Skip to Main Content

HUJI logo Hebrew
The Library Authority    רשות הספריות

Library Research Guides    מדריכים לפי תחומים


School of Pharmacy : Ringel Israel

Researchers

 Last updated Septmber 2023 - School of Pharmacy

List of Publications

1.            Raviv, U. et al. Insight into structural biophysics from solution X-ray scattering. J. Struct. Biol. 215, (2023).

2.            Shemesh, A. et al. Effect of tubulin self-association on GTP hydrolysis and nucleotide exchange reactions. Biochim. Biophys. Acta - Proteins Proteomics 1871, (2023).

3.            Shemesh, A. et al. Mechanism of the Initial Tubulin Nucleation Phase. J. Phys. Chem. Lett. 13, 9725–9735 (2022).

4.            Shemesh, A. et al. Mechanism of Tubulin Oligomers and Single-Ring Disassembly Catastrophe. J. Phys. Chem. Lett. 13, 5246–5252 (2022).

5.            Shemesh, A. et al. Structure and Energetics of GTP- And GDP-Tubulin Isodesmic Self-Association. ACS Chem. Biol. 16, 2212–2227 (2021).

6.            Dharan, R. et al. Hierarchical Assembly Pathways of Spermine-Induced Tubulin Conical-Spiral Architectures. ACS Nano 15, 8836–8847 (2021).

7.            Shemesh, A., Ginsburg, A., Levi-Kalisman, Y., Ringel, I. & Raviv, U. Structure, Assembly, and Disassembly of Tubulin Single Rings. Biochemistry 57, 6153–6165 (2018).

8.            Ginsburg, A. et al. Structure of Dynamic, Taxol-Stabilized, and GMPPCP-Stabilized Microtubule. J. Phys. Chem. B 121, 8427–8436 (2017).

9.            Ginsburg, A. et al. Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution. J. Chem. Inf. Model. 56, 1518–1527 (2016).

10.          Abramov, Y., Carmi, S., Anteby, S. O. & Ringel, I. Characterization of ovarian cancer cell metabolism and response to chemotherapy by 31P magnetic resonance spectroscopy. Oncol. Res. 20, 529–536 (2013).

11.          Abramov, Y., Carmi, S., Anteby, S. O. & Ringel, I. Ex vivo 1H and 31P magnetic resonance spectroscopy as a means for tumor characterization in ovarian cancer patients. Oncol. Rep. 29, 321–328 (2013).

12.          Freikman, I., Ringel, I. & Fibach, E. Shedding of phosphatidylserine from developing erythroid cells involves microtubule depolymerization and affects membrane lipid composition. J. Membr. Biol. 245, 779–787 (2012).

13.          Abramov, Y., Carmi, S., Cohen, J. S., Anteby, S. O. & Ringel, I. 31P-Magnetic resonance spectra of ovarian cancer cells exposed to chemotherapy within a three-dimensional Matrigel construct. Oncol. Rep. 28, 735–741 (2012).

14.          Kolevzon, N. et al. Multiple triphenylphosphonium cations as a platform for the delivery of a pro-apoptotic peptide. Pharm. Res. 28, 2780–2789 (2011).

15.          Freikman, I., Ringel, I. & Fibach, E. Oxidative stress-induced membrane shedding from RBCs is Ca flux-mediated and affects membrane lipid composition. J. Membr. Biol. 240, 73–82 (2011).

16.          Freikman, I., Amer, J., Ringel, I. & Fibach, E. A flow cytometry approach for quantitative analysis of cellular phosphatidylserine distribution and shedding. Anal. Biochem. 393, 111–116 (2009).

17.          Abu-Gosh, S. E., Kolvazon, N., Tirosh, B., Ringel, I. & Yavin, E. Multiple triphenylphosphonium cations shuttle a hydrophilic peptide into mitochondria. Mol. Pharm. 6, 1138–1144 (2009).

18.          Goldfinger, M. et al. De novo ceramide synthesis is required for n-linked glycosylation in plasma cells. J. Immunol. 182, 7038–7047 (2009).

19.          Freikman, I., Amer, J., Cohen, J. S., Ringel, I. & Fibach, E. Oxidative stress causes membrane phospholipid rearrangement and shedding from RBC membranes-An NMR study. Biochim. Biophys. Acta - Biomembr. 1778, 2388–2394 (2008).

20.          Muhlrad, A., Ringel, I., Pavlov, D., Peyser, T. M. & Reisler, E. Antagonistic effects of cofilin, beryllium fluoride complex, and phalloidin on subdomain 2 and nucleotide-binding cleft in F-actin. Biophys. J. 91, 4490–4499 (2006).

