Last updated Septmber 2023 - School of Pharmacy
1.
Lepechkin-Zilbermintz V, Bareket D, Gonnord V, Steffen A, Morice C, Michaut M, et al. Moderately lipophilic 2-(Het)aryl-6-dithioacetals, 2-phenyl-1,4-benzodioxane-6-dithioacetals and 2-phenylbenzofuran-5-dithioacetals: Synthesis and primary evaluation as potential antidiabetic AMPK-activators. Bioorganic and Medicinal Chemistry [Internet]. 2023;87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158908997&doi=10.1016%252fj.bmc.2023.117303&partnerID=40&md5=9d5260bc7c2b536b80c595d22b60d37d
2.
Bianchetti G, Clementi ME, Sampaolese B, Serantoni C, Abeltino A, De Spirito M, et al. Metabolic Imaging and Molecular Biology Reveal the Interplay between Lipid Metabolism and DHA-Induced Modulation of Redox Homeostasis in RPE Cells. Antioxidants [Internet]. 2023;12(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149245043&doi=10.3390%252fantiox12020339&partnerID=40&md5=d977366f6b00ae05acd65e4a74c40044
3.
Bianchetti G, Clementi ME, Sampaolese B, Serantoni C, Abeltino A, De Spirito M, et al. Investigation of DHA-Induced Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells through the Combination of Metabolic Imaging and Molecular Biology. Antioxidants [Internet]. 2022;11(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130732626&doi=10.3390%252fantiox11061072&partnerID=40&md5=df5756c594dcafe37bd887fde79163a3
4.
Bianchetti G, Azoulay-Ginsburg S, Keshet-Levy NY, Malka A, Zilber S, Korshin EE, et al. Investigation of the membrane fluidity regulation of fatty acid intracellular distribution by fluorescence lifetime imaging of novel polarity sensitive fluorescent derivatives. International Journal of Molecular Sciences [Internet]. 2021;22(6):1–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102654874&doi=10.3390%252fijms22063106&partnerID=40&md5=c2060093694937b854f080aca52bab4a
5.
Daniel B, Livne A, Cohen G, Kahremany S, Sasson S. Endothelial Cell-Derived Triosephosphate Isomerase Attenuates Insulin Secretion from Pancreatic Beta Cells of Male Rats. Endocrinology (United States) [Internet]. 2021;162(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100125870&doi=10.1210%252fendocr%252fbqaa234&partnerID=40&md5=99b0dd8baddbde8e08488b5d99133cb2
6.
Robinson EL, da Costa Gomes CP, Potočnjak I, Hellemans J, Betsou F, de Gonzalo-Calvo D, et al. A year in the life of the EU-CardioRNA COST action: CA17129 catalysing transcriptomics research in cardiovascular disease. Non-coding RNA [Internet]. 2020;6(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086089216&doi=10.3390%252fNCRNA6020017&partnerID=40&md5=28b18f4c01dd8f05e8a1704cefbbe268
7.
Maulucci G, Cohen O, Daniel B, Ferreri C, Sasson S. The combination of whole cell lipidomics analysis and single cell confocal imaging of fluidity and micropolarity provides insight into stress-induced lipid turnover in subcellular organelles of pancreatic beta cells. Molecules [Internet]. 2019;24(20). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073635552&doi=10.3390%252fmolecules24203742&partnerID=40&md5=928f23846f13cc94183df0f1c6e9846e
8.
Parchem K, Sasson S, Ferreri C, Bartoszek A. Qualitative analysis of phospholipids and their oxidised derivatives–used techniques and examples of their applications related to lipidomic research and food analysis. Free Radical Research [Internet]. 2019;53(sup1):1068–100. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071984657&doi=10.1080%252f10715762.2019.1657573&partnerID=40&md5=4ee99c2117bc4d1584d28b3382de8a6d
9.
Cordelli E, Merone M, Di Giacinto F, Daniel B, Maulucciy G, Sasson S, et al. Early experiences in 4D quantitative analysis of insulin granules in living beta-cells. In: Proceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018 [Internet]. 2019. p. 2009–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062519261&doi=10.1109%252fBIBM.2018.8621293&partnerID=40&md5=89bec2ca8018bdd92bf835ad36a5d6bb
10.
