysteine mutagenesis. Journal of Biological Chemistry [Internet]. 2005;280(27):25512–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-21844468766&doi=10.1074%252fjbc.M503864200&partnerID=40&md5=4dc30c0d29a2f3984423933601a7a43f

40.

Zhou Y, Kanner BI. Transporter-associated currents in the γ-aminobutyric acid transporter GAT-1 are conditionally impaired by mutations of a conserved glycine residue. Journal of Biological Chemistry [Internet]. 2005;280(21):20316–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-20144378948&doi=10.1074%252fjbc.M412937200&partnerID=40&md5=4655238c63c4af9134c9c5690eb31e24

41.

Melamed N, Kanner BI. Transmembrane domains I and II of the γ-aminobutyric acid transporter GAT-4 contain molecular determinants of substrate specificity. Molecular Pharmacology [Internet]. 2004;65(6):1452–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-2442640243&doi=10.1124%252fmol.65.6.1452&partnerID=40&md5=47bf1e60a76a7023fe85bb56409b1da5

42.

Zhou Y, Bennett ER, Kanner BI. The Aqueous Accessibility in the External Half of Transmembrane Domain I of the GABA Transporter GAT-1 Is Modulated by Its Ligands. Journal of Biological Chemistry [Internet]. 2004;279(14):13800–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1842791407&doi=10.1074%252fjbc.M311579200&partnerID=40&md5=4021759c8e4225732ab918daf1f335d9

43.

Borre L, Kanner BI. Arginine 445 Controls the Coupling between Glutamate and Cations in the Neuronal Transporter EAAC-1. Journal of Biological Chemistry [Internet]. 2004;279(4):2513–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1642494714&doi=10.1074%252fjbc.M311446200&partnerID=40&md5=0d313b1fb0c27c92b32be32d158f7ec9

44.

Zomot E, Kanner BI. The Interaction of the γ-Aminobutyric Acid Transporter GAT-1 with the Neurotransmitter Is Selectively Impaired by Sulfhydryl Modification of a Conformationally Sensitive Cysteine Residue Engineered into Extracellular Loop IV. Journal of Biological Chemistry [Internet]. 2003;278(44):42950–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0242353345&doi=10.1074%252fjbc.M209307200&partnerID=40&md5=71ee4dcc848c4f7f1dbbc7752efdbb7d

45.

Kanner BI. Transmembrane domain I of the γ-aminobutyric acid transporter GAT-1 plays a crucial role in the transition between cation leak and transport modes. Journal of Biological Chemistry [Internet]. 2003;278(6):3705–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037423375&doi=10.1074%252fjbc.M210525200&partnerID=40&md5=7a0849e6c8666ae874ae71468ba76ef4

46.

Reig N, Chillarón J, Bartoccioni P, Fernández E, Bendahan A, Zorzano A, et al. The light subunit of system bo,+ is fully functional in the absence of the heavy subunit. EMBO Journal [Internet]. 2002;21(18):4906–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037119974&doi=10.1093%252femboj%252fcdf500&partnerID=40&md5=007602e54f4c28c91a4e50bf740d3117

47.

Kanner BI, Borre L. The dual-function glutamate transporters: Structure and molecular characterisation of the substrate-binding sites. Biochimica et Biophysica Acta - Bioenergetics [Internet]. 2002;1555(1–3):92–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037055984&doi=10.1016%2fS0005-2728%2802%2900260-8&partnerID=40&md5=92424c154ed1802c43434ec94106c3a6

48.

Grunewald M, Menaker D, Kanner BI. Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1. Journal of Biological Chemistry [Internet]. 2002;277(29):26074–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037135617&doi=10.1074%252fjbc.M202248200&partnerID=40&md5=2d3c90c5a58c04cd7b4a95f399ae8c5f

49.

Borre L, Kavanaugh MP, Kanner BI. Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. Journal of Biological Chemistry [Internet]. 2002;277(16):13501–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037134479&doi=10.1074%252fjbc.M110861200&partnerID=40&md5=43df91dbd49b1cd266762b2dedebee00

50.

Brocke L, Bendahan A, Grunewald M, Kanner BI. Proximity of two oppositely oriented reentrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis. Journal of Biological Chemistry [Internet]. 2002;277(6):3985–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037040231&doi=10.1074%252fjbc.M107735200&partnerID=40&md5=ca43bd04667c3f0a31046472f27ce1c0

51.

MacAulay N, Bendahan A, Loland CJ, Zeuthen T, Kanner BI, Gether U. Engineered Zn2+ switches in the γ-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents. Journal of Biological Chemistry [Internet]. 2001;276(44):40476–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035798631&doi=10.1074%252fjbc.M105578200&partnerID=40&md5=44eea945bc2ae76f02ed8bbc7b5d8958

52.

Borre L, Kanner BI. Coupled, but Not Uncoupled, Fluxes in a Neuronal Glutamate Transporter Can Be Activated by Lithium Ions. Journal of Biological Chemistry [Internet]. 2001;276(44):40396–401. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035798626&doi=10.1074%252fjbc.M104926200&partnerID=40&md5=fbc60cede0a5411e9c1a7c67b833670f

53.