21.          Sterin, M., Cohen, J. S. & Ringel, I. Hormone sensitivity is reflected in the phospholipid profiles of breast cancer cell lines. Breast Cancer Res. Treat. 87, 1–11 (2004).

22.          Cohen, J. S. et al. Determination of Intracellular pH and Compartmentation Using Diffusion-Weighted NMR Spectroscopy with pH-Sensitive Indicators. Magn. Reson. Med. 51, 900–903 (2004).

23.          Sterin, M. et al. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: A 31P-magnetic resonance spectroscopy study. Cancer Res. 61, 7536–7543 (2001).

24.          Mardor, Y. et al. Noninvasive real-time monitoring of intracellular cancer cell metabolism and response to lonidmnine treatment using diffusion weighted proton magnetic resonance spectroscopy. Cancer Res. 60, 5179–5186 (2000).

25.          Epstein, E. et al. Dynein light chain binding to a 3’-untranslated sequence mediates parathyroid hormone mRNA association with microtubules. J. Clin. Invest. 105, 505–512 (2000).

26.          Barasch, D. et al. Novel anthraquinone derivatives with redox-active functional groups capable of producing free radicals by metabolism: Are free radicals essential for cytotoxicity? Eur. J. Med. Chem. 34, 597–615 (1999).

27.          Gorodetsky, R., Levdansky, L., Ringel, I. & Vexler, A. Paclitaxel-induced modification of the effects of radiation and alterations in the cell cycle in normal and tumor mammalian cells. Radiat. Res. 150, 283–291 (1998).

28.          Moyna, G. et al. Conformational studies of paclitaxel analogs modified at the C-2’ position in hydrophobic and hydrophilic solvent systems. J. Med. Chem. 40, 3305–3311 (1997).

29.          Nativ, O. et al. Anti-neoplastic activity of paclitaxel on experimental superficial bladder cancer: In vivo and in vitro studies. Int. J. Cancer 70, 297–301 (1997).

30.          Gibson, D. et al. Anthraquinone intercalators as carrier molecules for second-generation platinum anticancer drugs. Eur. J. Med. Chem. 32, 823–831 (1997).

31.          Katzhendler, J., Ringel, I., Karaman, R., Zaher, H. & Breuer, E. Acylphosphonate hemiketals - Formation rate and equilibrium. The electron-withdrawing effect of dimethoxyphosphinyl group. J. Chem. Soc. Perkin Trans. 2 341–349 (1997) doi:10.1039/a604196e.

32.          Ringel, I., Gottfried, V., Levdansky, L., Winkelman, J. W. & Kimel, S. Photodynamic activity of porphines on tubulin assembly. in Photochemotherapy: Photodynamic Therapy and Other Modalities (eds. Benjamin, E., Giulio, J. & Johan, M.) vol. 2625 156–163 (1996).

33.          Doungdee, P. et al. Iron chelators of the pyridoxal 2-pyridyl hydrazone class. part III.1 Ionisation and conformational characteristics of the ligands. Heterocycles 40, 241–248 (1995).

34.          Muhlrad, A. & Ringel, I. Use of vanadate-induced photocleavage for detecting phosphate binding sites in proteins. Met. Ions Biol. Syst. 31, 211–230 (1995).

35.          Elisha, Z., Havin, L., Ringel, I. & K.yisraeli, J. Vg1 RNA binding protein mediates the association of Vg1 RNA with microtubules in Xenopus oocytes. EMBO J. 14, 5109–5114 (1995).

36.          Rao, S. et al. 3’-(p-Azidobenzamido)taxol photolabels the N-terminal 31 amino acids of β-tubulin. J. Biol. Chem. 269, 3132–3134 (1994).

37.          Swindell, C. S., Heerding, J. M., Krauss, N. E., Horwitz, S. B. & Ringel, I. Characterization of the taxol structure-activity profile for the locus of the A-ring side chain. Bioorganic Med. Chem. Lett. 4, 1531–1536 (1994).

38.          Swindell, C. S. et al. Characterization of Two Taxol Photoaffinity Analogues Bearing Azide and Benzophenone-Related Photoreactive Substituents in the A-Ring Side Chain. J. Med. Chem. 37, 1446–1449 (1994).

39.          Domb, A. J. & Ringel, I. Polymeric Drug Carrier Systems in the Brain. Methods in Neurosciences vol. 21 169–183 (1994).