Uchida K, Shibata T, Toyokuni S, Daniel B, Zarkovic K, Zarkovic N, et al. Development of a novel monoclonal antibody against 4-hydroxy-2E,6Z-dodecadienal (4-HDDE)-protein adducts: Immunochemical application in quantitative and qualitative analyses of lipid peroxidation in vitro and ex vivo. Free Radical Biology and Medicine [Internet]. 2018;124:12–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047791506&doi=10.1016%252fj.freeradbiomed.2018.05.079&partnerID=40&md5=04db641d714b825dc7228e5c55d01ff8
11.
Maulucci G, Di Giacinto F, De Angelis C, Cohen O, Daniel B, Ferreri C, et al. Real time quantitative analysis of lipid storage and lipolysis pathways by confocal spectral imaging of intracellular micropolarity. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids [Internet]. 2018;1863(7):783–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046029118&doi=10.1016%252fj.bbalip.2018.04.004&partnerID=40&md5=af9a58d7dff97c2d3f1598d2412c8ba2
12.
Rozentul N, Avrahami Y, Shubely M, Levy L, Munder A, Cohen G, et al. A Novel Phenylchromane Derivative Increases the Rate of Glucose Uptake in L6 Myotubes and Augments Insulin Secretion from Pancreatic Beta-Cells by Activating AMPK. Pharmaceutical Research [Internet]. 2017;34(12):2873–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030673632&doi=10.1007%252fs11095-017-2271-7&partnerID=40&md5=cb9b215a539f7b317713abe9bea3ee8a
13.
Shamni O, Cohen G, Gruzman A, Zaid H, Klip A, Cerasi E, et al. Supportive data on the regulation of GLUT4 activity by 3-O-methyl-D-glucose. Data in Brief [Internet]. 2017;14:329–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026782636&doi=10.1016%252fj.dib.2017.07.069&partnerID=40&md5=47c72d1d2cc0c857f7c65f0d7fb0716f
14.
Shamni O, Cohen G, Gruzman A, Zaid H, Klip A, Cerasi E, et al. Regulation of GLUT4 activity in myotubes by 3-O-methyl-D-glucose. Biochimica et Biophysica Acta - Biomembranes [Internet]. 2017;1859(10):1900–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021655084&doi=10.1016%252fj.bbamem.2017.06.013&partnerID=40&md5=5863878ba860f61007e949e2f1df4c58
15.
Sasson S. Nutrient overload, lipid peroxidation and pancreatic beta cell function. Free Radical Biology and Medicine [Internet]. 2017;111:102–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011088506&doi=10.1016%252fj.freeradbiomed.2016.09.003&partnerID=40&md5=df619adfe93826a4dfb2fc116b05ad1a
16.
Sasson S. 4-Hydroxyalkenal-activated PPARδ mediates hormetic interactions in diabetes. Biochimie [Internet]. 2017;136:85–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006137745&doi=10.1016%252fj.biochi.2016.10.007&partnerID=40&md5=7c9acb8b8da9a157914eefaddf70579f
17.
Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M, Civeira F, et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. New England Journal of Medicine [Internet]. 2017;376(16):1527–39. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018314556&doi=10.1056%252fNEJMoa1701488&partnerID=40&md5=f2d49739539922b8a7b9b7461e8be08d
18.
Maulucci G, Cohen O, Daniel B, Sansone A, Petropoulou PI, Filou S, et al. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radical Research [Internet]. 2016;50:S40–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992401765&doi=10.1080%252f10715762.2016.1231403&partnerID=40&md5=d6f96587287f752e5e02fb0c6335888c
19.
Maulucci G, Daniel B, Cohen O, Avrahami Y, Sasson S. Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Molecular Aspects of Medicine [Internet]. 2016;49:49–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962045930&doi=10.1016%252fj.mam.2016.03.001&partnerID=40&md5=de3d088c1d2f90d66cb16c538f9c1ebf
20.
