Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

The Faculty of Medicine - Biochemistry and Molecular Biology: Kanner Baruch

Researchers

 Last updated June 2021 - School of Pharmacy

List of Publications

(1) Dayan-Alon O, Kanner BI. Internal gate mutants of the GABA transporter GAT1 are capable of substrate exchange. Neuropharmacology 2019;161.

(2) Silverstein N, Sliman A, Stockner T, Kanner BI. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity. J Biol Chem 2018;293(37):14200-14209.

(3) Mattison KA, Butler KM, Inglis GAS, Dayan O, Boussidan H, Bhambhani V, et al. SLC6A1 variants identified in epilepsy patients reduce γ-aminobutyric acid transport. Epilepsia 2018;59(9):e135-e141.

(4) Dayan O, Nagarajan A, Shah R, Ben-Yona A, Forrest LR, Kanner BI. An extra amino acid residue in transmembrane domain 10 of the γ-aminobutyric acid (GABA) transporter GAT-1 is required for efficient ion-coupled transport. J Biol Chem 2017;292(13):5418-5428.

(5) Tanui R, Tao Z, Silverstein N, Kanner B, Grewer C. Electrogenic steps associated with substrate binding to the neuronal glutamate transporter EAAC1. J Biol Chem 2016;291(22):11852-11864.

(6) Silverstein N, Ewers D, Forrest LR, Fahlke C, Kanner BI. Molecular determinants of substrate specificity in sodium-coupled glutamate transporters. J Biol Chem 2015;290(48):28988-28996.

(7) Hilwi M, Dayan O, Kanner BI. Conformationally sensitive proximity of extracellular loops 2 and 4 of the γ-aminobutyric acid (GABA) transporter GAT-1 inferred from paired cysteine mutagenesis. J Biol Chem 2014;289(49):34258-34266.

(8) Dayan O, Ben-Yona A, Kanner BI. The aromatic and charge pairs of the thin extracellular gate of the γ-Aminobutyric acid transporter GAT-1 are differently impacted by mutation. J Biol Chem 2014;289(41):28172-28178.

(9) Shabaneh M, Rosental N, Kanner BI. Disulfide cross-linking of transport and trimerization domains of a neuronal glutamate transporter restricts the role of the substrate to the gating of the anion conductance. J Biol Chem 2014;289(16):11175-11182.

(10) Kanner BI. Substrate-induced rearrangements in glutamate-transporter homologs. Nat Struct Mol Biol 2013;20(10):1142-1144.

(11) Ben-Yona A, Kanner BI. Functional defects in the external and internal thin gates of the γ-aminobutyric acid (GABA) transporter GAT-1 can compensate each other. J Biol Chem 2013;288(7):4549-4556.

(12) Silverstein N, Crisman TJ, Forrest LR, Kanner BI. Cysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions. J Biol Chem 2013;288(2):964-973.

(13) Teichman S, Qu S, Kanner BI. Conserved asparagine residue located in binding pocket controls cation selectivity and substrate interactions in neuronal glutamate transporter. J Biol Chem 2012;287(21):17198-17205.

(14) Ben-Yona A, Kanner BI. An acidic amino acid transmembrane helix 10 residue conserved in the neurotransmitter:sodium:symporters is essential for the formation of the extracellular gate of the γ-aminobutyric acid (GABA) transporter GAT-1. J Biol Chem 2012;287(10):7159-7168.

(15) Rosental N, Gameiro A, Grewer C, Kanner BI. A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters. J Biol Chem 2011;286(48):41381-41390.

(16) Ben-Yona A, Bendahan A, Kanner BI. A glutamine residue conserved in the neurotransmitter: Sodium:symporters is essential for the interaction of chloride with the GABA transporter GAT-1. J Biol Chem 2011;286(4):2826-2833.

(17) Elbaz Y, Danieli T, Kanner BI, Schuldiner S. Expression of neurotransmitter transporters for structural and biochemical studies. Protein Expr Purif 2010;73(2):152-160.