Schousboe A, Kanner B. GABA transporters: Functional and pharmacological properties [Internet]. Glutamate and GABA Receptors and Transporters: Structure, Function and Pharmacology. 2001. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-41649121309&partnerID=40&md5=43d621fd4b30e67e000b047321cacb9a

54.

Kanner BI, Kavanaugh MP, Bendahan A. Molecular characterization of substrate-binding sites in the glutamate transporter family. Biochemical Society Transactions [Internet]. 2001;29(6):707–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035210295&doi=10.1042%252fbst0290707&partnerID=40&md5=0612226f9575a85c573eff8262c9a018

55.

Bendahan A, Armon A, Madani N, Kavanaugh MP, Kanner BI. Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. Journal of Biological Chemistry [Internet]. 2000;275(48):37436–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034529012&doi=10.1074%252fjbc.M006536200&partnerID=40&md5=b2431f4667602e3cb1100b08bb6e1468

56.

Bennett ER, Su H, Kanner BI. Mutation of arginine 44 of GAT-1, a (Na+ + Cl-)-coupled γ-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. Journal of Biological Chemistry [Internet]. 2000;275(44):34106–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034602317&doi=10.1074%252fjbc.M004229200&partnerID=40&md5=07e1e787ff947bcefdc63c0851cd0194

57.

Grunewald M, Kanner BI. The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate. Journal of Biological Chemistry [Internet]. 2000;275(13):9684–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034737622&doi=10.1074%252fjbc.275.13.9684&partnerID=40&md5=a76c05a91aea0e29bb306f8f9b9a923b

58.

Golovanevsky V, Kanner BI. The reactivity of the γ-aminobutyric acid transporter GAT-1 toward sulfhydryl reagents is conformationally sensitive. Identification of a major target residue. Journal of Biological Chemistry [Internet]. 1999;274(33):23020–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033551736&doi=10.1074%252fjbc.274.33.23020&partnerID=40&md5=84eb446a2e75e394e8e02d6ae5ec0020

59.

Zhang Y, Kanner BI. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1999;96(4):1710–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033573907&doi=10.1073%252fpnas.96.4.1710&partnerID=40&md5=068a57df89905091c402683e1b04ed79

60.

Zarbiv R, Grunewald M, Kavanaugh MP, Kanner BI. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. Journal of Biological Chemistry [Internet]. 1998;273(23):14231–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032486463&doi=10.1074%252fjbc.273.23.14231&partnerID=40&md5=7382d1c536a0f3c4557d00ed5f638553

61.

Zhang Y, Bendahan A, Zarbiv R, Kavanaugh MP, Kanner BI. Molecular determinant of ion selectivity of a (Na+ + K+)-coupled rat brain glutamate transporter. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1998;95(2):751–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031929956&doi=10.1073%252fpnas.95.2.751&partnerID=40&md5=555e693634195ec6cbb9812988cca12e

62.

Grunewald M, Bendahan A, Kanner BI. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron [Internet]. 1998;21(3):623–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032169137&doi=10.1016%2fS0896-6273%2800%2980572-3&partnerID=40&md5=08f0e5ada521742e0456f34bad199534

63.

Bismuth Y, Kavanaugh MP, Kanner BI. Tyrosine 140 of the γ-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. Journal of Biological Chemistry [Internet]. 1997;272(26):16096–102. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030921440&doi=10.1074%252fjbc.272.26.16096&partnerID=40&md5=e71a4dda9231731c4d6da8227487ee00

64.

Bennett ER, Kanner BI. The membrane topology of GAT-1, a (Na+ + Cl-)-coupled γ-aminobutyric acid transporter from rat brain. Journal of Biological Chemistry [Internet]. 1997;272(2):1203–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031021424&doi=10.1074%252fjbc.272.2.1203&partnerID=40&md5=0d469923b886ce47138344c6f601425d

65.

Kavanaugh MP, Bendahan A, Zerangue N, Zhang Y, Kanner BI. Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. Journal of Biological Chemistry [Internet]. 1997;272(3):1703–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031028206&doi=10.1074%252fjbc.272.3.1703&partnerID=40&md5=a08fdf9834b457bcd257fc8c76249bd2

66.

Kanner BI, Bendahan A, Zhang Y, Kavanaugh MP. Two adjacent residues of the glutamate transporter GLT-1 are important for ion coupling and selectivity. Amino Acids [Internet]. 1997;13(1):47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030884101&partnerID=40&md5=90493c63d5d1dbcce428947cd14f6a26

67.

Kanner BI. Chapter 19 Structure and function of sodium-coupled amino acid neurotransmitter transporters. Handbook of Biological Physics [Internet]. 1996;2(C):433–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956739966&doi=10.1016%2fS1383-8121%2896%2980060-1&partnerID=40&md5=bf79a99da027d2e2dc0d60ee15540301

68.

Mager S, Kleinberger-Doron N, Keshet GI, Davidson N, Kanner BI, Lester HA. Ion binding and permeation at the GABA transporter GAT1. Journal of Neuroscience [Internet]. 1996;16(17):5405–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029847048&doi=10.1523%252fjneurosci.16-17-05405.1996&partnerID=40&md5=ef5ae3a46e437b8c71299b4c5e4d847c

69.