Karavia EA, Hatziri A, Kalogeropoulou C, Papachristou NI, Xepapadaki E, Constantinou C, et al. Deficiency in apolipoprotein A-I ablates the pharmacological effects of metformin on plasma glucose homeostasis and hepatic lipid deposition. European Journal of Pharmacology [Internet]. 2015;766:76–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944730284&doi=10.1016%252fj.ejphar.2015.09.040&partnerID=40&md5=a9956f1d28d97709c39fdd462bf5938d
21.
Stancu CS, Carnuta MG, Sanda GM, Toma L, Deleanu M, Niculescu LS, et al. Hyperlipidemia-induced hepatic and small intestine ER stress and decreased paraoxonase 1 expression and activity is associated with HDL dysfunction in Syrian hamsters. Molecular Nutrition and Food Research [Internet]. 2015;59(11):2293–302. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941711251&doi=10.1002%252fmnfr.201500422&partnerID=40&md5=bb211e42fef2ff25a3f22d262e62f01e
22.
Riahi Y, Kaiser N, Cohen G, Abd-Elrahman I, Blum G, Shapira OM, et al. Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner. Journal of Cellular and Molecular Medicine [Internet]. 2015;19(8):1887–99. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938216645&doi=10.1111%252fjcmm.12561&partnerID=40&md5=bbd9d63834e1fac121dc34571859e6cd
23.
Manea SA, Constantin A, Manda G, Sasson S, Manea A. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms. Redox Biology [Internet]. 2015;5:358–66. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933514292&doi=10.1016%252fj.redox.2015.06.012&partnerID=40&md5=d7427355943bd116e256a9f169db7517
24.
Cohen G, Shamni O, Avrahami Y, Cohen O, Broner EC, Filippov-Levy N, et al. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia [Internet]. 2015;58(6):1333–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939938054&doi=10.1007%252fs00125-015-3566-z&partnerID=40&md5=8c7b98063dec288aeecb00a7345e99c5
25.
Kahremany S, Livne A, Gruzman A, Senderowitz H, Sasson S. Activation of PPARδ: From computer modelling to biological effects. British Journal of Pharmacology [Internet]. 2015;172(3):754–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920774079&doi=10.1111%252fbph.12950&partnerID=40&md5=ccf6384efa04712e8df0c8f0c120b0ae
26.
Pasternak L, Meltzer-Mats E, Babai-Shani G, Cohen G, Viskind O, Eckel J, et al. Benzothiazole derivatives augment glucose uptake in skeletal muscle cells and stimulate insulin secretion from pancreatic β-cells via ampk activation. Chemical Communications [Internet]. 2014;50(76):11222–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906675670&doi=10.1039%252fc4cc03310h&partnerID=40&md5=abc1476252564ea61b7779bc33df9881
27.
Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu C, Ferreri C, et al. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radical Biology and Medicine [Internet]. 2013;65:978–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884373560&doi=10.1016%252fj.freeradbiomed.2013.08.163&partnerID=40&md5=701e90eea5bd279087ffb3a2c09c6c4a
28.
Jaganjac M, Tirosh O, Cohen G, Sasson S, Zarkovic N. Reactive aldehydes-second messengers of free radicals in diabetes mellitus. Free Radical Research [Internet]. 2013;47(S1):39–48. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881230708&doi=10.3109%252f10715762.2013.789136&partnerID=40&md5=30cb290d8ab4b033d9e8fbac44889997
29.
Meltzer-Mats E, Babai-Shani G, Pasternak L, Uritsky N, Getter T, Viskind O, et al. Synthesis and mechanism of hypoglycemic activity of benzothiazole derivatives. Journal of Medicinal Chemistry [Internet]. 2013;56(13):5335–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880147061&doi=10.1021%252fjm4001488&partnerID=40&md5=8c6e9ac801a34d2492a9a9f910f8c75d
30.
Kapitulnik J, Benaim C, Sasson S. Endothelial cells derived from the blood-brain barrier and islets of Langerhans differ in their response to the effects of bilirubin on oxidative stress under hyperglycemic conditions. Frontiers in Pharmacology [Internet]. 2012;3 JUL. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866176709&doi=10.3389%252ffphar.2012.00131&partnerID=40&md5=1df1d8117f5bbec19f2fb0d3046dca93
31.