(18) Rosental N, Kanner BI. A conserved methionine residue controls the substrate selectivity of a neuronal glutamate transporter. J Biol Chem 2010;285(28):21241-21248.

(19) Tao Z, Rosental N, Kanner BI, Gameiro A, Mwaura J, Grewer C. Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101. J Biol Chem 2010;285(23):17725-17733.

(20) Crisman TJ, Qu S, Kanner BI, Forrest LR. Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proc Natl Acad Sci U S A 2009;106(49):20752-20757.

(21) Teichman S, Qu S, Kanner BI. The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters. Proc Natl Acad Sci U S A 2009;106(34):14297-14302.

(22) Ben-Yona A, Kanner BI. Transmembrane domain 8 of the γ-aminobutyric acid transporter GAT-1 lines a cytoplasmic accessibility pathway into its binding pocket. J Biol Chem 2009;284(15):9727-9732.

(23) Qu S, Kanner BI. Substrates and non-transportable analogues induce structural rearrangements at the extracellular entrance of the glial glutamate transporter GLT-1/EAAT2. J Biol Chem 2008;283(39):26391-26400.

(24) Kanner BI. Structural biology: It's not all in the family. Nature 2008;454(7204):593-594.

(25) Rosenberg A, Kanner BI. The substrates of the γ-aminobutyric acid transporter GAT-1 induce structural rearrangements around the interface of transmembrane domains 1 and 6. J Biol Chem 2008;283(21):14376-14383.

(26) Kanner BI, Zomot E. Sodium-coupled neurotransmitter transporters. Chem Rev 2008;108(5):1654-1668.

(27) Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 2007;449(7163):726-730.

(28) Teichman S, Kanner BI. Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter. J Gen Physiol 2007;129(6):527-539.

(29) Shlaifer I, Kanner BI. Conformationally sensitive reactivity to permeant sulfhydryl reagents of cysteine residues engineered into helical hairpin 1 of the glutamate transporter GLT-1. Mol Pharmacol 2007;71(5):1341-1348.

(30) Kanner BI. Gate movements in glutamate transporters. ACS Chem Biol 2007;2(3):163-166.

(31) Menaker D, Bendahan A, Kanner BI. The substrate specificity of a neuronal glutamate transporter is determined by the nature of the coupling ion. J Neurochem 2006;99(1):20-28.

(32) Rosental N, Bendahan A, Kanner BI. Multiple consequences of mutating two conserved β-bridge forming residues in the translocation cycle of a neuronal glutamate transporter. J Biol Chem 2006;281(38):27905-27915.

(33) Kanner BI. Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol 2006;213(2):89-100.

(34) Zhou Y, Zomot E, Kanner BI. Identification of a lithium interaction site in the γ-aminobutyric acid (GABA) transporter GAT-1. J Biol Chem 2006;281(31):22092-22099.

(35) Shachnai L, Shimamoto K, Kanner BI. Sulfhydryl modification of cysteine mutants of a neuronal glutamate transporter reveals an inverse relationship between sodium dependent conformational changes and the glutamate-gated anion conductance. Neuropharmacology 2005;49(6):862-871.

(36) Kanner BI. Molecular physiology: Intimate contact enables transport. Nature 2005;437(7056):203-205.

(37) Zomot E, Zhou Y, Kanner BI. Proximity of transmembrane domains 1 and 3 of the γ-aminobutyric acid transporter GAT-1 inferred from paired cysteine mutagenesis. J Biol Chem 2005;280(27):25512-25516.

(38) Zhou Y, Kanner BI. Transporter-associated currents in the γ-aminobutyric acid transporter GAT-1 are conditionally impaired by mutations of a conserved glycine residue. J Biol Chem 2005;280(21):20316-20324.

