Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

The Faculty of Medicine - Biochemistry and Molecular Biology: Meyuhas Oded


 Last updated June 2021 - School of Pharmacy

List of Publications

(1) Puighermanal E, Biever A, Pascoli V, Melser S, Pratlong M, Cutando L, et al. Ribosomal protein s6 phosphorylation is involved in novelty-induced locomotion, synaptic plasticity and mRNA translation. Front Mol Neurosci 2017;10.

(2) Wittenberg AD, Azar S, Klochendler A, Stolovich-Rain M, Avraham S, Birnbaum L, et al. Phosphorylated ribosomal protein S6 is required for Akt-driven hyperplasia and malignant transformation, but not for hypertrophy, aneuploidy and hyperfunction of pancreatic β-cells. PLoS ONE 2016;11(2).

(3) Wu H, Chen J, Xu J, Dong Z, Meyuhas O, Chen J-. Blocking rpS6 phosphorylation exacerbates Tsc1 deletion–induced kidney growth. J Am Soc Nephrol 2016;27(4):1145-1158.

(4) Volovelsky O, Cohen G, Kenig A, Wasserman G, Dreazen A, Meyuhas O, et al. Phosphorylation of ribosomal protein S6 mediates mammalian target of rapamycin complex 1-induced parathyroid cell proliferation in secondary hyperparathyroidism. J Am Soc Nephrol 2016;27(4):1091-1101.

(5) Salmond RJ, Brownlie RJ, Meyuhas O, Zamoyska R. Mechanistic target of rapamycin complex 1/S6 kinase 1 signals influence T cell activation independently of ribosomal protein S6 phosphorylation. J Immunol 2015;195(10):4615-4622.

(6) Meyuhas O, Kahan T. The race to decipher the top secrets of TOP mRNAs. Biochim Biophys Acta Gene Regul Mech 2015;1849(7):801-811.

(7) Xu J, Chen J, Dong Z, Meyuhas O, Chen J-. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy. Kidney Int 2015;87(3):543-556.

(8) Faller WJ, Jackson TJ, Knight JRP, Ridgway RA, Jamieson T, Karim SA, et al. MTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 2015;517(7535):497-500.

(9) Meyuhas O. Ribosomal Protein S6 Phosphorylation: Four Decades of Research. Int Rev Cell Mol Biol 2015;320:41-73.

(10) Biever A, Puighermanal E, Nishi A, David A, Panciatici C, Longueville S, et al. PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. J Neurosci 2015;35(10):4113-4130.

(11) Patursky-Polischuk I, Kasir J, Miloslavski R, Hayouka Z, Hausner-Hanochi M, Stolovich-Rain M, et al. Reassessment of the Role of TSC, mTORC1 and MicroRNAs in Amino Acids-Meditated Translational Control of TOP mRNAs. PLoS ONE 2014;9(10).

(12) Chauvin C, Koka V, Nouschi A, Mieulet V, Hoareau-Aveilla C, Dreazen A, et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 2014;33(4):474-483.

(13) Han K, Jaimovich A, Dey G, Ruggero D, Meyuhas O, Sonenberg N, et al. Parallel measurement of dynamic changes in translation rates in single cells. Nat Methods 2014;11(1):86-93.

(14) Miloslavski R, Cohen E, Avraham A, Iluz Y, Hayouka Z, Kasir J, et al. Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. J Mol Cell Bio 2014;6(3):255-266.

(15) Khalaileh A, Dreazen A, Khatib A, Apel R, Swisa A, Kidess-Bassir N, et al. Phosphorylation of ribosomal protein S6 attenuates DNA damage and tumor suppression during development of pancreatic cancer. Cancer Res 2013;73(6):1811-1820.

(16) Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, et al. Genetic Dissection of the Oncogenic mTOR Pathway Reveals Druggable Addiction to Translational Control via 4EBP-eIF4E. Cancer Cell 2010;17(3):249-261.

