Last updated September 2024 - Biochemistry and Molecular Biology
1.
Ring NAR, Dworak H, Bachmann B, Schädl B, Valdivieso K, Rozmaric T, et al. The p-rpS6-zone delineates wounding responses and the healing process. Developmental Cell [Internet]. 2023;58(11):981-992.e6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160400630&doi=10.1016%252fj.devcel.2023.04.001&partnerID=40&md5=45c2aa32a919e3c56dd33176d8167875
2.
Li F, Fang Y, Zhuang Q, Cheng M, Moronge D, Jue H, et al. Blocking ribosomal protein S6 phosphorylation inhibits podocyte hypertrophy and focal segmental glomerulosclerosis. Kidney International [Internet]. 2022;102(1):121–35. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129976617&doi=10.1016%252fj.kint.2022.02.037&partnerID=40&md5=5d7957e86485fc96b83db5b65cc6d4ec
3.
Puighermanal E, Biever A, Pascoli V, Melser S, Pratlong M, Cutando L, et al. Ribosomal protein s6 phosphorylation is involved in novelty-induced locomotion, synaptic plasticity and mRNA translation. Frontiers in Molecular Neuroscience [Internet]. 2017;10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041804049&doi=10.3389%252ffnmol.2017.00419&partnerID=40&md5=72c282e93a0ee515504f398ab23c6ce3
4.
Wittenberg AD, Azar S, Klochendler A, Stolovich-Rain M, Avraham S, Birnbaum L, et al. Phosphorylated ribosomal protein S6 is required for Akt-driven hyperplasia and malignant transformation, but not for hypertrophy, aneuploidy and hyperfunction of pancreatic β-cells. PLoS ONE [Internet]. 2016;11(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960459861&doi=10.1371%252fjournal.pone.0149995&partnerID=40&md5=14ccaab5cb050da260364f4a5e6f1434
5.
Wu H, Chen J, Xu J, Dong Z, Meyuhas O, Chen JK. Blocking rpS6 phosphorylation exacerbates Tsc1 deletion–induced kidney growth. Journal of the American Society of Nephrology [Internet]. 2016;27(4):1145–58. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017044204&doi=10.1681%252fASN.2014121264&partnerID=40&md5=3591d43e6061401009ef53b510bc5309
6.
Volovelsky O, Cohen G, Kenig A, Wasserman G, Dreazen A, Meyuhas O, et al. Phosphorylation of ribosomal protein S6 mediates mammalian target of rapamycin complex 1-induced parathyroid cell proliferation in secondary hyperparathyroidism. Journal of the American Society of Nephrology [Internet]. 2016;27(4):1091–101. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981263305&doi=10.1681%252fASN.2015040339&partnerID=40&md5=087a78db9e468dcf465faad1284c1082
7.
Salmond RJ, Brownlie RJ, Meyuhas O, Zamoyska R. Mechanistic target of rapamycin complex 1/S6 kinase 1 signals influence T cell activation independently of ribosomal protein S6 phosphorylation. Journal of Immunology [Internet]. 2015;195(10):4615–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958641630&doi=10.4049%252fjimmunol.1501473&partnerID=40&md5=344853a1cce1ed36bb184de0f980468a
8.
Meyuhas O, Kahan T. The race to decipher the top secrets of TOP mRNAs. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms [Internet]. 2015;1849(7):801–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930959981&doi=10.1016%252fj.bbagrm.2014.08.015&partnerID=40&md5=47dd725902efa86ca6d3a3fb2f9ae83e
9.
Xu J, Chen J, Dong Z, Meyuhas O, Chen JK. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy. Kidney International [Internet]. 2015;87(3):543–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930406310&doi=10.1038%252fki.2014.302&partnerID=40&md5=4d87aeb1f2ce5dd2b1c617b0e92bc0b4
10.
Faller WJ, Jackson TJ, Knight JRP, Ridgway RA, Jamieson T, Karim SA, et al. MTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature [Internet]. 2015;517(7535):497–500. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925491509&doi=10.1038%252fnature13896&partnerID=40&md5=954796b8e0fe1308c8d0d2921fd2c33a
11.