(39) Melamed N, Kanner BI. Transmembrane domains I and II of the γ-aminobutyric acid transporter GAT-4 contain molecular determinants of substrate specificity. Mol Pharmacol 2004;65(6):1452-1461.

(40) Zhou Y, Bennett ER, Kanner BI. The Aqueous Accessibility in the External Half of Transmembrane Domain I of the GABA Transporter GAT-1 Is Modulated by Its Ligands. J Biol Chem 2004;279(14):13800-13808.

(41) Borre L, Kanner BI. Arginine 445 Controls the Coupling between Glutamate and Cations in the Neuronal Transporter EAAC-1. J Biol Chem 2004;279(4):2513-2519.

(42) Zomot E, Kanner BI. The Interaction of the γ-Aminobutyric Acid Transporter GAT-1 with the Neurotransmitter Is Selectively Impaired by Sulfhydryl Modification of a Conformationally Sensitive Cysteine Residue Engineered into Extracellular Loop IV. J Biol Chem 2003;278(44):42950-42958.

(43) Kanner BI. Transmembrane domain I of the γ-aminobutyric acid transporter GAT-1 plays a crucial role in the transition between cation leak and transport modes. J Biol Chem 2003;278(6):3705-3712.

(44) Reig N, Chillarón J, Bartoccioni P, Fernández E, Bendahan A, Zorzano A, et al. The light subunit of system bo,+ is fully functional in the absence of the heavy subunit. EMBO J 2002;21(18):4906-4914.

(45) Kanner BI, Borre L. The dual-function glutamate transporters: Structure and molecular characterisation of the substrate-binding sites. Biochim Biophys Acta Bioenerg 2002;1555(1-3):92-95.

(46) Grunewald M, Menaker D, Kanner BI. Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1. J Biol Chem 2002;277(29):26074-26080.

(47) Borre L, Kavanaugh MP, Kanner BI. Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J Biol Chem 2002;277(16):13501-13507.

(48) Brocke L, Bendahan A, Grunewald M, Kanner BI. Proximity of two oppositely oriented reentrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis. J Biol Chem 2002;277(6):3985-3992.

(49) Borre L, Kanner BI. Coupled, but Not Uncoupled, Fluxes in a Neuronal Glutamate Transporter Can Be Activated by Lithium Ions. J Biol Chem 2001;276(44):40396-40401.

(50) MacAulay N, Bendahan A, Loland CJ, Zeuthen T, Kanner BI, Gether U. Engineered Zn2+ switches in the γ-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents. J Biol Chem 2001;276(44):40476-40485.

(51) Schousboe A, Kanner B. GABA transporters: Functional and pharmacological properties. Glutamate and GABA Receptors and Transporters: Structure, Function and Pharmacology; 2001. p. 337-349.

(52) Kanner BI, Kavanaugh MP, Bendahan A. Molecular characterization of substrate-binding sites in the glutamate transporter family. Biochem Soc Trans 2001;29(6):707-710.

(53) Bendahan A, Armon A, Madani N, Kavanaugh MP, Kanner BI. Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J Biol Chem 2000;275(48):37436-37442.

(54) Bennett ER, Su H, Kanner BI. Mutation of arginine 44 of GAT-1, a (Na+ + Cl-)-coupled γ-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J Biol Chem 2000;275(44):34106-34113.

(55) Grunewald M, Kanner BI. The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J Biol Chem 2000;275(13):9684-9689.

(56) Golovanevsky V, Kanner BI. The reactivity of the γ-aminobutyric acid transporter GAT-1 toward sulfhydryl reagents is conformationally sensitive. Identification of a major target residue. J Biol Chem 1999;274(33):23020-23026.

(57) Zhang Y, Kanner BI. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Proc Natl Acad Sci U S A 1999;96(4):1710-1715.

(58) Zarbiv R, Grunewald M, Kavanaugh MP, Kanner BI. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. J Biol Chem 1998;273(23):14231-14237.