Gruzman A, Elgart A, Viskind O, Billauer H, Dotan S, Cohen G, et al. Antihyperglycaemic activity of 2,4:3,5-dibenzylidene-D-xylose-diethyl dithioacetal in diabetic mice. Journal of Cellular and Molecular Medicine [Internet]. 2012;16(3):593–603. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857019474&doi=10.1111%252fj.1582-4934.2011.01340.x&partnerID=40&md5=087b245ac640d416a748073f761413be
32.
Cohen G, Riahi Y, Shamni O, Guichardant M, Chatgilialoglu C, Ferreri C, et al. Role of lipid peroxidation and PPAR-δ in amplifying glucose-stimulated insulin secretion. Diabetes [Internet]. 2011;60(11):2830–42. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80755152865&doi=10.2337%252fdb11-0347&partnerID=40&md5=b6b8f59aad022d2ba95829794dd0d768
33.
Lamers D, Schlich R, Greulich S, Sasson S, Sell H, Eckel J. Oleic acid and adipokines synergize in inducing proliferation and inflammatory signalling in human vascular smooth muscle cells. Journal of Cellular and Molecular Medicine [Internet]. 2011;15(5):1177–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79957581507&doi=10.1111%252fj.1582-4934.2010.01099.x&partnerID=40&md5=709c2472930e6ae32a1d4408ed23bacc
34.
Riahi Y, Cohen G, Shamni O, Sasson S. Signaling and cytotoxic functions of 4-hydroxyalkenals. American Journal of Physiology - Endocrinology and Metabolism [Internet]. 2010;299(6):E879–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649676178&doi=10.1152%252fajpendo.00508.2010&partnerID=40&md5=b9c7442b65adb8e76a93ecb38e54922a
35.
Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, et al. Pathological aspects of lipid peroxidation. Free Radical Research [Internet]. 2010;44(10):1125–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956574773&doi=10.3109%252f10715762.2010.498478&partnerID=40&md5=05d23832dd0263bbcc4c88e3c3915bbf
36.
Riahi Y, Sin-Malia Y, Cohen G, Alpert E, Gruzman A, Eckel J, et al. The natural protective mechanism against hyperglycemia in vascular endothelial cells: Roles of the lipid peroxidation product 4-hydroxydodecadienal and peroxisome proliferator-activated receptor δ. Diabetes [Internet]. 2010;59(4):808–18. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77951197658&doi=10.2337%252fdb09-1207&partnerID=40&md5=60fb3c1c7e9766c63b9a9c3b7f3c9c3a
37.
Gruzman A, Shamni O, Yakir MB, Sandovski D, Elgart A, Alpert E, et al. Novel D-xylose derivatives stimulate muscle glucose uptake by activating AMP-activated protein kinase α. Journal of Medicinal Chemistry [Internet]. 2008;51(24):8096–108. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149095366&doi=10.1021%252fjm8008713&partnerID=40&md5=cd3e15ff4604cc207138fa008206cb92
38.
Yakir MB, Katzhendler Y, Sasson S. The search for potent alpha-lipoic acid derivatives: Chemical and pharmacological aspects [Internet]. Lipoic Acid: Energy Production, Antioxidant Activity and Health Effects. 2008. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84912055078&partnerID=40&md5=59ba933edf7f65fa09212cecb8ffce5f
39.
Alpert E, Gruzman A, Tennenbaum T, Sasson S. Selective cyclooxygenase-2 inhibitors stimulate glucose transport in L6 myotubes in a protein kinase Cδ-dependent manner. Biochemical Pharmacology [Internet]. 2007;73(3):368–77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33845635702&doi=10.1016%252fj.bcp.2006.10.008&partnerID=40&md5=c17a32bd832fe091a6f419d8946af3c8
40.
Vahsen S, Rakowski K, Ledwig D, Dietze-Schroeder D, Swifka J, Sasson S, et al. Altered GLUT4 translocation in skeletal muscle of 12/15-lipoxygenase knockout mice. Hormone and Metabolic Research [Internet]. 2006;38(6):391–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745917065&doi=10.1055%252fs-2006-944531&partnerID=40&md5=ab6e65ede21408cc0222dcf943503256
41.