40.          Horwitz, S. B. et al. Taxol: mechanisms of action and resistance. J. Natl. Cancer Inst. Monogr. 55–61 (1993).

41.          Carboni, J. M. et al. Synthesis of a Photoaffinity Analog of Taxol as an Approach To Identify the Taxol Binding Site on Microtubules. J. Med. Chem. 36, 513–515 (1993).

42.          Rao, S., Horwitz, S. B. & Ringel, I. Direct photoaffinity labeling of tubulin with taxol. J. Natl. Cancer Inst. 84, 785–788 (1992).

43.          Ringel, I. & Horwitz, S. B. Effect of alkaline pH on taxol-microtubule interactions. J. Pharmacol. Exp. Ther. 259, 855–860 (1991).

44.          Ringel, I. et al. Fluorinated Colchicinoids: Antitubulin and Cytotoxic Properties. J. Med. Chem. 34, 3334–3338 (1991).

45.          Osei, A. A., Everett, G. W., Ringel, I. & Himes, R. H. The interaction of [13C]-enriched colchicine with tubulin as determined by NMR spectroscopy. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1078, 339–344 (1991).

46.          Swindell, C. S., Krauss, N. E., Horwitz, S. B. & Ringel, I. Biologically Active Taxol Analogues with Deleted A-Ring Side Chain Substituents and Variable C-2′ Configurations. J. Med. Chem. 34, 1176–1184 (1991).

47.          Ringel, I. & Horwitz, S. B. Studies with RP 56976 (taxotere): A semisynthetic analogue of taxol. J. Natl. Cancer Inst. 83, 288–291 (1991).

48.          Gibson, D. et al. Preparation, Characterization, and Anticancer Activity of a Series of cis-PtCl2 Complexes Linked to Anthraquinone Intercalators. J. Med. Chem. 34, 414–420 (1991).

49.          Muhlrad, A., Michael Peyser, Y. & Ringel, I. Effect of Actin, ATP, Phosphates, and pH on Vanadate-Induced Photocleavage of Myosin Subfragment 1. Biochemistry 30, 958–965 (1991).

50.          Gean, K. et al. Preparation, characterization and the anticancer activity of a novel series of triaminemonochloroplatinum(II) cations linked to anthraquinone intercalators. Eur. J. Med. Chem. 26, 593–598 (1991).

51.          MUHLRAD, A., PEYSER, Y. M. & RINGEL, I. Effects of ions on vanadate‐induced photocleavage of myosin subfragment 1. Eur. J. Biochem. 201, 409–415 (1991).

52.          Ringel, I., Peyser, Y. M. & Muhlrad, A. 51V NMR Study of Vanadate Binding to Myosin and Its Subfragment 1. Biochemistry 29, 9091–9096 (1990).

53.          Katzhendler, J., Ringel, I., Goldblum, A., Gibson, D. & Tashma, Z. Conformational studies of substituted five-membered cyclic carbonates and related compounds by MNDO, and the X-ray crystal structure of 4-chlorophenyloxymethyl-1,3-dioxolan-2-one. J. Chem. Soc. Perkin Trans. 2 1729–1739 (1989).

54.          Katzhendler, J. et al. Synthesis of aminoanthraquinone derivatives and their in vitro evaluation as potential anti-cancer drugs. Eur. J. Med. Chem. 24, 23–30 (1989).

55.          Katzhendler, J. et al. The effect of spacer, linkage and solid support on the synthesis of oligonucleotides. Tetrahedron 45, 2777–2792 (1989).

56.          Katzhendler, J. et al. The effect of substituted aminoalkylaminoanthraquinones on eukaryotic cells. Drug Des. Deliv. 4, 289–294 (1989).

57.          Ringel, I. et al. N-Alkyl colchiceineamides: their inhibition of GTP or taxol-induced assembly of tubulin. Biochem. Pharmacol. 37, 2487–2489 (1988).

58.          Katzhendler, J., Goldblum, A. & Ringel, I. Kinetic and theoretical considerations in the hydrolysis of iminocarbonates. J. Chem. Soc. Perkin Trans. 2 1653–1660 (1988) doi:10.1039/P29880001653.

59.          Kitov, S., Ben-Shoshan, R., Ringel, I., Gibson, D. & Katzhendler, J. The effect of cis-platin analogues derived from aminoalkylaminoanthraquinones on DNA cleavage: an electron microscopy study. Eur. J. Med. Chem. 23, 381–383 (1988).