(17) Meyuhas O, Dreazen A. Chapter 3 Ribosomal Protein S6 Kinase. From TOP mRNAs to Cell Size. Prog Mol Biol Transl Sci 2009;90(C):109-153.

(18) Granot Z, Swisa A, Magenheim J, Stolovich-Rain M, Fujimoto W, Manduchi E, et al. LKB1 Regulates Pancreatic β Cell Size, Polarity, and Function. Cell Metab 2009;10(4):296-308.

(19) Ruvinsky I, Katz M, Dreazen A, Gielchinsky Y, Saada A, Freedman N, et al. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS ONE 2009;4(5).

(20) Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol 2009;29(6):1670.

(21) Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol 2009;29(3):640-649.

(22) Meyuhas O. Chapter 1 Physiological Roles of Ribosomal Protein S6: One of Its Kind. Int Rev Cell Mol Biol 2008;268:1-37.

(23) Jeon Y-, Kim IK, Hong S-, Nan H, Kim H-, Lee H-, et al. Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling. Oncogene 2008;27(31):4344-4352.

(24) Markert A, Grimm M, Martinez J, Wiesner J, Meyerhans A, Meyuhas O, et al. The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep 2008;9(6):569-575.

(25) Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 2006;31(6):342-348.

(26) Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 2005;19(18):2199-2211.

(27) Karni R, Gus Y, Dor Y, Meyuhas O, Levitzki A. Active Src elevates the expression of β-catenin by enhancement of cap-dependent translation. Mol Cell Biol 2005;25(12):5031-5039.

(28) Stolovich M, Lerer T, Bolkier Y, Cohen H, Meyuhas O. Lithium can relieve translational repression of TOP mRNAs elicited by various blocks along the cell cycle in a glycogen synthase kinase-3- and S6-kinase-independent manner. J Biol Chem 2005;280(7):5336-5342.

(29) Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae SS, et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 2002;22(23):8101-8113.

(30) Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A. Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1α expression under normoxia. J Biol Chem 2002;277(45):42919-42925.

(31) Barth-Baus D, Stratton CA, Parrott L, Myerson H, Meyuhas O, Templeton DJ, et al. S6 phosphorylation-independent pathways regulate translation of 5′-terminal oligopyrimidine tract-containing mRNAs in differentiating hematopoietic cells. Nucleic Acids Res 2002;30(9):1919-1928.

(32) Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 2001;21(24):8671-8683.

(33) Kerner M, Meyuhas O, Hirsch-Lerner D, Rosen LJ, Min Z, Barenholz Y. Interplay in lipoplexes between type of pDNA promoter and lipid composition determines transfection efficiency of human growth hormone in NIH3T3 cells in culture. Biochim Biophys Acta Mol Cell Biol Lipids 2001;1532(1-2):128-136.

(34) Hornstein E, Tang H, Meyuhas O. Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. Cold Spring Harbor Symp Quant Biol 2001;66:477-484.

(35) Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 2000;267(21):6321-6330.

(36) Hornstein E, Harel H, Levy G, Meyuhas O. Overexpression of poly(A)-binding protein down-regulates the translation or the abundance of its own mRNA. FEBS Lett 1999;457(2):209-213.

(37) Biberman Y, Meyuhas O. TOP mRNAs are translationally inhibited by a titratable repressor in both wheat germ extract and reticulocyte lysate. FEBS Lett 1999;456(3):357-360.

(38) Hornstein E, Git A, Braunstein I, Avni D, Meyuhas O. The expression of poly(A)-binding protein gene is translationally regulated in a growth-dependent fashion through a 5'-terminal oligopyrimidine tract motif. J Biol Chem 1999;274(3):1708-1714.

(39) Zhang ZC, Nechushtan H, Jacob-Hirsch J, Avni D, Meyuhas O, Razin E. Growth-dependent and PKC-mediated translational regulation of the upstream stimulating factor-2 (USF2) mRNA in hematopoietic cells. Oncogene 1998;16(6):763-769.