Alpert E, Gruzman A, Lardi-Studler B, Cohen G, Reich R, Sasson S. Cyclooxygenase-2 (PTGS2) inhibitors augment the rate of hexose transport in L6 myotubes in an insulin-and AMPKα-independent manner. Diabetologia [Internet]. 2006;49(3):562–70. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33244485463&doi=10.1007%252fs00125-005-0122-2&partnerID=40&md5=135ed8a2bf29dd03f13e3ddae9f7a633
42.
Totary-Jain H, Naveh-Many T, Riahi Y, Kaiser N, Eckel J, Sasson S. Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circulation Research [Internet]. 2005;97(10):1001–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-27944477788&doi=10.1161%252f01.RES.0000189260.46084.e5&partnerID=40&md5=ab6c75fb577eeb76d8ecd2fd8cb134c0
43.
Alpert E, Gruzman A, Riahi Y, Blejter R, Aharoni P, Weisinger G, et al. Delayed autoregulation of glucose transport in vascular endothelial cells. Diabetologia [Internet]. 2005;48(4):752–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-17844369493&doi=10.1007%252fs00125-005-1681-y&partnerID=40&md5=de63799a913f11e9dc5965b1d7d96a1b
44.
Alpert E, Altman H, Totary H, Gruzman A, Barnea D, Barash V, et al. 4-Hydroxy tempol-induced impairment of mitochondrial function and augmentation of glucose transport in vascular endothelial and smooth muscle cells. Biochemical Pharmacology [Internet]. 2004;67(10):1985–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-2342575652&doi=10.1016%252fj.bcp.2004.02.005&partnerID=40&md5=94ad0a622ee1a2c1dad1403cac4725fa
45.
Gruzman A, Hidmi A, Katzhendler J, Haj-Yehie A, Sasson S. Synthesis and characterization of new and potent α-lipoic acid derivatives. Bioorganic and Medicinal Chemistry [Internet]. 2004;12(5):1183–90. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1342343121&doi=10.1016%252fj.bmc.2003.11.025&partnerID=40&md5=70470b959d13227dfd81b80c031d85fe
46.
Krimsky M, Yedgar S, Aptekar L, Schwob O, Goshen G, Gruzman A, et al. Amelioration of TNBS-induced colon inflammation in rats by phospholipase A2 inhibitor. American Journal of Physiology - Gastrointestinal and Liver Physiology [Internet]. 2003;285(3 48-3):G586–92. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0041464463&doi=10.1152%252fajpgi.00463.2002&partnerID=40&md5=3dbd1e1a01f749449de0840ab1cfd456
47.
Noyman I, Marikovsky M, Sasson S, Stark AH, Bernath K, Seger R, et al. Hyperglycemia reduces nitric oxide synthase and glycogen synthase activity in endothelial cells. Nitric Oxide - Biology and Chemistry [Internet]. 2002;7(3):187–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1842867750&doi=10.1016%2fS1089-8603%2802%2900106-4&partnerID=40&md5=b94c3effa886054cbeb44d78ccd4d7ce
48.
Alpert E, Gruzman A, Totary H, Kaiser N, Reich R, Sasson S. A natural protective mechanism against hyperglycaemia in vascular endothelial and smooth-muscle cells: Role of glucose and 12-hydroxyeicosatetraenoic acid. Biochemical Journal [Internet]. 2002;362(2):413–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036499692&doi=10.1042%252f0264-6021%253a3620413&partnerID=40&md5=a8ff11217fc7cc91c5beb40f889985af
49.
Dransfeld O, Rakatzi I, Sasson S, Eckel J. Eicosanoids and the regulation of cardiac glucose transport. Annals of the New York Academy of Sciences [Internet]. 2002;967:208–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036297757&doi=10.1111%252fj.1749-6632.2002.tb04277.x&partnerID=40&md5=e017ab3065a5d488e60ac6c1b2613a88
50.
Dransfeld O, Rakatzi I, Sasson S, Gruzman A, Schmitt M, Häussinger D, et al. Eicosanoids participate in the regulation of cardiac glucose transport by contribution to a rearrangement of actin cytoskeletal elements. Biochemical Journal [Internet]. 2001;359(1):47–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035476416&doi=10.1042%252f0264-6021%253a3590047&partnerID=40&md5=fc803db5438dfa3b0374121f17e717d7
51.