Kanner BI. Structure/function relationships in glutamate transporters. Biochemical Society Transactions [Internet]. 1996;24(3):843–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029790476&doi=10.1042%252fbst0240843&partnerID=40&md5=89b93d388fb94377749d2d9fa08ea266

70.

Keshet GI, Bendahan A, Su H, Mager S, Lester HA, Kanner BI. Glutamate-101 is critical for the function of the sodium and chloride-coupled GABA transporter GAT-1. FEBS Letters [Internet]. 1995;371(1):39–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029146373&doi=10.1016%2f0014-5793%2895%2900859-8&partnerID=40&md5=a74085df897eaab6b12392c95818f543

71.

Pines G, Zhang Y, Kanner BI. Glutamate 404 is involved in the substrate discrimination of GLT-1, a (Na+ + K+)-coupled glutamate transporter from rat brain. Journal of Biological Chemistry [Internet]. 1995;270(29):17093–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029120848&doi=10.1074%252fjbc.270.29.17093&partnerID=40&md5=67eff6476a9eb794ab56c77c08757092

72.

Grunewald M, Kanner B. Conformational changes monitored on the glutamate transporter GLT-1 indicate the existence of two neurotransmitter-bound states. Journal of Biological Chemistry [Internet]. 1995;270(28):17017–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029041792&doi=10.1074%252fjbc.270.28.17017&partnerID=40&md5=cc2ce370ee75604d5eff81f585b293a4

73.

Kanner BI, Bendahan A, Pantanowitz S, Su H. The number of amino acid residues in hydrophilic loops connecting transmembrane domains of the GABA transporter GAT-1 is critical for its function. FEBS Letters [Internet]. 1994;356(2–3):191–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028113395&doi=10.1016%2f0014-5793%2894%2901255-5&partnerID=40&md5=45598a09d761ad821e3f935c35017de9

74.

Kanner BI. Sodium-coupled neurotransmitter transport: Structure, function and regulation. Journal of Experimental Biology [Internet]. 1994;196:237–49. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028535115&partnerID=40&md5=947e27fc2a04a6c65f289e372a728dbd

75.

Rauen T, Kanner BI. Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae. Neuroscience Letters [Internet]. 1994;169(1–2):137–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028176067&doi=10.1016%2f0304-3940%2894%2990375-1&partnerID=40&md5=da749ecd79688916a6c83eef6c9c58cd

76.

Kleinberger-Doron N, Kanner BI. Identification of tryptophan residues critical for the function and targeting of the γ-aminobutyric acid transporter (subtype A). Journal of Biological Chemistry [Internet]. 1994;269(4):3063–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028145307&partnerID=40&md5=119a0e9ea7c0bf6a4089953ede83bd86

77.

Kanner BI. Structure and function of sodium-coupled neurotransmitter transporters. Kidney and Blood Pressure Research [Internet]. 1994;17(3–4):208–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028280154&doi=10.1159%252f000173821&partnerID=40&md5=78dd1b2cc2f38e16d32f341c04c0897a

78.

Kanner BI, Kleinberger-Doron N. Structure and function of sodium-coupled neurotransmitter transporters. Cellular Physiology and Biochemistry [Internet]. 1994;4(5–6):174–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028210414&doi=10.1159%252f000154724&partnerID=40&md5=00a2b10ab873bb8b630f5a91edc1a5db

79.

Zhang Y, Pines G, Kanner BI. Histidine 326 is critical for the function of GLT-1, a (Na+ + K+)- coupled glutamate transporter from rat brain. Journal of Biological Chemistry [Internet]. 1994;269(30):19573–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028048581&partnerID=40&md5=63c0fe005b3cff8688b742d07135e1a6

80.

Casado M, Bendahan A, Zafra F, Danbolt NC, Aragon C, Gimenez C, et al. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. Journal of Biological Chemistry [Internet]. 1993;268(36):27313–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027761918&partnerID=40&md5=ace0d4e530e2ca3dd4a186f3db4f845b

81.

Pick CG, Weizman A, Fares F, Gavish M, Kanner BI, Yanai J. Hippocampal γ-aminobutyric acid and benzodiazepine receptors after early phenobarbital exposure. Developmental Brain Research [Internet]. 1993;74(1):111–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027186505&doi=10.1016%2f0165-3806%2893%2990089-S&partnerID=40&md5=7c40da255651711182e80c069d2514d6

82.

Kanner BI. Glutamate transporters from brain. A novel neurotransmitter transporter family. FEBS Letters [Internet]. 1993;325(1–2):95–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027289528&doi=10.1016%2f0014-5793%2893%2981421-U&partnerID=40&md5=e461e15671a0bfe46db694dcbba16560

83.

Bendahan A, Kanner BI. Identification of domains of a cloned rat brain GABA transporter which are not required for its functional expression. FEBS Letters [Internet]. 1993;318(1):41–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027510260&doi=10.1016%2f0014-5793%2893%2981323-R&partnerID=40&md5=e1f16d71e696fec79a588992e060784d

84.