(59) Zhang Y, Bendahan A, Zarbiv R, Kavanaugh MP, Kanner BI. Molecular determinant of ion selectivity of a (Na+ + K+)-coupled rat brain glutamate transporter. Proc Natl Acad Sci U S A 1998;95(2):751-755.

(60) Grunewald M, Bendahan A, Kanner BI. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron 1998;21(3):623-632.

(61) Bismuth Y, Kavanaugh MP, Kanner BI. Tyrosine 140 of the γ-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J Biol Chem 1997;272(26):16096-16102.

(62) Bennett ER, Kanner BI. The membrane topology of GAT-1, a (Na+ + Cl-)-coupled γ-aminobutyric acid transporter from rat brain. J Biol Chem 1997;272(2):1203-1210.

(63) Kanner BI, Bendahan A, Zhang Y, Kavanaugh MP. Two adjacent residues of the glutamate transporter GLT-1 are important for ion coupling and selectivity. Amino Acids 1997;13(1):47.

(64) Kavanaugh MP, Bendahan A, Zerangue N, Zhang Y, Kanner BI. Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J Biol Chem 1997;272(3):1703-1708.

(65) Kanner BI. Chapter 19 Structure and function of sodium-coupled amino acid neurotransmitter transporters. Handb Of biol Phys 1996;2(C):433-446.

(66) Mager S, Kleinberger-Doron N, Keshet GI, Davidson N, Kanner BI, Lester HA. Ion binding and permeation at the GABA transporter GAT1. J Neurosci 1996;16(17):5405-5414.

(67) Kanner BI. Structure/function relationships in glutamate transporters. Biochem Soc Trans 1996;24(3):843-846.

(68) Keshet GI, Bendahan A, Su H, Mager S, Lester HA, Kanner BI. Glutamate-101 is critical for the function of the sodium and chloride-coupled GABA transporter GAT-1. FEBS Lett 1995;371(1):39-42.

(69) Grunewald M, Kanner B. Conformational changes monitored on the glutamate transporter GLT-1 indicate the existence of two neurotransmitter-bound states. J Biol Chem 1995;270(28):17017-17024.

(70) Pines G, Zhang Y, Kanner BI. Glutamate 404 is involved in the substrate discrimination of GLT-1, a (Na+ + K+)-coupled glutamate transporter from rat brain. J Biol Chem 1995;270(29):17093-17097.

(71) Kanner BI, Bendahan A, Pantanowitz S, Su H. The number of amino acid residues in hydrophilic loops connecting transmembrane domains of the GABA transporter GAT-1 is critical for its function. FEBS Lett 1994;356(2-3):191-194.

(72) Kanner BI. Sodium-coupled neurotransmitter transport: Structure, function and regulation. J Exp Biol 1994;196:237-249.

(73) Rauen T, Kanner BI. Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae. Neurosci Lett 1994;169(1-2):137-140.

(74) Kleinberger-Doron N, Kanner BI. Identification of tryptophan residues critical for the function and targeting of the γ-aminobutyric acid transporter (subtype A). J Biol Chem 1994;269(4):3063-3067.

(75) Kanner BI. Structure and function of sodium-coupled neurotransmitter transporters. Kidney Blood Press Res 1994;17(3-4):208-211.

(76) Kanner BI, Kleinberger-Doron N. Structure and function of sodium-coupled neurotransmitter transporters. Cell Physiol Biochem 1994;4(5-6):174-184.

(77) Zhang Y, Pines G, Kanner BI. Histidine 326 is critical for the function of GLT-1, a (Na+ + K+)- coupled glutamate transporter from rat brain. J Biol Chem 1994;269(30):19573-19577.

(78) Casado M, Bendahan A, Zafra F, Danbolt NC, Aragon C, Gimenez C, et al. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J Biol Chem 1993;268(36):27313-27317.