60.          Rav-Acha, C., Ringel, I., Sarel, S. & Katzhendler, J. The catalytic effect of catiohic amino micelles on the hydrolysis of substituted phenyl esters. Tetrahedron 44, 5879–5892 (1988).

61.          Tashma, Z. et al. An improved method for the preparation of methyl dichlorophosphite. A key reagent in the phosphite method of oligonucleotide synthesis. Nucleosides and Nucleotides 6, 589–595 (1987).

62.          Ringel, I. & Horwitz, S. B. Taxol is converted to 7-epitaxol, a biologically active isomer, in cell culture medium. J. Pharmacol. Exp. Ther. 242, 692–698 (1987).

63.          Katzhendler, J. et al. Spacer effect on the synthesis of oligodeoxynucleotides by the phosphite method. React. Polym. Ion Exch. Sorbents 6, 175–187 (1987).

64.          Ringel, I. & Sternlicht, H. Carbon-13 Nuclear Magnetic Resonance Study of Microtubule Protein: Evidence for a Second Colchicine Site Involved in the Inhibition of Microtubule Assembly. Biochemistry 23, 5644–5653 (1984).

65.          Sternlicht, H., Ringel, I. & Szasz, J. Theory for modeling the copolymerization of tubulin and tubulin-colchicine complex. Biophys. J. 42, 255–267 (1983).

66.          Sternlicht, H., Ringel, I. & Szasz, J. The co-polymerization of tubulin and tubulin chochicine complex in the absence and presence of associated proteins. J. Biol. Chem. 255, 9138–9148 (1980).

67.          Sternlicht, H., Ringel, I. & Szasz, J. A kinetic model for colchicine inhibition of microtubule assembly. Biophys. J. 32, 445–448 (1980).

68.          Sarel, S., Langbeheim, M. & Ringel, I. Trieneiron tricarbonyl and bisallyldi-iron hexacarbonyl π-complexes from photolysis of divinylcyclopropanes induced by iron pentacarbonyl. J. Chem. Soc. Chem. Commun. 73–75 (1979) doi:10.1039/C39790000073.

69.          Sternlicht, H. & Ringel, I. Colchicine inhibition of microtubule assembly via copolymer formation. J. Biol. Chem. 254, 10540–10550 (1979).

70.          Sternlicht, H., Ringel, I., Szasz, J. & Burns, R. Nuclear magnetic resonance studies of methylated tubulin and colchicine-tubulin binding. J. Cell Biol. 83, (1979).

71.          Sternlicht, H., Ringel, I. & Szasz, J. Colchicine inhibition of microtubule assembly via copolymer formation. J. Cell Biol. 83, (1979).

72.          Victor, R. & Ringel, I. 1H and 13C n.m.r. study of butatriene‐bis‐tricarbonyliron complexes. Assignment of geometric orientation by comparative J(CCCH) values. Org. Magn. Reson. 11, 31–33 (1978).

73.          Sternlicht, H. & Ringel, I. Colchicine inhibition of microtubule assembly. Fed. Proc. 37, (1978).

74.          Sternlicht, H. & Ringel, I. Colchicine inhibition of microtubule assembly. Fed. Proc. 37, (1978).

75.          Breuer, E., Somekh, L. & Ringel, I. N.m.r. spectra of cyclic amines. II—Factors influencing the chemical shifts of α‐protons in aziridines. Org. Magn. Reson. 9, 328–332 (1977).

76.          Katzhendler, J., Ringel, I. & Sarel, S. Organic carbonates. Part XIV. Polar and steric effects of substituents influencing the modes of ring-opening of highly-branched ethylene and trimethylene carbonates by various nucleophiles: A nuclear magnetic resonance study. J. Chem. Soc. Perkin Trans. 2 2019–2025 (1972) doi:10.1039/p29720002019.

77.          Lichtenberg, D., Bergmann, F. & Ringel, I. Assignment of individual signals of aromatic protons in the NMR spectrum of 6-substituted purines. J. Magn. Reson. 6, 600–604 (1972).

78.          Sterin, M., Ringel, I., Lecht, S., Lelkes, P. I. & Lazarovici, P. 31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel construct as an enabling platform technology: I. The effect of glial cells and valporic acid on phosphometabolite levels. Endothel. J. Endothel. Cell Res. 15, 288–298 (2008).

79.          Rasouly, D. et al. Neurites induced by staurosporine in PC12 cells are resistant to colchicine and express high levels of tau proteins. Mol. Pharmacol. 45, 29–35 (1994).