Kanner BI. The structure and function of sodium-coupled neurotransmitter transporters. European Neuropsychopharmacology [Internet]. 1993;3(3):294–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027892174&doi=10.1016%2f0924-977X%2893%2990080-6&partnerID=40&md5=52948a83eb985e227da9b2e6d893b574

85.

Pantanowitz S, Bendahan A, Kanner BI. Only one of the charged amino acids located in the transmembrane α- helices of the γ-aminobutyric acid transporter (subtype A) is essential for its activity. Journal of Biological Chemistry [Internet]. 1993;268(5):3222–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027532379&partnerID=40&md5=4782ab09f0a819f925d14cad08fce3ac

86.

Kanner BI, Danbolt N, Pines G, Koepsell H, Seeberg E, Mathisen JS. Structure and function of the sodium and potassium-coupled glutamate transporter from rat brain. Biochemical Society Transactions [Internet]. 1993;21(1):59–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027522433&doi=10.1042%252fbst0210059&partnerID=40&md5=316639b1570461129e3f09ef96014a91

87.

Pick CG, Weizman A, Fares F, Gavish M, Kanner BI, Yanai J. Erratum: Hippocampal γ-aminobutyric acid and benzodiazepine receptors after early phenobarbital exposure (Developmental Brain Research, 74 (1993) (111-116)). Developmental Brain Research [Internet]. 1993;75(2):301. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027366966&doi=10.1016%2f0165-3806%2893%2990037-B&partnerID=40&md5=c3e1df37ed9a112dc81676973526c2b5

88.

Mabjeesh NJ, Kanner BI. The Substrates of a Sodium- and Chloride-Coupled γ-Aminobutyric Acid Transporter Protect Multiple Sites throughout the Protein against Proteolytic Cleavage. Biochemistry [Internet]. 1993;32(33):8540–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027214169&doi=10.1021%252fbi00084a021&partnerID=40&md5=7ce8c3c90f506d3a3befcc064358d328

89.

Kanner BI. Structure and function of sodium-coupled neurotransmitter transporters. Journal of General Physiology [Internet]. 1993;101(46 TH ANN. SYMP.):243–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027155640&partnerID=40&md5=5aada1626be5ccc8e2f554f7c6e0e658

90.

Rauen T, Jeserich G, Danbolt NC, Kanner BI. Comparative analysis of sodium-dependent l-glutamate transport of synaptosomal and astroglial membrane vesicles from mouse cortex. FEBS Letters [Internet]. 1992;312(1):15–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026658477&doi=10.1016%2f0014-5793%2892%2981401-7&partnerID=40&md5=86451480c7f32a0ac33d5931c88b8ad4

91.

Mabjeesh NJ, Frese M, Rauen T, Jeserich G, Kanner BI. Neuronal and glial γ-aminobutyric acid+ transporters are distinct proteins. FEBS Letters [Internet]. 1992;299(1):99–102. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026573913&doi=10.1016%2f0014-5793%2892%2980109-T&partnerID=40&md5=389cdf07f682a45ef635e7ba0889dff6

92.

Keynan S, Kanner BI, Suh YJ, Rudnick G. Expression of a Cloned γ-Aminobutyric Acid Transporter in Mammalian Cells. Biochemistry [Internet]. 1992;31(7):1974–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026691409&doi=10.1021%252fbi00122a011&partnerID=40&md5=3b10d4475cb033faf850e7cf169e3e60

93.

Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, et al. Erratum: Cloning and expression of a rat brain L-glutamate transporter (Nature (1992) 360 (464-467)). Nature [Internet]. 1992;360(6406):768. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027095635&doi=10.1038%252f360768a0&partnerID=40&md5=c16b1174184dbcfdbea60b42e9d8ebf2

94.

Storm-Mathisen J, Danbolt NC, Rothe F, Torp R, Zhang N, Aas JE, et al. Chapter 19: Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue. Progress in Brain Research [Internet]. 1992;94(C):225–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027081175&doi=10.1016%2fS0079-6123%2808%2961753-7&partnerID=40&md5=427d22bb56c4b600dba322e34da6c849

95.

Mabjeesh NJ, Kanner BI. Neither amino nor carboxyl termini are required for function of the sodium- and chloride-coupled γ-aminobutyric acid transporter from rat brain. Journal of Biological Chemistry [Internet]. 1992;267(4):2563–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026801112&partnerID=40&md5=08ebd6923c180d0b4de7a3d5f49d8c2a

96.

Danbolt NC, Storm-Mathisen J, Kanner BI. An [Na+ + K+]coupled l-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience [Internet]. 1992;51(2):295–310. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026539793&doi=10.1016%2f0306-4522%2892%2990316-T&partnerID=40&md5=a0f51e7399dfd180fe2c21fbcf6e4f08

97.

Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, et al. Cloning and expression of a rat brain L-glutamate transporter. Nature [Internet]. 1992;360(6403):464–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026486310&doi=10.1038%252f360464a0&partnerID=40&md5=4b6d2878b7433a5cbc1122066d4a90fd

98.