Meyuhas O. Ribosomal Protein S6 Phosphorylation: Four Decades of Research. International Review of Cell and Molecular Biology [Internet]. 2015;320:41–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938629848&doi=10.1016%252fbs.ircmb.2015.07.006&partnerID=40&md5=297899a4d22c9700ac51a251b6391445
12.
Biever A, Puighermanal E, Nishi A, David A, Panciatici C, Longueville S, et al. PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. Journal of Neuroscience [Internet]. 2015;35(10):4113–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924439941&doi=10.1523%252fJNEUROSCI.3288-14.2015&partnerID=40&md5=c6139a991c400023e0ae2c7f6be09881
13.
Patursky-Polischuk I, Kasir J, Miloslavski R, Hayouka Z, Hausner-Hanochi M, Stolovich-Rain M, et al. Reassessment of the Role of TSC, mTORC1 and MicroRNAs in Amino Acids-Meditated Translational Control of TOP mRNAs. PLoS ONE [Internet]. 2014;9(10). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908610762&doi=10.1371%252fjournal.pone.0109410&partnerID=40&md5=b2d0c926781ea2eb9ea1e17bccd8be90
14.
Chauvin C, Koka V, Nouschi A, Mieulet V, Hoareau-Aveilla C, Dreazen A, et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene [Internet]. 2014;33(4):474–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896629473&doi=10.1038%252fonc.2012.606&partnerID=40&md5=66cee6b5752b2116f8d0587f6c613dbf
15.
Miloslavski R, Cohen E, Avraham A, Iluz Y, Hayouka Z, Kasir J, et al. Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. Journal of Molecular Cell Biology [Internet]. 2014;6(3):255–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901700198&doi=10.1093%252fjmcb%252fmju008&partnerID=40&md5=8b0c478746f07913388e87346d94e9f9
16.
Han K, Jaimovich A, Dey G, Ruggero D, Meyuhas O, Sonenberg N, et al. Parallel measurement of dynamic changes in translation rates in single cells. Nature Methods [Internet]. 2014;11(1):86–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894628550&doi=10.1038%252fnmeth.2729&partnerID=40&md5=f578168e9b3702d13bfab10bec522fe9
17.
Khalaileh A, Dreazen A, Khatib A, Apel R, Swisa A, Kidess-Bassir N, et al. Phosphorylation of ribosomal protein S6 attenuates DNA damage and tumor suppression during development of pancreatic cancer. Cancer Research [Internet]. 2013;73(6):1811–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875448111&doi=10.1158%252f0008-5472.CAN-12-2014&partnerID=40&md5=d5b45d28016e8dd7b1f0a7c2e0a64d21
18.
Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, et al. Genetic Dissection of the Oncogenic mTOR Pathway Reveals Druggable Addiction to Translational Control via 4EBP-eIF4E. Cancer Cell [Internet]. 2010;17(3):249–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77649286736&doi=10.1016%252fj.ccr.2010.01.021&partnerID=40&md5=17de9d4b1c78ba2fb1ce1698273252f2
19.
Meyuhas O, Dreazen A. Chapter 3 Ribosomal Protein S6 Kinase. From TOP mRNAs to Cell Size. Progress in Molecular Biology and Translational Science [Internet]. 2009;90(C):109–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957075353&doi=10.1016%2fS1877-1173%2809%2990003-5&partnerID=40&md5=1174cbcf5d4ef36d5c848642c72d9fbe
20.
Granot Z, Swisa A, Magenheim J, Stolovich-Rain M, Fujimoto W, Manduchi E, et al. LKB1 Regulates Pancreatic β Cell Size, Polarity, and Function. Cell Metabolism [Internet]. 2009;10(4):296–308. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349503932&doi=10.1016%252fj.cmet.2009.08.010&partnerID=40&md5=e067e4f7a9a56147626c884fda9adeea
21.