(40) Meyuhas O, Avni D, Bibermant Y, Shama S, Ostareck B, Ostareck-Lederer A, et al. Growth-dependent translational control of top mRNAS. FASEB J 1997;11(9).

(41) Biberman Y, Meyuhas O. Substitution of just five nucleotides at and around the transcription start site of rat β-actin promoter is sufficient to render the resulting transcript a subject for translational control. FEBS Lett 1997;405(3):333-336.

(42) Avni D, Biberman Y, Meyuhas O. The 5′ Terminal Oligopyrimidine Tract Confers Translational Control on Top Mrnas in a Cell Type-and Sequence Context-Dependent Manner. Nucleic Acids Res 1996;25(5):995-1001.

(43) Shama S, Meyuhas O. The translational cis-regulatory element of mammalian ribosomal protein mRNAs is recognized by the plant translational apparatus. Eur J Biochem 1996;236(2):383-388.

(44) Shama S, Avni D, Frederickson RM, Sonenberg N, Meyuhas O. Overexpression of initiation factor eIF-4E does not relieve the translational repression of ribosomal protein mRNAs in quiescent cells. GENE EXPRESSION 1995;4(4-5):241-252.

(45) Avni D, Shama S, Loreni F, Meyuhas O. Vertebrate mRNAs with a 5'-terminal pyrimidine tract are candidates for translational repression in quiescent cells: Characterization of the translational cis-regulatory element. Mol Cell Biol 1994;14(6):3822-3833.

(46) Aloni R, Peleg D, Meyuhas O. Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol Cell Biol 1992;12(5):2203-2212.

(47) Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O. Oligopyrimidine tract at the 5' end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci U S A 1991;88(8):3319-3323.

(48) Shiran A, Flusser G, Aloni R, Meyuhas O. The mammalian genome contains a high proportion of processed pseudogenes corresponding to ribosomal protein L19. Biochem Int 1990;22(5):921-928.

(49) Meyuhas O, Klein A. The mouse ribosomal protein L7 gene. Its primary structure and functional analysis of the promoter region. J Biol Chem 1990;265(20):11465-11473.

(50) Meyuhas O, Baldin V, Bouche G, Amalric F. Glucocorticoids repress ribosome biosynthesis in lymphosarcoma cells by affecting gene expression at the level of transcription, posttranscription and translation. Biochim Biophys Acta Gene Struct Expr 1990;1049(1):38-44.

(51) Perry RP, Meyuhas O. Translational control of ribosomal protein production in mammalian cells. Enzyme 1990;44(1-4):83-92.

(52) Aoyama Y, Chan Y-, Meyuhas O, Wool IG. The primary structure of rat ribosomal protein L18a. FEBS Lett 1989;247(2):242-246.

(53) Atchison ML, Meyuhas O, Perry RP. Localization of transcriptional regulatory elements and nuclear factor binding sites in mouse ribosomal protein gene rpL32. Mol Cell Biol 1989;9(5):2067-2074.

(54) Flusser G, Ginzburg V, Meyuhas O. Glucocorticoids induce transcription of ribosomal protein genes in rat liver. Mol Cell Endocrinol 1989;64(2):213-222.

(55) Lin A, Chan YL, McNally J, Peleg D, Meyuhas O, Wool IG. The primary structure of rat ribosomal protein L7. The presence near the amino terminus of L7 of five tandem repeats of a sequence of 12 amino acids. J Biol Chem 1987;262(26):12665-12671.

(56) Chan Y-, Lin A, McNally J, Peleg D, Meyuhas O, Wool IG. The primary structure of rat ribosomal protein L19. A determination from the sequence of nucleotides in a cDNA and from the sequence of amino acids in the protein. J Biol Chem 1987;262(3):1111-1115.

(57) Theodor L, Peleg D, Meyuhas O. P31, a mammalian housekeeping protein encoded by a multigene family containing a high proportion of pseudogenes. Biochim Biophys Acta Gene Struct Expr 1985;826(2-3):137-146.