Hees B, Danbolt NC, Kanner BI, Haase W, Heitmann K, Koepsell H. A monoclonal antibody against a Na+-L-glutamate cotransporter from rat brain. Journal of Biological Chemistry [Internet]. 1992;267(32):23275–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026481082&partnerID=40&md5=18be147aef73266b16e27b594b256264

99.

Danbolt NC, Kanner BI, Jon SM. Ultrastructural localization of a purified brain L-glutamate transporter. Micron And Microscopica Acta [Internet]. 1991;22(1–2):33–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-44949281378&doi=10.1016%2f0739-6260%2891%2990077-D&partnerID=40&md5=a51cc28e36ea1d996df2a96fb72b3421

100.

Kanner BI. Amino acid neurotransmitter reuptake: Mechanistics, biochemistry and molecular cloning. Biochemical Society Transactions [Internet]. 1991;19(1):92–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026035483&doi=10.1042%252fbst0190092&partnerID=40&md5=f43f74db8081117bd6d283a604a73df6

101.

Pines G, Kanner BI. Counterflow of L-Glutamate in Plasma Membrane Vesicles and Reconstituted Preparations from Rat Brain. Biochemistry [Internet]. 1990;29(51):11209–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025691629&doi=10.1021%252fbi00503a008&partnerID=40&md5=aa9841e81fe3e77d78c866a7adc030ae

102.

Shouffani A, Kanner BI. Cholesterol is required for the rconstitution of the sodium- and chloride-coupled, γ-aminobutyric acid transporter from rat brain. Journal of Biological Chemistry [Internet]. 1990;265(11):6002–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025195244&partnerID=40&md5=ac022f1a58c73f1ce99ce8209751c909

103.

Danbolt NC, Pines G, Kanner BI. Purification and Reconstitution of the Sodium- and Potassium-Coupled Glutamate Transport Glycoprotein from Rat Brain. Biochemistry [Internet]. 1990;29(28):6734–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025316950&doi=10.1021%252fbi00480a025&partnerID=40&md5=66da52d62144e873fdad7e717a4b006d

104.

Radian R, Ottersen OF, Storm-Mathisen J, Castel M, Kanner BL. Immunocytochemical localization of the GABA transporter in rat brain. Journal of Neuroscience [Internet]. 1990;10(4):1319–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025408707&doi=10.1523%252fjneurosci.10-04-01319.1990&partnerID=40&md5=60c440f70e00d36e5b2fbb020df5c4b4

105.

Kanner BI, Bendahan A. Two pharmacologically distinct sodium- and chloride-coupled high-affinity γ-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1990;87(7):2550–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025355478&doi=10.1073%252fpnas.87.7.2550&partnerID=40&md5=d48ac6d2476cf16cbfb3333ebdc92295

106.

Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, et al. Cloning and expression of a rat brain GABA transporter. Science [Internet]. 1990;249(4974):1303–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025048435&doi=10.1126%252fscience.1975955&partnerID=40&md5=c9a5d067b4424f009b3bab893b4ae9b2

107.

Lopez-Corcuera B, Kanner BI, Aragón C. Reconstitution and partial purification of the sodium and chloride-coupled glycine transporter from rat spinal cord. BBA - Biomembranes [Internet]. 1989;983(2):247–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024381168&doi=10.1016%2f0005-2736%2889%2990240-X&partnerID=40&md5=d2ff8256bf88c91e795b6fb2a400d5e7

108.

Kanner BI, Keynan S, Radian R. Structural and Functional Studies on the Sodium- and Chloride-Coupled γ-Aminobutyric Acid Transporter: Deglycosylation and Limited Proteolysis. Biochemistry [Internet]. 1989;28(9):3722–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024556275&doi=10.1021%252fbi00435a015&partnerID=40&md5=95f710971728877acf26867f9c942d6a

109.

Mabjeesh NJ, Kanner BI. Low-Affinity γ-Aminobutyric Acid Transport in Rat Brain. Biochemistry [Internet]. 1989;28(19):7694–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024434152&doi=10.1021%252fbi00445a026&partnerID=40&md5=070598da5b8c5060ca0d6af4fb33b5d7

110.

Kanner BI. Ion-coupled neurotransmitter transport. Current Opinion in Cell Biology [Internet]. 1989;1(4):735–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024343868&doi=10.1016%2f0955-0674%2889%2990042-2&partnerID=40&md5=01fe78461f320c6f20b9e0d8b1c71932

111.

Gordon AM, Kanner BI. Partial purification of the sodium- and potassium-coupled l-glutamate transport glycoprotein from rat brain. BBA - Biomembranes [Internet]. 1988;944(1):90–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023730911&doi=10.1016%2f0005-2736%2888%2990320-3&partnerID=40&md5=f09472f0571f7fc22ce2201db56cc4fb

112.

Keynan S, Kanner BI. γ-Aminobutyric Acid Transport in Reconstituted Preparations from Rat Brain: Coupled Sodium and Chloride Fluxes. Biochemistry [Internet]. 1988;27(1):12–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023831030&doi=10.1021%252fbi00401a003&partnerID=40&md5=8007350bcacc892f174e61f965858396

113.