Von Der Crone S, Deppe C, Barthel A, Sasson S, Joost HG, Schürmann A. Glucose deprivation induces Akt-dependent synthesis and incorporation of GLUT1, but not of GLUT4, into the plasma membrane of 3T3-L1 adipocytes. European Journal of Cell Biology [Internet]. 2000;79(12):943–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034532663&doi=10.1078%252f0171-9335-00118&partnerID=40&md5=ea7719896df24cdc4bc37f4cb6a6eb21
52.
Dransfeld O, Uphues I, Sasson S, Schürmann A, Joost HG, Eckel J. Regulation of subcellular distribution of GLUT4 in cardiomyocytes: Rab4A reduces basal glucose transport and augments insulin responsiveness. Experimental and Clinical Endocrinology and Diabetes [Internet]. 2000;108(1):26–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034102592&doi=10.1055%252fs-0032-1329212&partnerID=40&md5=d679b0c7c2e872efdd2f618524fd0da9
53.
Yudt MR, Vorojeikina D, Zhong L, Skafar DF, Sasson S, Gasiewicz TA, et al. Function of estrogen receptor tyrosine 537 in hormone binding, DNA binding, and transactivation. Biochemistry [Internet]. 1999;38(43):14146–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033607306&doi=10.1021%252fbi9911132&partnerID=40&md5=79431a9596118745e93d9053277bc1f6
54.
Dimitriadis G, Leighton B, Parry-Billings M, Sasson S, Young M, Krause U, et al. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochemical Journal [Internet]. 1997;321(3):707–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031059756&doi=10.1042%252fbj3210707&partnerID=40&md5=dedea08ca2c122498c13f8ba618ee88e
55.
Sasson S, Kaiser N, Dan-Goor M, Oron R, Koren S, Wertheimer E, et al. Substrate autoregulation of glucose transport: Hexose 6-phosphate mediates the cellular distribution of glucose transporters. Diabetologia [Internet]. 1997;40(1):30–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031012995&doi=10.1007%252fs001250050639&partnerID=40&md5=aaeadd866157ebe8cfcf44311e9a7af7
56.
Arnold SF, Melamed M, Vorojeikina DP, Notides AC, Sasson S. Estradiol-binding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosine phosphorylation. Molecular Endocrinology [Internet]. 1997;11(1):48–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031036099&doi=10.1210%252fmend.11.1.9876&partnerID=40&md5=338c32c8564614ab2ef4d8dc0a0a894f
57.
Melamed M, Castaño E, Notides AC, Sasson S. Molecular and kinetic basis for the mixed agonist/antagonist activity of estriol. Molecular Endocrinology [Internet]. 1997;11(12):1868–78. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030685806&doi=10.1210%252fmend.11.12.0025&partnerID=40&md5=ea71920df03f92606ee92a33daddd530
58.
Melamed M, Arnold SF, Notides AC, Sasson S. Kinetic analysis of the interaction of human estrogen receptor with an estrogen response element. Journal of Steroid Biochemistry and Molecular Biology [Internet]. 1996;57(3–4):153–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029890415&doi=10.1016%2f0960-0760%2895%2900264-2&partnerID=40&md5=ecbbb9b161abb0fa1a03c3a78fc92ac7
59.
Sasson S, Gorowits N, Joost HG, King GL, Cerasi E, Kaiser N. Regulation by metformin of the hexose transport system in vascular endothelial and smooth muscle cells. British Journal of Pharmacology [Internet]. 1996;117(6):1318–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029867131&doi=10.1111%252fj.1476-5381.1996.tb16731.x&partnerID=40&md5=1d9805765b81147722cce223dcfaac1e
60.
Youngren JF, Maddux BA, Sasson S, Sbraccia P, Tapscott EB, Swanson MS, et al. Skeletal muscle content of membrane glycoprotein PC-1 in obesity: Relationship to muscle glucose transport. Diabetes [Internet]. 1996;45(10):1324–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029742448&doi=10.2337%252fdiab.45.10.1324&partnerID=40&md5=47a3bb5884c0950be273b76799dc2304
61.