Ruvinsky I, Katz M, Dreazen A, Gielchinsky Y, Saada A, Freedman N, et al. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS ONE [Internet]. 2009;4(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-66049157014&doi=10.1371%252fjournal.pone.0005618&partnerID=40&md5=5d260ebe9c88d4324d77c77a6852bf54
22.
Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Molecular and Cellular Biology [Internet]. 2009;29(6):1670. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-62849087835&doi=10.1128%252fMCB.00104-09&partnerID=40&md5=6f0bbf05cc09855f892cdf50dc8e72dd
23.
Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Molecular and Cellular Biology [Internet]. 2009;29(3):640–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-59249097362&doi=10.1128%252fMCB.00980-08&partnerID=40&md5=694fcb163942ecb71f946d77f97a0206
24.
Meyuhas O. Chapter 1 Physiological Roles of Ribosomal Protein S6: One of Its Kind. International Review of Cell and Molecular Biology [Internet]. 2008;268:1–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-52049103675&doi=10.1016%2fS1937-6448%2808%2900801-0&partnerID=40&md5=a41433a67648373d5eb4ba804af955b1
25.
Jeon YJ, Kim IK, Hong SH, Nan H, Kim HJ, Lee HJ, et al. Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling. Oncogene [Internet]. 2008;27(31):4344–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-47549095202&doi=10.1038%252fonc.2008.73&partnerID=40&md5=54770f363391b978f844ce1e8137e264
26.
Markert A, Grimm M, Martinez J, Wiesner J, Meyerhans A, Meyuhas O, et al. The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Reports [Internet]. 2008;9(6):569–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-44649135099&doi=10.1038%252fembor.2008.72&partnerID=40&md5=5469efc184ac76cd1a20232919abd47d
27.
Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends in Biochemical Sciences [Internet]. 2006;31(6):342–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745150462&doi=10.1016%252fj.tibs.2006.04.003&partnerID=40&md5=c973a1220bf9b660657b236778f11c9f
28.
Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes and Development [Internet]. 2005;19(18):2199–211. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-24944464482&doi=10.1101%252fgad.351605&partnerID=40&md5=1c405cc4acf80f81e74a46dda5684a2b
29.
Karni R, Gus Y, Dor Y, Meyuhas O, Levitzki A. Active Src elevates the expression of β-catenin by enhancement of cap-dependent translation. Molecular and Cellular Biology [Internet]. 2005;25(12):5031–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-20344387465&doi=10.1128%252fMCB.25.12.5031-5039.2005&partnerID=40&md5=a74f99d02621db5e0e59953d7a83365f
30.
Stolovich M, Lerer T, Bolkier Y, Cohen H, Meyuhas O. Lithium can relieve translational repression of TOP mRNAs elicited by various blocks along the cell cycle in a glycogen synthase kinase-3- and S6-kinase-independent manner. Journal of Biological Chemistry [Internet]. 2005;280(7):5336–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-14044276306&doi=10.1074%252fjbc.M412434200&partnerID=40&md5=25c05beaf438e53d1b7cb0df814331b5
31.
Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae SS, et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Molecular and Cellular Biology [Internet]. 2002;22(23):8101–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036889291&doi=10.1128%252fMCB.22.23.8101-8113.2002&partnerID=40&md5=ae1a164b73a4f4b45559c993fe4ec2c7
32.
Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A. Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1α expression under normoxia. Journal of Biological Chemistry [Internet]. 2002;277(45):42919–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037044578&doi=10.1074%252fjbc.M206141200&partnerID=40&md5=fa991aa0ae0207d62c4d9af87e705661
33.
Barth-Baus D, Stratton CA, Parrott L, Myerson H, Meyuhas O, Templeton DJ, et al. S6 phosphorylation-independent pathways regulate translation of 5′-terminal oligopyrimidine tract-containing mRNAs in differentiating hematopoietic cells. Nucleic Acids Research [Internet]. 2002;30(9):1919–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036566786&doi=10.1093%252fnar%252f30.9.1919&partnerID=40&md5=35e4ef326e1406b2f11870aa842194d6
34.
Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Molecular and Cellular Biology [Internet]. 2001;21(24):8671–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035200856&doi=10.1128%252fMCB.21.24.8671-8683.2001&partnerID=40&md5=0ff197e7900932d88daae2b2867b32a3
35.
Kerner M, Meyuhas O, Hirsch-Lerner D, Rosen LJ, Min Z, Barenholz Y. Interplay in lipoplexes between type of pDNA promoter and lipid composition determines transfection efficiency of human growth hormone in NIH3T3 cells in culture. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids [Internet]. 2001;1532(1–2):128–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035978433&doi=10.1016%2fS1388-1981%2801%2900118-4&partnerID=40&md5=f3679eef5cfa2e2db9a04ea5a27fce49
36.
Hornstein E, Tang H, Meyuhas O. Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. 2001;66:477–84. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035787712&doi=10.1101%252fsqb.2001.66.477&partnerID=40&md5=29f942cda7b95b41fb1f568bf8cb7693
37.
Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level. European Journal of Biochemistry [Internet]. 2000;267(21):6321–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033761629&doi=10.1046%252fj.1432-1327.2000.01719.x&partnerID=40&md5=26dc51cd0e8406e55d0cdba3c4d15a68
38.
Hornstein E, Harel H, Levy G, Meyuhas O. Overexpression of poly(A)-binding protein down-regulates the translation or the abundance of its own mRNA. FEBS Letters [Internet]. 1999;457(2):209–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032772533&doi=10.1016%2fS0014-5793%2899%2901039-X&partnerID=40&md5=2427e336e488dc466a9cbc6a5afe07b1
39.
Biberman Y, Meyuhas O. TOP mRNAs are translationally inhibited by a titratable repressor in both wheat germ extract and reticulocyte lysate. FEBS Letters [Internet]. 1999;456(3):357–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032866822&doi=10.1016%2fS0014-5793%2899%2900983-7&partnerID=40&md5=89fc38c193246ef6a41ccc3100a31a5c
40.
Hornstein E, Git A, Braunstein I, Avni D, Meyuhas O. The expression of poly(A)-binding protein gene is translationally regulated in a growth-dependent fashion through a 5’-terminal oligopyrimidine tract motif. Journal of Biological Chemistry [Internet]. 1999;274(3):1708–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033556419&doi=10.1074%252fjbc.274.3.1708&partnerID=40&md5=278bf7c7cdcf52f9630ed05780d7e418
41.
Zhang ZC, Nechushtan H, Jacob-Hirsch J, Avni D, Meyuhas O, Razin E. Growth-dependent and PKC-mediated translational regulation of the upstream stimulating factor-2 (USF2) mRNA in hematopoietic cells. Oncogene [Internet]. 1998;16(6):763–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000500599&doi=10.1038%252fsj.onc.1201584&partnerID=40&md5=5342488f60e4a959f695e7e9937d27fc
42.
Meyuhas O, Avni D, Bibermant Y, Shama S, Ostareck B, Ostareck-Lederer A, et al. Growth-dependent translational control of top mRNAS. FASEB Journal [Internet]. 1997;11(9):A1283. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750231671&partnerID=40&md5=01a875aed141cef192a511d6b8d690f1
43.
Biberman Y, Meyuhas O. Substitution of just five nucleotides at and around the transcription start site of rat β-actin promoter is sufficient to render the resulting transcript a subject for translational control. FEBS Letters [Internet]. 1997;405(3):333–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030929822&doi=10.1016%2fS0014-5793%2897%2900234-2&partnerID=40&md5=fa1217ffe9e150f04f19e1d409ddb41e
44.
Avni D, Biberman Y, Meyuhas O. The 5′ Terminal Oligopyrimidine Tract Confers Translational Control on Top Mrnas in a Cell Type-and Sequence Context-Dependent Manner. Nucleic Acids Research [Internet]. 1996;25(5):995–1001. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030838872&doi=10.1093%252fnar%252f25.5.995&partnerID=40&md5=9f5d4f33af8ffbf4dba854536510640d
45.