(79) Pick CG, Weizman A, Fares F, Gavish M, Kanner BI, Yanai J. Hippocampal γ-aminobutyric acid and benzodiazepine receptors after early phenobarbital exposure. Dev Brain Res 1993;74(1):111-116.

(80) Kanner BI. Glutamate transporters from brain. A novel neurotransmitter transporter family. FEBS Lett 1993;325(1-2):95-99.

(81) Bendahan A, Kanner BI. Identification of domains of a cloned rat brain GABA transporter which are not required for its functional expression. FEBS Lett 1993;318(1):41-44.

(82) Kanner BI. The structure and function of sodium-coupled neurotransmitter transporters. Eur Neuropsychopharmacol 1993;3(3):294-295.

(83) Kanner BI. Structure and function of sodium-coupled neurotransmitter transporters. J Gen Physiol 1993;101(46 TH ANN. SYMP.):243-250.

(84) Mabjeesh NJ, Kanner BI. The Substrates of a Sodium- and Chloride-Coupled γ-Aminobutyric Acid Transporter Protect Multiple Sites throughout the Protein against Proteolytic Cleavage. Biochemistry 1993;32(33):8540-8546.

(85) Pantanowitz S, Bendahan A, Kanner BI. Only one of the charged amino acids located in the transmembrane α- helices of the γ-aminobutyric acid transporter (subtype A) is essential for its activity. J Biol Chem 1993;268(5):3222-3225.

(86) Kanner BI, Danbolt N, Pines G, Koepsell H, Seeberg E, Mathisen J-. Structure and function of the sodium and potassium-coupled glutamate transporter from rat brain. Biochem Soc Trans 1993;21(1):59-61.

(87) Pick CG, Weizman A, Fares F, Gavish M, Kanner BI, Yanai J. Erratum: Hippocampal γ-aminobutyric acid and benzodiazepine receptors after early phenobarbital exposure (Developmental Brain Research, 74 (1993) (111-116)). Dev Brain Res 1993;75(2):301.

(88) Rauen T, Jeserich G, Danbolt NC, Kanner BI. Comparative analysis of sodium-dependent l-glutamate transport of synaptosomal and astroglial membrane vesicles from mouse cortex. FEBS Lett 1992;312(1):15-20.

(89) Mabjeesh NJ, Frese M, Rauen T, Jeserich G, Kanner BI. Neuronal and glial γ-aminobutyric acid+ transporters are distinct proteins. FEBS Lett 1992;299(1):99-102.

(90) Keynan S, Kanner BI, Suh Y-, Rudnick G. Expression of a Cloned γ-Aminobutyric Acid Transporter in Mammalian Cells. Biochemistry 1992;31(7):1974-1979.

(91) Mabjeesh NJ, Kanner BI. Neither amino nor carboxyl termini are required for function of the sodium- and chloride-coupled γ-aminobutyric acid transporter from rat brain. J Biol Chem 1992;267(4):2563-2568.

(92) Danbolt NC, Storm-Mathisen J, Kanner BI. An [Na+ + K+]coupled l-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 1992;51(2):295-310.

(93) Hees B, Danbolt NC, Kanner BI, Haase W, Heitmann K, Koepsell H. A monoclonal antibody against a Na+-L-glutamate cotransporter from rat brain. J Biol Chem 1992;267(32):23275-23281.

(94) Storm-Mathisen J, Danbolt NC, Rothe F, Torp R, Zhang N, Aas J-, et al. Chapter 19: Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue. Prog Brain Res 1992;94(C):225-241.

(95) Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, et al. Erratum: Cloning and expression of a rat brain L-glutamate transporter (Nature (1992) 360 (464-467)). Nature 1992;360(6406):768.

(96) Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, et al. Cloning and expression of a rat brain L-glutamate transporter. Nature 1992;360(6403):464-467.

(97) Kanner BI. Amino acid neurotransmitter reuptake: Mechanistics, biochemistry and molecular cloning. Biochem Soc Trans 1991;19(1):92-95.