Maddux BA, Sbraccia P, Kumakura S, Sasson S, Youngren J, Fisher A, et al. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature [Internet]. 1995;373(6513):448–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028795761&doi=10.1038%252f373448a0&partnerID=40&md5=a923d9950a135a640ed31f89399923fb
62.
Sasson S, Ashhab Y, Melloul D, Cerasi E. Autoregulation of glucose transport: Effects of glucose on glucose transporter expression and cellular location in muscle. Advances in Experimental Medicine and Biology [Internet]. 1993;334:113–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027483683&doi=10.1007%252f978-1-4615-2910-1_9&partnerID=40&md5=04f58d5c51698e3f400dadbd6986a49e
63.
Sasson S, Oron R, Cerasi E. Enzymatic assay of 2-deoxyglucose 6-phosphate for assessing hexose uptake rates in cultured cells. Analytical Biochemistry [Internet]. 1993;215(2):309–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027438887&doi=10.1006%252fabio.1993.1594&partnerID=40&md5=86e13a53370b44d05d16c01ad8e149e3
64.
Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, et al. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes [Internet]. 1993;42(1):80–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027395183&doi=10.2337%252fdiab.42.1.80&partnerID=40&md5=c820d38cec691d473bb31d98d8bd0e5d
65.
Bond JP, Sasson S, Notides AC. The binding of estrogen and estrogen antagonists to the estrogen receptor. Archives of Biochemistry and Biophysics [Internet]. 1992;296(2):583–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026667650&doi=10.1016%2f0003-9861%2892%2990614-3&partnerID=40&md5=ae1c8c965498efe3d90b2ac5796415b3
66.
Greco-Perotto R, Wertheimer E, Jeanrenaud B, Cerasi E, Sasson S. Glucose regulates its transport in L8 myocytes by modulating cellular trafficking of the transporter GLUT-1. Biochemical Journal [Internet]. 1992;286(1):157–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026649530&doi=10.1042%252fbj2860157&partnerID=40&md5=ecb8d178c3878e5cc6b023907835efd8
67.
Wertheimer E, Sasson S, Cerasi E, Ben-Neriah Y. The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1991;88(6):2525–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026019757&doi=10.1073%252fpnas.88.6.2525&partnerID=40&md5=f7a7e261a2bace792ce4c77276207461
68.
Sasson S. Equilibrium binding analysis of estrogen agonists and antagonists: relation to the activation of the estrogen receptor. Pathologie Biologie [Internet]. 1991;39(1):59–69. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025963493&partnerID=40&md5=cb6bdfe0edfb99170d9b6925d7b8f9f8
69.
Sasson S, Kunievsky B, Nathan C, Ceras E. On the role of 5-hydroxytryptamine in the peripheral action of fenfluramine: studies with the isolated rat soleus muscle. Biochemical Pharmacology [Internet]. 1990;39(5):965–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025060160&doi=10.1016%2f0006-2952%2890%2990215-7&partnerID=40&md5=8279797c7a74e1489a0d06b11c6b9865
70.
Wertheimer E, Sasson S, Cerasi E. Regulation of hexose transport in L8 myocytes by glucose: Possible sites of interaction. Journal of Cellular Physiology [Internet]. 1990;143(2):330–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025364056&doi=10.1002%252fjcp.1041430217&partnerID=40&md5=300b222df60539c8058c7a1c1f7b1f94
71.
Sasson S, Kunievsky B, Nathan C, Cerasi E. Failure of fenfluramine to affect basal and insulin-stimulated hexose transport in rat skeletal muscle. Biochemical Pharmacology [Internet]. 1989;38(16):2655–61. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024322161&doi=10.1016%2f0006-2952%2889%2990551-0&partnerID=40&md5=4cde61e579ba81ce039cbb41a08197cf
72.
Sasson S, Katzenellenbooen JA. Reversible, positive cooperative interaction of 11β-chloromethyl-[3H]estradiol-17β with the calf uterine estrogen receptor. Journal of Steroid Biochemistry [Internet]. 1989;33(5):859–65. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024792392&doi=10.1016%2f0022-4731%2889%2990233-1&partnerID=40&md5=cdc62a71119657c32806bb0795096836
73.