Shama S, Meyuhas O. The translational cis-regulatory element of mammalian ribosomal protein mRNAs is recognized by the plant translational apparatus. European Journal of Biochemistry [Internet]. 1996;236(2):383–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029875022&doi=10.1111%252fj.1432-1033.1996.00383.x&partnerID=40&md5=b8b4394c84ff9d3b1d7d5f03ec99cc6b
46.
Shama S, Avni D, Frederickson RM, Sonenberg N, Meyuhas O. Overexpression of initiation factor eIF-4E does not relieve the translational repression of ribosomal protein mRNAs in quiescent cells. Gene Expression [Internet]. 1995;4(4–5):241–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029168362&partnerID=40&md5=71b4bb499865eded3c3f85ec4304aad9
47.
Avni D, Shama S, Loreni F, Meyuhas O. Vertebrate mRNAs with a 5’-terminal pyrimidine tract are candidates for translational repression in quiescent cells: Characterization of the translational cis-regulatory element. Molecular and Cellular Biology [Internet]. 1994;14(6):3822–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028356914&doi=10.1128%252fMCB.14.6.3822&partnerID=40&md5=2eb1e901e5fc4a8c4f049c6562c90518
48.
Aloni R, Peleg D, Meyuhas O. Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Molecular and Cellular Biology [Internet]. 1992;12(5):2203–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026719232&doi=10.1128%252fMCB.12.5.2203&partnerID=40&md5=aeb48739fbafb2b1388de86302615beb
49.
Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O. Oligopyrimidine tract at the 5’ end of mammalian ribosomal protein mRNAs is required for their translational control. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1991;88(8):3319–23. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026323221&doi=10.1073%252fpnas.88.8.3319&partnerID=40&md5=894ebfd9b8c6318bfdcc67b2391c80e3
50.
Shiran A, Flusser G, Aloni R, Meyuhas O. The mammalian genome contains a high proportion of processed pseudogenes corresponding to ribosomal protein L19. Biochemistry International [Internet]. 1990;22(5):921–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025614735&partnerID=40&md5=6c2a178f433244e5a0b9e55430b2a36c
51.
Meyuhas O, Klein A. The mouse ribosomal protein L7 gene. Its primary structure and functional analysis of the promoter region. Journal of Biological Chemistry [Internet]. 1990;265(20):11465–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025368830&partnerID=40&md5=ccc3fbf13d99898be3b0abdce51d78aa
52.
Meyuhas O, Baldin V, Bouche G, Amalric F. Glucocorticoids repress ribosome biosynthesis in lymphosarcoma cells by affecting gene expression at the level of transcription, posttranscription and translation. BBA - Gene Structure and Expression [Internet]. 1990;1049(1):38–44. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025285836&doi=10.1016%2f0167-4781%2890%2990082-D&partnerID=40&md5=5491bf60f69ca01af13322181ea5ce0f
53.
Perry RP, Meyuhas O. Translational control of ribosomal protein production in mammalian cells. Enzyme [Internet]. 1990;44(1–4):83–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025679961&doi=10.1159%252f000468749&partnerID=40&md5=5e123550670fb2d8acb3dc1396e3ac5f
54.
Aoyama Y, Chan YL, Meyuhas O, Wool IG. The primary structure of rat ribosomal protein L18a. FEBS Letters [Internet]. 1989;247(2):242–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024593501&doi=10.1016%2f0014-5793%2889%2981344-4&partnerID=40&md5=35e1e01ee56b134d627edde67d037a61
55.
Atchison ML, Meyuhas O, Perry RP. Localization of transcriptional regulatory elements and nuclear factor binding sites in mouse ribosomal protein gene rpL32. Molecular and Cellular Biology [Internet]. 1989;9(5):2067–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024514078&doi=10.1128%252fMCB.9.5.2067&partnerID=40&md5=e3a4a285f62e82929b7d10b989ddfc17
56.