(58) Meyuhas O. Evolutionary conservation of ribosomal protein mRNA sequences: application for expansion of corresponding cDNA and gene libraries. Biochim Biophys Acta Gene Struct Expr 1985;825(4):393-397.

(59) Benvenisty N, Mencher D, Meyuhas O, Razin A, Reshef L. Sequential changes in DNA methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development. Proc Natl Acad Sci U S A 1985;82(2):267-271.

(60) Cohen H, Gidoni B, Shouval D, Benvenisty N, Mencher D, Meyuhas O, et al. Conservation from rat to human of cytosolic phosphoenolpyruvate carboxykinase and the control of its gene expression. FEBS Lett 1985;180(2):175-180.

(61) Peled-Yalif E, Cohen-Binder l, Meyuhas O. Isolation and characterization of four mouse ribosomal-protein-L18 genes that appear to be processed pseudogenes. Gene 1984;29(1-2):157-166.

(62) BENVENISTY N, SIMCHON EB, COHEN H, MENCHER D, MEYUHAS O, RESHEF L. Control of the Activity of Phosphoertolpyruvate Carboxykinase and the Level of ItsmRNA in Livers of Newborn Rats: Effect of Diabetes, Glucose Load and Glucocorticoids. Eur J Biochem 1983;132(3):663-668.

(63) Faliks D, Meyuhas O. Coordinate regulation of ribosomal protein mRNA level in regenerating rat liver. Study with the corresponding mouse cloned cDNAs. Nucleic Acids Res 1982;10(3):789-801.

(64) Geyer PK, Meyuhas O, Perry RP, Johnson LF. Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol Cell Biol 1982;2(6):685-693.

(65) Monk RJ, Meyuhas O, Perry RP. Mammals have multiple genes for individual ribosomal proteins. Cell 1981;24(2):301-306.

(66) D'Eustachio P, Meyuhas O, Ruddle F, Perry RP. Chromosomal distribution of ribosomal protein genes in the mouse. Cell 1981;24(2):307-312.

(67) Meyuhas O, Perry RP. Construction and identification of cDNA clones for mouse ribosomal proteins: Application for the study of r-protein gene expression. Gene 1980;10(2):113-129.

(68) Meyuhas O, Perry RP. Relationship between size, stability and abundance of the messenger RNA of mouse L cells. Cell 1979;16(1):139-148.

(69) Meyuhas O, Reshef L, Ballard FJ, Hanson RW. The effect of insulin and glucocorticoids on the synthesis and degradation of phosphoenolpyruvate carboxykinase (GTP) in rat adipose tissue cultured in vitro. Biochem J 1976;158(1):9-16.

(70) Meyuhas O, Reshef L, Gunn JM, Hanson RW, Ballard FJ. Regulation of phosphoenolpyruvate carboxykinase (GTP) in adipose tissue in vivo by glucocorticoids and insulin. Biochem J 1976;158(1):1-7.

(71) Meyuhas O, Reshef L. Proceedings: Repression by insulin and corticosteroids of phosphoenolpyruvate carboxykinase synthesis, in rat adipose tissue organ culture. Isr J Med Sci 1975;11(11):1181.

(72) Potash S, Meyuhas O, Reshef L. Proceedings: Increased metabolism of glucose in adipose tissue organ culture. Isr J Med Sci 1975;11(11):1181-1182.

(73) Gunn JM, Hanson RW, Meyuhas O. Glucorticoids and the regulation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in the rat. Biochem J 1975;150(2):195-203.

(74) Reshef L, Meyuhas O, Boshwitz C, Hanson RW, Ballard FJ. Physiological role and regulation of glyceroneogenesis in rat adipose tissue. Isr J Med Sci 1972;8(3):372-381.

(75) Meyuhas O, Boshwitz C, Reshef L. Phosphoenolpyruvate carboxylase decarboxylation catalyzed reaction in cytosol of rat adipose tissue. BBA - Enzymology 1971;250(1):224-237.