Sasson S, Notides AC. The effects of dimethylformamide on the interaction of the estrogen receptor with estradiol. Journal of Steroid Biochemistry [Internet]. 1988;29(5):491–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023934015&doi=10.1016%2f0022-4731%2888%2990183-5&partnerID=40&md5=9888a80775f9bb3a7801474d740b3741
74.
Sasson S, Notides AC. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen. Molecular Endocrinology [Internet]. 1988;2(4):307–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023878971&doi=10.1210%252fmend-2-4-307&partnerID=40&md5=63da9c34f213c193530552a176bec4fd
75.
Amir S, Sasson S, Kaiser N, Meyerovitch J, Shechter Y. Polymyxin B is an inhibitor of insulin-induced hypoglycemia in the whole animal model. Studies on the mode of inhibitory action. Journal of Biological Chemistry [Internet]. 1987;262(14):6663–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023278991&partnerID=40&md5=7291f434dcdd615b65b1f010d35ec088
76.
Sasson S, Edelson D, Cerasi E. In vitro autoregulation of glucose utilization in rat soleus muscle. Diabetes [Internet]. 1987;36(9):1041–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023200469&doi=10.2337%252fdiab.36.9.1041&partnerID=40&md5=10865ee530300f92f34495caef4491fc
77.
Sasson S, Cerasi E. Substrate regulation of the glucose transport system in rat skeletal muscle. Characterization and kinetic analysis in isolated soleus muscle and skeletal muscle cells in culture. Journal of Biological Chemistry [Internet]. 1986;261(36):16827–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0023034661&partnerID=40&md5=57b6fd2c8512df10fde9f13d5adbc19b
78.
Sasson S, Notides AC. Inability of [3H]estriol to induce maximal cooperativity of the estrogen receptor. Journal of Steroid Biochemistry [Internet]. 1984;20(4 PART 2):1027–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021287681&doi=10.1016%2f0022-4731%2884%2990014-1&partnerID=40&md5=cec20b551135f3f9a573a14559941bb2
79.
Sasson S, Notides AC. The estriol-induced inhibition of the estrogen receptor’s positive cooperativity. Journal of Steroid Biochemistry [Internet]. 1984;20(4 PART 2):1021–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021262759&doi=10.1016%2f0022-4731%2884%2990013-X&partnerID=40&md5=4649a26b4301c6f7b8c8c75c0041bbe1
80.
Sasson S, Notides AC. Estriol and estrone interaction with the estrogen receptor. II. Estriol and estrone-induced inhibition of the cooperative binding of [3H]estradiol to the estrogen receptor. Journal of Biological Chemistry [Internet]. 1983;258(13):8118–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020957920&partnerID=40&md5=3826c099d5143cfecf4fbca543a9e70a
81.
Sasson S, Notides AC. The inhibition of the estrogen receptor’s positive cooperative [3H]estradiol binding by the antagonist, clomiphene. Journal of Biological Chemistry [Internet]. 1982;257(19):11540–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0020395816&partnerID=40&md5=1e2392a58750465b348c0ea87ef3d545
82.
Sasson S, Mayer M. Interactions of androgenic steroids with thymus cells in vivo and in vitro. Israel Journal of Medical Sciences [Internet]. 1982;17(12):1198–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019965552&partnerID=40&md5=784675129533d41e0329decc9354d197
83.
Sasson S, Mayer M. Resistance to androgen in murine lymphosarcoma lines resistant or sensitive to glucocorticoid hormone. British Journal of Cancer [Internet]. 1981;44(1):127–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019464054&doi=10.1038%252fbjc.1981.158&partnerID=40&md5=85d586fed46686d71438f931e18ed666
84.
Sasson S, Mayer M. Effect of androgenic steroids on rat thymus and thymocytes in suspension. Journal of Steroid Biochemistry [Internet]. 1981;14(6):509–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019446235&doi=10.1016%2f0022-4731%2881%2990023-6&partnerID=40&md5=1234333f5e955c44d81931fc72ed43b4