Flusser G, Ginzburg V, Meyuhas O. Glucocorticoids induce transcription of ribosomal protein genes in rat liver. Molecular and Cellular Endocrinology [Internet]. 1989;64(2):213–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024378001&doi=10.1016%2f0303-7207%2889%2990148-2&partnerID=40&md5=5e5f53e8e65c46ad5d4439c94f6ee204
57.
Lin A, Chan YL, McNally J, Peleg D, Meyuhas O, Wool IG. The primary structure of rat ribosomal protein L7. The presence near the amino terminus of L7 of five tandem repeats of a sequence of 12 amino acids. Journal of Biological Chemistry [Internet]. 1987;262(26):12665–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023656165&partnerID=40&md5=2dd39f4f9dcbeda88722bfdcc75fa5ad
58.
Chan YL, Lin A, McNally J, Peleg D, Meyuhas O, Wool IG. The primary structure of rat ribosomal protein L19. A determination from the sequence of nucleotides in a cDNA and from the sequence of amino acids in the protein. Journal of Biological Chemistry [Internet]. 1987;262(3):1111–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023102943&partnerID=40&md5=8fad7113d47915dd08c2050dd22bd477
59.
Theodor L, Peleg D, Meyuhas O. P31, a mammalian housekeeping protein encoded by a multigene family containing a high proportion of pseudogenes. BBA - Gene Structure and Expression [Internet]. 1985;826(2–3):137–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022374394&doi=10.1016%2f0167-4781%2885%2990119-8&partnerID=40&md5=2d362e2d4ac90fd1ca1f759ed44e6ab8
60.
Meyuhas O. Evolutionary conservation of ribosomal protein mRNA sequences: application for expansion of corresponding cDNA and gene libraries. BBA - Gene Structure and Expression [Internet]. 1985;825(4):393–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021858530&doi=10.1016%2f0167-4781%2885%2990066-1&partnerID=40&md5=bdbcb6d374835949d2b1c4de3438c4fa
61.
Benvenisty N, Mencher D, Meyuhas O, Razin A, Reshef L. Sequential changes in DNA methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1985;82(2):267–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021906662&doi=10.1073%252fpnas.82.2.267&partnerID=40&md5=f53194dd177a48994708591b27e23b04
62.
Cohen H, Gidoni B, Shouval D, Benvenisty N, Mencher D, Meyuhas O, et al. Conservation from rat to human of cytosolic phosphoenolpyruvate carboxykinase and the control of its gene expression. FEBS Letters [Internet]. 1985;180(2):175–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022005422&doi=10.1016%2f0014-5793%2885%2981066-8&partnerID=40&md5=b14b66c3704b2ea55204ba53a574202c
63.
Peled-Yalif E, Cohen-Binder l., Meyuhas O. Isolation and characterization of four mouse ribosomal-protein-L18 genes that appear to be processed pseudogenes. Gene [Internet]. 1984;29(1–2):157–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021181733&doi=10.1016%2f0378-1119%2884%2990176-8&partnerID=40&md5=53a80f731d5440d7c8de69b2fc28bac9
64.
BENVENISTY N, SIMCHON EB, COHEN H, MENCHER D, MEYUHAS O, RESHEF L. Control of the Activity of Phosphoertolpyruvate Carboxykinase and the Level of ItsmRNA in Livers of Newborn Rats: Effect of Diabetes, Glucose Load and Glucocorticoids. European Journal of Biochemistry [Internet]. 1983;132(3):663–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020598290&doi=10.1111%252fj.1432-1033.1983.tb07416.x&partnerID=40&md5=1c373471d74fffa4f97446a1b69c0108
65.
Faliks D, Meyuhas O. Coordinate regulation of ribosomal protein mRNA level in regenerating rat liver. Study with the corresponding mouse cloned cDNAs. Nucleic Acids Research [Internet]. 1982;10(3):789–801. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020480134&doi=10.1093%252fnar%252f10.3.789&partnerID=40&md5=f099ab091d638e6d70d6e7f42cd5052d
66.
Geyer PK, Meyuhas O, Perry RP, Johnson LF. Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Molecular and Cellular Biology [Internet]. 1982;2(6):685–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020320668&doi=10.1128%252fMCB.2.6.685&partnerID=40&md5=5ac76158e191fe1437fb031d3757617a
67.