(98) Danbolt NC, Kanner BI, Jon S-. Ultrastructural localization of a purified brain L-glutamate transporter. Micron Microsc Acta 1991;22(1-2):33-34.

(99) Pines G, Kanner BI. Counterflow of L-Glutamate in Plasma Membrane Vesicles and Reconstituted Preparations from Rat Brain. Biochemistry 1990;29(51):11209-11214.

(100) Shouffani A, Kanner BI. Cholesterol is required for the rconstitution of the sodium- and chloride-coupled, γ-aminobutyric acid transporter from rat brain. J Biol Chem 1990;265(11):6002-6008.

(101) Danbolt NC, Pines G, Kanner BI. Purification and Reconstitution of the Sodium- and Potassium-Coupled Glutamate Transport Glycoprotein from Rat Brain. Biochemistry 1990;29(28):6734-6740.

(102) Kanner BI, Bendahan A. Two pharmacologically distinct sodium- and chloride-coupled high-affinity γ-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain. Proc Natl Acad Sci U S A 1990;87(7):2550-2554.

(103) Radian R, Ottersen OF, Storm-Mathisen J, Castel M, Kanner BL. Immunocytochemical localization of the GABA transporter in rat brain. J Neurosci 1990;10(4):1319-1330.

(104) Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, et al. Cloning and expression of a rat brain GABA transporter. Science 1990;249(4974):1303-1306.

(105) Lopez-Corcuera B, Kanner BI, Aragón C. Reconstitution and partial purification of the sodium and chloride-coupled glycine transporter from rat spinal cord. Biochim Biophys Acta Biomembr 1989;983(2):247-252.

(106) Kanner BI, Keynan S, Radian R. Structural and Functional Studies on the Sodium- and Chloride-Coupled γ-Aminobutyric Acid Transporter: Deglycosylation and Limited Proteolysis. Biochemistry 1989;28(9):3722-3728.

(107) Kanner BI. Ion-coupled neurotransmitter transport. Curr Opin Cell Biol 1989;1(4):735-738.

(108) Mabjeesh NJ, Kanner BI. Low-Affinity γ-Aminobutyric Acid Transport in Rat Brain. Biochemistry 1989;28(19):7694-7699.

(109) Gordon AM, Kanner BI. Partial purification of the sodium- and potassium-coupled l-glutamate transport glycoprotein from rat brain. Biochim Biophys Acta Biomembr 1988;944(1):90-96.

(110) Keynan S, Kanner BI. γ-Aminobutyric Acid Transport in Reconstituted Preparations from Rat Brain: Coupled Sodium and Chloride Fluxes. Biochemistry 1988;27(1):12-17.

(111) Kanner BI, Schuldiner S. Mechanism of transport and storage of neurotransmitter. Crit Rev Biochem Mol Biol 1987;22(1):1-38.

(112) Radian R, Bendahan A, Kanner BI. Purification and identification of the functional sodium- and chloride-coupled γ-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem 1986;261(33):15437-15441.

(113) Radian R, Kanner BI. Reconstitution and purification of the sodium- and chloride-coupled γ-aminobutyric acid transporter from rat brain. J Biol Chem 1985;260(21):11859-11865.

(114) Pervin R, Kanner BI, Marx G, Razin E. Thrombin-induced degranulation of cultured bone marrow-derived mast cells: Effect on calcium uptake. Immunology 1985;56(4):667-672.

(115) Kanner BI, Bendahan A. Transport of 5-hydroxytryptamine in membrane vesicles from rat basophilic leukemia cells. Biochim Biophys Acta Biomembr 1985;816(2):403-410.

(116) KANNER BI, RADIAN R. Ion‐coupled Neurotransmitter Transport across the Synaptic Plasma Membrane. Ann New York Acad Sci 1985;456(1):153-161.

(117) Fang JK, Jacobs JW, Kanner BI, Racker E, Bradshaw RA. Amino acid sequence of bovine heart coupling factor 6. Proc Natl Acad Sci U S A 1984;81(21 I):6603-6607.