Kanner BI, Schuldiner S. Mechanism of transport and storage of neurotransmitter. Critical Reviews in Biochemistry and Molecular Biology [Internet]. 1987;22(1):1–38. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023074631&doi=10.3109%252f10409238709082546&partnerID=40&md5=4cb0d26ba45863ece5f0683008b48f1c

114.

Radian R, Bendahan A, Kanner BI. Purification and identification of the functional sodium- and chloride-coupled γ-aminobutyric acid transport glycoprotein from rat brain. Journal of Biological Chemistry [Internet]. 1986;261(33):15437–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023002440&partnerID=40&md5=d259c1292f012d3a1de136f83ab8b929

115.

Pervin R, Kanner BI, Marx G, Razin E. Thrombin-induced degranulation of cultured bone marrow-derived mast cells: Effect on calcium uptake. Immunology [Internet]. 1985;56(4):667–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022354653&partnerID=40&md5=480ca77c5f5c2721888dbd659789c26b

116.

Radian R, Kanner BI. Reconstitution and purification of the sodium- and chloride-coupled γ-aminobutyric acid transporter from rat brain. Journal of Biological Chemistry [Internet]. 1985;260(21):11859–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022178608&partnerID=40&md5=34dd2ef7b1b6533ca6790c2c2ad2db98

117.

Kanner BI, Bendahan A. Transport of 5-hydroxytryptamine in membrane vesicles from rat basophilic leukemia cells. BBA - Biomembranes [Internet]. 1985;816(2):403–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021791833&doi=10.1016%2f0005-2736%2885%2990508-5&partnerID=40&md5=fd6d62c4eae183471f65785fb00011ad

118.

KANNER BI, RADIAN R. Ion‐coupled Neurotransmitter Transport across the Synaptic Plasma Membrane. Annals of the New York Academy of Sciences [Internet]. 1985;456(1):153–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022273175&doi=10.1111%252fj.1749-6632.1985.tb14860.x&partnerID=40&md5=f5dced70a1eb9560479271e3f0136bbb

119.

Fang JK, Jacobs JW, Kanner BI, Racker E, Bradshaw RA. Amino acid sequence of bovine heart coupling factor 6. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1984;81(21 I):6603–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0345013158&doi=10.1073%252fpnas.81.21.6603&partnerID=40&md5=73952ba75eaa84d519f7b566dbafadbc

120.

Metzger H, Rivnay B, Henkart M, Kanner B, Kinet JP, Perez-Montfort R. Analysis of the structure and function of the receptor for immunoglobulin E. Molecular Immunology [Internet]. 1984;21(12):1167–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021711461&doi=10.1016%2f0161-5890%2884%2990006-3&partnerID=40&md5=9a23380782e4ce7e084532802a1016d5

121.

Kanner B, Metzger H. Initial characterization of the calcium channel activated by the crosslinking of the receptors for IgE. Federation Proceedings [Internet]. 1984;43(6):no. 1450. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021258494&partnerID=40&md5=8511b1f0e313d4ccf71c0387f17ea94f

122.

Kanner BI, Metzger H. Initial characterization of the calcium channel activated by the cross-linking of the receptors for immunoglobulin E. Journal of Biological Chemistry [Internet]. 1984;259(16):10188–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021132061&partnerID=40&md5=5757f2d1a617c517cad851c30a6da76b

123.

Kanner BI. Bioenergetics of neurotransmitter transport. BBA Reviews On Bioenergetics [Internet]. 1983;726(4):293–316. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021067890&doi=10.1016%2f0304-4173%2883%2990013-7&partnerID=40&md5=ddaf64f436239263b174c32aead794ae

124.

Kanner BI, Bendahan A, Radian R. Efflux and exchange of γ-aminobutyric acid and nipecotic acid catalysed by synaptic plasma membrane vesicles isolated from immature rat brain. BBA - Biomembranes [Internet]. 1983;731(1):54–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020535345&doi=10.1016%2f0005-2736%2883%2990397-8&partnerID=40&md5=66936896d59b51c2fd10025dd506c636

125.

Kanner BI, Metzger H. Crosslinking of the receptors for immunoglobulin E depolarizes the plasma membrane of rat basophilic leukemia cells. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1983;80(181):5744–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021091122&doi=10.1073%252fpnas.80.18.5744&partnerID=40&md5=0f1eba04be32e7efeb2bce533ea02ae1

126.

Maron R, Stern Y, Kanner BI, Schuldiner S. Functional asymmetry of the amine transporter from chromaffin granules. Journal of Biological Chemistry [Internet]. 1983;258(19):11476–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020589432&partnerID=40&md5=aa3bb58f375dfd94a45a2d243a7f3c5a

127.

Radian R, Kanner BI. Stoichiometry of Sodium- and Chloride-Coupled γ-Aminobutyric Acid Transport by Synaptic Plasma Membrane Vesicles Isolated from Rat Brain. Biochemistry [Internet]. 1983;22(5):1236–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020575661&doi=10.1021%252fbi00274a038&partnerID=40&md5=fd245526424613063879b3f1f6318ade

128.