D’Eustachio P, Meyuhas O, Ruddle F, Perry RP. Chromosomal distribution of ribosomal protein genes in the mouse. Cell [Internet]. 1981;24(2):307–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019522010&doi=10.1016%2f0092-8674%2881%2990320-2&partnerID=40&md5=9e94d09842700c9263ce5c0a14e8a3d6
68.
Monk RJ, Meyuhas O, Perry RP. Mammals have multiple genes for individual ribosomal proteins. Cell [Internet]. 1981;24(2):301–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019395010&doi=10.1016%2f0092-8674%2881%2990319-6&partnerID=40&md5=bde3605690582909756a416e25d0c160
69.
Meyuhas O, Perry RP. Construction and identification of cDNA clones for mouse ribosomal proteins: Application for the study of r-protein gene expression. Gene [Internet]. 1980;10(2):113–29. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018961141&doi=10.1016%2f0378-1119%2880%2990129-8&partnerID=40&md5=940aee6309a418b2d0b7f0897f8338b9
70.
Meyuhas O, Perry RP. Relationship between size, stability and abundance of the messenger RNA of mouse L cells. Cell [Internet]. 1979;16(1):139–48. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018352605&doi=10.1016%2f0092-8674%2879%2990195-8&partnerID=40&md5=60d2fd0e3e41ad1f13e888cdc91836db
71.
Meyuhas O, Reshef L, Gunn JM, Hanson RW, Ballard FJ. Regulation of phosphoenolpyruvate carboxykinase (GTP) in adipose tissue in vivo by glucocorticoids and insulin. The Biochemical journal [Internet]. 1976;158(1):1–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017307606&doi=10.1042%252fbj1580001&partnerID=40&md5=7deeaf52791c99662059939b795f8c93
72.
Meyuhas O, Reshef L, Ballard FJ, Hanson RW. The effect of insulin and glucocorticoids on the synthesis and degradation of phosphoenolpyruvate carboxykinase (GTP) in rat adipose tissue cultured in vitro. Biochemical Journal [Internet]. 1976;158(1):9–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0017185748&doi=10.1042%252fbj1580009&partnerID=40&md5=03492f86911388e41a9a198376c2bd31
73.
Potash S, Meyuhas O, Reshef L. Proceedings: Increased metabolism of glucose in adipose tissue organ culture. Israel Journal of Medical Sciences [Internet]. 1975;11(11):1181–2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016576460&partnerID=40&md5=c04110ab67aac4472cbe6f1d194dff2c
74.
Meyuhas O, Reshef L. Proceedings: Repression by insulin and corticosteroids of phosphoenolpyruvate carboxykinase synthesis, in rat adipose tissue organ culture. Israel Journal of Medical Sciences [Internet]. 1975;11(11):1181. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016571218&partnerID=40&md5=2b20ecaf4c2873469ca4a4f5a14f0409
75.
Gunn JM, Hanson RW, Meyuhas O. Glucorticoids and the regulation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in the rat. Biochemical Journal [Internet]. 1975;150(2):195–203. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016594745&doi=10.1042%252fbj1500195&partnerID=40&md5=c372f7870780b2a7cafa3146e639fea8
76.
Reshef L, Meyuhas O, Boshwitz C, Hanson RW, Ballard FJ. Physiological role and regulation of glyceroneogenesis in rat adipose tissue. Israel Journal of Medical Sciences [Internet]. 1972;8(3):372–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015314679&partnerID=40&md5=f59273219a4d852f94a43230862b754c
77.
Meyuhas O, Boshwitz Ch, Reshef L. Phosphoenolpyruvate carboxylase decarboxylation catalyzed reaction in cytosol of rat adipose tissue. BBA - Enzymology [Internet]. 1971;250(1):224–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015138433&doi=10.1016%2f0005-2744%2871%2990138-0&partnerID=40&md5=fb91b0f6e8960797f5f34352ff133ec6