(118) Kanner B, Metzger H. Initial characterization of the calcium channel activated by the crosslinking of the receptors for IgE. Fed Proc 1984;43(6).

(119) Kanner BI, Metzger H. Initial characterization of the calcium channel activated by the cross-linking of the receptors for immunoglobulin E. J Biol Chem 1984;259(16):10188-10193.

(120) Metzger H, Rivnay B, Henkart M, Kanner B, Kinet J-, Perez-Montfort R. Analysis of the structure and function of the receptor for immunoglobulin E. Mol Immunol 1984;21(12):1167-1173.

(121) Kanner BI. Bioenergetics of neurotransmitter transport. Biochim Biophys Acta Rev Bioenerg 1983;726(4):293-316.

(122) Kanner BI, Bendahan A, Radian R. Efflux and exchange of γ-aminobutyric acid and nipecotic acid catalysed by synaptic plasma membrane vesicles isolated from immature rat brain. Biochim Biophys Acta Biomembr 1983;731(1):54-62.

(123) Kanner BI, Metzger H. Crosslinking of the receptors for immunoglobulin E depolarizes the plasma membrane of rat basophilic leukemia cells. Proc Natl Acad Sci U S A 1983;80(181):5744-5748.

(124) Radian R, Kanner BI. Stoichiometry of Sodium- and Chloride-Coupled γ-Aminobutyric Acid Transport by Synaptic Plasma Membrane Vesicles Isolated from Rat Brain. Biochemistry 1983;22(5):1236-1241.

(125) Maron R, Stern Y, Kanner BI, Schuldiner S. Functional asymmetry of the amine transporter from chromaffin granules. J Biol Chem 1983;258(19):11476-11481.

(126) Gordon D, Zlotkin E, Kanner B. Functional membrane vesicles from the nervous system of insects. I. Sodium- and chloride-dependent γ-aminobutyric acid transport. Biochim Biophys Acta Biomembr 1982;688(1):229-236.

(127) Kanner BI, Bendahan A. Binding Order of Substrates to the Sodium and Potassium Ion Coupled L-Glutamic Acid Transporter from Rat Brain. Biochemistry 1982;21(24):6327-6330.

(128) Kanner BI, Marva E. Efflux of L-Glutamate by Synaptic Plasma Membrane Vesicles Isolated from Rat Brain. Biochemistry 1982;21(13):3143-3147.

(129) Kanner BI, Kifer L. Efflux of ᵧ-Aminobutyric Acid by Synaptic Plasma Membrane Vesicles Isolated from Rat Brain. Biochemistry 1981;20(12):3354-3358.

(130) Schuldiner S, Maron R, Kanner BI. Active transport of biogenic amines in chromaffin granule membrane vesicles. Monogr Neural Sci 1980;7:117-128.

(131) Kanner BI, Sharon I, Maron R, Schuldiner S. Electrogenic transport of biogenic amines in chromaffin granule membrane vesicle (1980) FEBS Letters 111, 83-86. FEBS Lett 1980;115(2):325.

(132) Kanner BI, Sharon I, Maron R, Schuldiner S. Electrogenic transport of biogenic amines in chromaffin granule membrane vesicles. FEBS Lett 1980;111(1):83-86.

(133) Kanner BI. Modulation of Neurotransmitter Transport by the Activity of the Action Potential Sodium Ion Channel in Membrane Vesicles from Rat Brain. Biochemistry 1980;19(4):692-697.

(134) Kanner BI, Sharon I. Active transport of l-proline by membrane vesicles isolated from rat brain. Biochim Biophys Acta Biomembr 1980;600(1):185-194.

(135) Kanner BI, Fishkes H, Maron R, Sharon I, Schuldiner S. Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules. FEBS Lett 1979;100(1):175-178.