Gordon D, Zlotkin E, Kanner B. Functional membrane vesicles from the nervous system of insects. I. Sodium- and chloride-dependent γ-aminobutyric acid transport. BBA - Biomembranes [Internet]. 1982;688(1):229–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020488229&doi=10.1016%2f0005-2736%2882%2990598-3&partnerID=40&md5=c8a850b8e9484b3241fd52aac226406f

129.

Kanner BI, Bendahan A. Binding Order of Substrates to the Sodium and Potassium Ion Coupled L-Glutamic Acid Transporter from Rat Brain. Biochemistry [Internet]. 1982;21(24):6327–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020448447&doi=10.1021%252fbi00267a044&partnerID=40&md5=f778676a1377513ecc20013f4baa5144

130.

Kanner BI, Marva E. Efflux of L-Glutamate by Synaptic Plasma Membrane Vesicles Isolated from Rat Brain. Biochemistry [Internet]. 1982;21(13):3143–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019950576&doi=10.1021%252fbi00256a017&partnerID=40&md5=9a49c224592482db9cc8b83e9da260a6

131.

Kanner BI, Kifer L. Efflux of ᵧ-Aminobutyric Acid by Synaptic Plasma Membrane Vesicles Isolated from Rat Brain. Biochemistry [Internet]. 1981;20(12):3354–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019407024&doi=10.1021%252fbi00515a007&partnerID=40&md5=34768dbc7a614f8d1e9ffe4f570e258d

132.

Schuldiner S, Maron R, Kanner BI. Active transport of biogenic amines in chromaffin granule membrane vesicles. Monographs in neural sciences [Internet]. 1980;7:117–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019300684&partnerID=40&md5=68b20237b0556d3559d01d7c3d0fb161

133.

Kanner BI, Sharon I, Maron R, Schuldiner S. Electrogenic transport of biogenic amines in chromaffin granule membrane vesicle (1980) FEBS Letters 111, 83-86. FEBS Letters [Internet]. 1980;115(2):325. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-49149144762&doi=10.1016%2f0014-5793%2880%2981199-9&partnerID=40&md5=b7325b209a7260e964a69dc36aac2427

134.

Kanner BI, Sharon I, Maron R, Schuldiner S. Electrogenic transport of biogenic amines in chromaffin granule membrane vesicles. FEBS Letters [Internet]. 1980;111(1):83–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018886678&doi=10.1016%2f0014-5793%2880%2980766-6&partnerID=40&md5=5700347e62dcfe93a47a8e994ab1a372

135.

Kanner BI. Modulation of Neurotransmitter Transport by the Activity of the Action Potential Sodium Ion Channel in Membrane Vesicles from Rat Brain. Biochemistry [Internet]. 1980;19(4):692–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018819493&doi=10.1021%252fbi00545a013&partnerID=40&md5=00093d8d7f74f5bd59b0c3cbecd37f68

136.

Kanner BI, Sharon I. Active transport of l-proline by membrane vesicles isolated from rat brain. Biochimica et Biophysica Acta - Biomembranes [Internet]. 1980;600(1):185–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019158728&doi=10.1016%2f0005-2736%2880%2990423-X&partnerID=40&md5=3e016672b9ea49e7da45c1be85dc1ac6

137.

Kanner BI, Fishkes H, Maron R, Sharon I, Schuldiner S. Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules. FEBS Letters [Internet]. 1979;100(1):175–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018354022&doi=10.1016%2f0014-5793%2879%2981158-8&partnerID=40&md5=3a7d6d60a58175914887071b9e91ca09

138.

Maron R, Kanner BI, Schuldiner S. The role of a transmembrane pH gradient in 5-hydroxy tryptamine uptake by synaptic vesicles from rat brain. FEBS Letters [Internet]. 1979;98(2):237–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018790609&doi=10.1016%2f0014-5793%2879%2980190-8&partnerID=40&md5=7e7854fc4281fd1f95e7cbf65aa5945e

139.

Maron R, Fishkes H, Schuldiner S, Maron R, Kanner BI. Solubilization and Reconstitution of the Catecholamine Transporter from Bovine Chromaffin Granules†. Biochemistry [Internet]. 1979;18(22):4781–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018572939&doi=10.1021%252fbi00589a003&partnerID=40&md5=8f2080b84aec7bca87326184e2b9ee04

140.

Kanner BI, Sharon I. Solubilization and reconstitution of the L-glutamic acid transporter from rat brain. FEBS Letters [Internet]. 1978;94(2):245–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018090051&doi=10.1016%2f0014-5793%2878%2980947-8&partnerID=40&md5=769b36d1e11d32a5a5630ffefd6c4f64

141.

Kanner BI. Solubilisation and reconstitution of the γ-aminobutyric acid transporter from rat brain. FEBS Letters [Internet]. 1978;89(1):47–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018103479&doi=10.1016%2f0014-5793%2878%2980519-5&partnerID=40&md5=671148a53c93ae30556b83b79cb42b63

142.

Kanner BI. Active Transport of γ-Aminobutyricacid by Membrane Vesicles Isolated from Rat Brain. Biochemistry [Internet]. 1978;17(7):1207–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018138165&doi=10.1021%252fbi00600a011&partnerID=40&md5=641622bd6a1ba03c7a411e2729aa70b0

143.

Kanner BI, Sharon I. Active Transport of L-Glutamate by Membrane Vesicles Isolated from Rat Brain. Biochemistry [Internet]. 1978;17(19):3949–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018132541&doi=10.1021%252fbi00612a011&partnerID=40&md5=11cb070d1b1bbe8aadc2b25ca1915a4d

144.

Schuldiner S, Fishkes H, Kanner BI. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1978;75(8):3713–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017867128&doi=10.1073%252fpnas.75.8.3713&partnerID=40&md5=69872511d593d151fb45e8b5578b46ba

145.

Shertzer HG, Kanner BI, Banerjee RK, Racker E. Stimulation of adenine nucleotide translocation in reconstituted vesicles by phosphate and the phosphate transporter. Biochemical and Biophysical Research Communications [Internet]. 1977;75(3):779–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017335788&doi=10.1016%2f0006-291X%2877%2991540-6&partnerID=40&md5=dc93ef7e48e77c47aeafbcef58c457ed

146.

Banerjee RK, Shertzer HG, Kanner BI, Racker E. Purification and reconstitution of the phosphate transporter from bovine heart mitochondria. Biochemical and Biophysical Research Communications [Internet]. 1977;75(3):772–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017332114&doi=10.1016%2f0006-291X%2877%2991539-X&partnerID=40&md5=a05b17068d1335c8ce6b3f8659c87b98

147.

Serrano R, Kanner BI, Racker E. Purification and properties of the proton translocating adenosine triphosphatase complex of bovine heart mitochondria. Journal of Biological Chemistry [Internet]. 1976;251(8):2453–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017128381&partnerID=40&md5=fd0e53b427166312d1fc8e7fb508f613

148.

Kanner BI, Serrano R, Anne Kandrach M, Racker E. Preparation and characterization of homogeneous coupling factor 6 from bovine heart mitochondria. Biochemical and Biophysical Research Communications [Internet]. 1976;69(4):1050–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017113598&doi=10.1016%2f0006-291X%2876%2990479-4&partnerID=40&md5=417b5cf3ebb811311e3e6f2cc93dd7ff

149.

Kanner BI, Nelson N, Gutnick DL. Differentiation between mutants of Escherichia coli K12 defective in oxidative phosphorylation. BBA - Bioenergetics [Internet]. 1975;396(3):347–59. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016743908&doi=10.1016%2f0005-2728%2875%2990141-3&partnerID=40&md5=eb7f205f671373fd82bc53b15aacd0c1

150.

Kanner BI, Racker E. Light-dependent proton and rubidium translocation in membrane vesicles from Halobacterium halobium. Biochemical and Biophysical Research Communications [Internet]. 1975;64(3):1054–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016721617&doi=10.1016%2f0006-291X%2875%2990154-0&partnerID=40&md5=94e0b1b1cebebcc00993cf28e7fe7ac1

151.

Nelson N, Kanner BI, Gutnick DL. Purification and properties of Mg2+ Ca2+ adenosinetriphosphatase from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1974;71(7):2720–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016085918&doi=10.1073%252fpnas.71.7.2720&partnerID=40&md5=b7d2b091eb6799e4f42e3c45d6808740

152.

Nieuwenhuis FJRM, Kanner BI, Gutnick DL, Postma PW, Van Dam K. Energy conservation in membranes of mutants of Escherichia coli defective in oxidative phosphorylation. BBA - Bioenergetics [Internet]. 1973;325(1):62–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015910049&doi=10.1016%2f0005-2728%2873%2990151-5&partnerID=40&md5=ae01a08619324994cf8692e3eae4ce0f

153.

Or A, Kanner BI, Gutnick DL. Active transport in mutants of Escherichia coli with alterations in the membrane ATPase complex. FEBS Letters [Internet]. 1973;35(2):217–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015852264&doi=10.1016%2f0014-5793%2873%2980288-1&partnerID=40&md5=1579bccbe3821a734c971c935120ee2f

154.

Gutnick DL, Kanner BI, Postma PW. Oxidative phosphorylation in mutants of Escherichia coli defective in energy transduction. BBA - Bioenergetics [Internet]. 1972;283(2):217–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015514258&doi=10.1016%2f0005-2728%2872%2990237-X&partnerID=40&md5=8146477e5d369d6b79bbdb7d47baac58

155.

Kanner BI, Gutnick DL. Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli. Journal of Bacteriology [Internet]. 1972;111(1):287–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015369326&partnerID=40&md5=88b25b2b90ec0c070087a41ade523587

156.

Kanner BI, Gutnick DL. Energy linked nicotinamide adenine dinucleotide transhydrogenase in a mutant of Escherichia coli K12 lacking membrane Mg2+Ca2+-activated adenosine triphosphatase. FEBS Letters [Internet]. 1972;22(2):197–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-49649133197&doi=10.1016%2f0014-5793%2872%2980043-7&partnerID=40&md5=d17614e984d05cfc9e8c8d79e6cb9983