(136) Maron R, Kanner BI, Schuldiner S. The role of a transmembrane pH gradient in 5-hydroxy tryptamine uptake by synaptic vesicles from rat brain. FEBS Lett 1979;98(2):237-240.

(137) Maron R, Fishkes H, Schuldiner S, Maron R, Kanner BI. Solubilization and Reconstitution of the Catecholamine Transporter from Bovine Chromaffin Granules†. Biochemistry 1979;18(22):4781-4785.

(138) Kanner BI, Sharon I. Solubilization and reconstitution of the L-glutamic acid transporter from rat brain. FEBS Lett 1978;94(2):245-248.

(139) Kanner BI. Solubilisation and reconstitution of the γ-aminobutyric acid transporter from rat brain. FEBS Lett 1978;89(1):47-50.

(140) Kanner BI. Active Transport of γ-Aminobutyricacid by Membrane Vesicles Isolated from Rat Brain. Biochemistry 1978;17(7):1207-1211.

(141) Kanner BI, Sharon I. Active Transport of L-Glutamate by Membrane Vesicles Isolated from Rat Brain. Biochemistry 1978;17(19):3949-3953.

(142) Schuldiner S, Fishkes H, Kanner BI. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Proc Natl Acad Sci U S A 1978;75(8):3713-3716.

(143) Shertzer HG, Kanner BI, Banerjee RK, Racker E. Stimulation of adenine nucleotide translocation in reconstituted vesicles by phosphate and the phosphate transporter. Biochem Biophys Res Commun 1977;75(3):779-784.

(144) Banerjee RK, Shertzer HG, Kanner BI, Racker E. Purification and reconstitution of the phosphate transporter from bovine heart mitochondria. Biochem Biophys Res Commun 1977;75(3):772-778.

(145) Serrano R, Kanner BI, Racker E. Purification and properties of the proton translocating adenosine triphosphatase complex of bovine heart mitochondria. J Biol Chem 1976;251(8):2453-2461.

(146) Kanner BI, Serrano R, Anne Kandrach M, Racker E. Preparation and characterization of homogeneous coupling factor 6 from bovine heart mitochondria. Biochem Biophys Res Commun 1976;69(4):1050-1056.

(147) Kanner BI, Nelson N, Gutnick DL. Differentiation between mutants of Escherichia coli K12 defective in oxidative phosphorylation. Biochim Biophys Acta Bioenerg 1975;396(3):347-359.

(148) Kanner BI, Racker E. Light-dependent proton and rubidium translocation in membrane vesicles from Halobacterium halobium. Biochem Biophys Res Commun 1975;64(3):1054-1061.

(149) Nelson N, Kanner BI, Gutnick DL. Purification and properties of Mg2+ Ca2+ adenosinetriphosphatase from Escherichia coli. Proc Natl Acad Sci U S A 1974;71(7):2720-2724.

(150) Nieuwenhuis FJRM, Kanner BI, Gutnick DL, Postma PW, Van Dam K. Energy conservation in membranes of mutants of Escherichia coli defective in oxidative phosphorylation. Biochim Biophys Acta Bioenerg 1973;325(1):62-71.

(151) Or A, Kanner BI, Gutnick DL. Active transport in mutants of Escherichia coli with alterations in the membrane ATPase complex. FEBS Lett 1973;35(2):217-219.

(152) Gutnick DL, Kanner BI, Postma PW. Oxidative phosphorylation in mutants of Escherichia coli defective in energy transduction. Biochim Biophys Acta Bioenerg 1972;283(2):217-222.

(153) Kanner BI, Gutnick DL. Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli. J Bacteriol 1972;111(1):287-289.

(154) Kanner BI, Gutnick DL. Energy linked nicotinamide adenine dinucleotide transhydrogenase in a mutant of Escherichia coli K12 lacking membrane Mg2+Ca2+-activated adenosine triphosphatase. FEBS Lett 1972;22(2):197-199.